Microwave-Assisted Extraction of Antioxidants and Food Colors

  • Ying Li
  • Anne-Sylvie Fabiano-Tixier
  • Maryline Abert-Vian
  • Farid Chemat
Part of the Food Engineering Series book series (FSES)


In recent years, microwave-assisted extraction (MAE) has rapidly developed as a widely used innovative technique of high efficiency that allows high yields of antioxidants and food colors from appropriate plants in shorter time as compared to conventional techniques. This chapter presents a panorama of current knowledge on microwave-assisted extractions of antioxidants and food colors. It provides the necessary theoretical background and some details (e.g., chemical structures and mechanisms) about the importance of antioxidants and food colors, relevant microwave techniques, and their applications in extracting antioxidants and food colors. All the reported MAE-related techniques and applications have shown that microwave-assisted extraction can be considered a substitute to conventional techniques because of its advantages of reducing extraction times, energy and solvent consumption, and CO2 emission. Moreover, all these mentioned successful laboratory-scale research efforts have led to industrial-scale application in some pioneering companies.


Natural Color Microwave Energy Short Extraction Time Microwave Extraction Conventional Solvent Extraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




Conventional solvent extraction


Conventional heating water extraction


Dynamic microwave-assisted extraction


Heating reflux extraction


Microwave-assisted extraction


Microwave hydrodiffusion and gravity extraction


Microwave-assisted water extraction


Pressurized microwave-assisted extraction


Rotary extraction


Soxhlet extraction


Ultrasound-assisted extraction


Ultrasound microwave-assisted extraction


Vacuum microwave-assisted extraction


Vacuum microwave hydrodiffusion and gravity extraction


  1. 1.
    Dangles O (2012) Antioxydant activity of plant phenols: chemical mechanisms and biological significance. Curr Org Chem 16:692–714Google Scholar
  2. 2.
    Dangles O (2006) Les polyphénols en Agroalimentaire. In: Lavoisier (ed) Propriétés chimique des polyphénols. Lavoisier, Paris, pp 29–54Google Scholar
  3. 3.
    Velisek J, Davidek J, Cejpek K (2008) Biosynthesis of food constituents: natural pigments. Czech J Food Sci 26:73–98Google Scholar
  4. 4.
    Siva R (2007) Status of natural dyes and dye-yielding plants in India. Curr Sci 92:916–925Google Scholar
  5. 5.
    Gedye RN, Smith FE, Westaway KC, Ali H, Baldisera L, Laberge L, Roussel J (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett 27:279–282CrossRefGoogle Scholar
  6. 6.
    Giguerre RJ, Bray TL, Duncan SM, Majetich G (1986) Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett 27:4945–4948CrossRefGoogle Scholar
  7. 7.
    Ganzler K, Salgo A, Valko K (1986) Microwave extraction. A novel sample preparation method for chromatography. J Chromatogr 371:299–306CrossRefGoogle Scholar
  8. 8.
    Lane D, Jenkins SWD (1984) Presented at the 9th international symposium on polynuclear aromatic hydrocarbons, Columbus. Abstracts, p 437Google Scholar
  9. 9.
    Perreux L, Loupy A (2001) A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 57:9199–9223CrossRefGoogle Scholar
  10. 10.
    Lettelier M, Budzinski H (1999) Microwave assisted extraction of organic compounds. Analusis 27:259–271CrossRefGoogle Scholar
  11. 11.
    Paré JRJ (1992) Microwave assisted process for extraction and apparatus therefore. CA Patent 2,055,390Google Scholar
  12. 12.
    Paré JRJ, Sigouin M, Lapointe J (1990) Extraction of natural products assisted by microwaves. EP Patent 398,798Google Scholar
  13. 13.
    Paré JRJ, Sigouin M, Lapointe J (1991) Microwave-assisted natural product extraction. US Patent 5,002,784Google Scholar
  14. 14.
    Paré JRJ (1994) Microwave extraction of volatile oils. US Patent 5,338,557Google Scholar
  15. 15.
    Paré JRJ, Bélanger JMR (1997) Microwave-assisted process (MAPTM): principles and applications. In: Paré JRJ, Bélanger JMR (eds) Instrumental methods in food analysis. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Eskilsson CS, Björklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 902:227–250CrossRefGoogle Scholar
  17. 17.
    Luque-Garcia JL, Luque de Castro MD (2004) Focused microwave-assisted Soxhlet extraction: devices and applications. Talanta 64:571–577CrossRefGoogle Scholar
  18. 18.
    Abert Vian M, Fernandez X, Visinoni F, Chemat F (2008) Microwave hydrodiffusion and gravity, a new technique for extraction of essential oils. J Chromatogr A 1190:14–17CrossRefGoogle Scholar
  19. 19.
    Careri M, Corradini C, Elviri L, Mangia A (2007) Optimization of a rapid microwave assisted extraction method for the liquid chromatography-electrospray-tandem mass spectrometry determination of isoflavonoid aglycones in soybeans. J Chromatogr A 1152:274–279CrossRefGoogle Scholar
  20. 20.
    Rostagno MA, Palma M, Barroso CG (2007) Microwave-assisted extraction of soy isoflavones. Anal Chim Acta 588:274–282CrossRefGoogle Scholar
  21. 21.
    Nkhili E, Tomao V, El Hajji H, El Boustani ES, Chemat F, Dangles O (2009) Microwave-assisted water extraction of green tea polyphenols. Phytochem Anal 20:408–415CrossRefGoogle Scholar
  22. 22.
    Gao M, Liu C (2005) Comparison of techniques for extraction of flavonoids from cultured cells of Saussurea medusa Maxim. World J Microbiol Biotechnol 21:1461–1463CrossRefGoogle Scholar
  23. 23.
    Xiao W, Han L, Shi B (2008) Microwave-assisted extraction of flavonoids from Radix astragali. Sep Purif Technol 62:616–620CrossRefGoogle Scholar
  24. 24.
    Chen L, Ding L, Yu A, Yang R, Wang X, Li J, Jin H, Zhang H (2007) Continuous determination of total flavonoids in Platycladus orientalis (L.) Franco by dynamic microwave-assisted extraction coupled with on-line derivatization and ultraviolet–visible detection. Anal Chim Acta 596:164–170CrossRefGoogle Scholar
  25. 25.
    Gao M, Song BZ, Liu CZ (2006) Dynamic microwave-assisted extraction of flavonoids from Saussurea medusa Maxim cultured cells. Biochem Eng J 32:79–83CrossRefGoogle Scholar
  26. 26.
    Pan Y, Wang K, Huang S, Wang H, Mu X, He C, Ji X, Zhang J, Huang F (2008) Antioxidant activity of microwave-assisted extract of longan (Dimocarpus longan Lour.) peel. Food Chem 106:1264–1270CrossRefGoogle Scholar
  27. 27.
    Proestos C, Komaitis M (2008) Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds. LWT Food Sci Technol 41:652–659CrossRefGoogle Scholar
  28. 28.
    Mao Y, Li Y, Yao N (2007) Simultaneous determination of salidroside and tyrosol in extracts of Rhodiola L. by microwave assisted extraction and high-performance liquid chromatography. J Pharm Biomed Anal 45:510–515CrossRefGoogle Scholar
  29. 29.
    Chen L, Jin H, Ding L, Zhang H, Li J, Qu C, Zhang H (2008) Dynamic microwave-assisted extraction of flavonoids from Herba epimedii. Sep Purif Technol 59:50–57CrossRefGoogle Scholar
  30. 30.
    Zill-e-Huma, Abert-Vian M, Maingonnat JF, Chemat F (2009) Clean recovery of antioxidant flavonoids from onions: optimising solvent free microwave extraction method. J Chromatogr A 1216:7700–7707CrossRefGoogle Scholar
  31. 31.
    Zill-e-Huma, Abert-Vian M, Fabiano-Tixier AS, Elmaataoui M, Dangles O, Chemat F (2011) A remarkable influence of microwave extraction: enhancement of antioxidant activity of extracted onion varieties. Food Chem 127:1472–1480CrossRefGoogle Scholar
  32. 32.
    Périno-Issartier S, Zill-e-Huma S, Abert-Vian M, Chemat F (2010) Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol 4:1020–1028CrossRefGoogle Scholar
  33. 33.
    Zill-e-Huma, Abert-Vian M, Elmaataoui M, Chemat F (2011) A novel idea in food extraction field: study of vacuum microwave hydrodiffusion technique for by-products extraction. J Food Eng 105:351–360CrossRefGoogle Scholar
  34. 34.
    Japon-Lujan R, Luque-Rodriguez JM, Luque de Castro MD (2006) Multivariate optimisation of the microwave-assisted extraction of oleuropein and related biophenols from olive leaves. Anal Bioanal Chem 385:753–759CrossRefGoogle Scholar
  35. 35.
    Liazid A, Palma M, Brigui J, Barroso CG (2007) Investigation on phenolic compounds stability during microwave-assisted extraction. J Chromatogr A 1140:29–34CrossRefGoogle Scholar
  36. 36.
    Yang Z, Zhai W (2010) Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innov Food Sci Emerg Technol 11:470–476CrossRefGoogle Scholar
  37. 37.
    Zhang L, Liu Z (2008) Optimization and comparison of ultrasound/microwave assisted extraction (UMAE) and ultrasonic assisted extraction (UAE) of lycopene from tomatoes. Ultrason Sonochem 15:731–737CrossRefGoogle Scholar
  38. 38.
    Hemwimon S, Pavasant P, Shotipruk A (2007) Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep Purif Technol 54:44–50CrossRefGoogle Scholar
  39. 39.
    Sharma UK, Sharma K, Sharma N, Sharma A, Singh HP, Sinha AK (2008) Microwave-assisted efficient extraction of different parts of Hippophae rhamnoides for the comparitive evaluation of antioxidant activity and quantification of its phenolic constituents by reverse-phase high-performance liquid chromatography (RP-HPLC). J Agric Food Chem 56:374–379CrossRefGoogle Scholar
  40. 40.
    Wang G, Su P, Zhang F, Hou X, Yang Y, Guo Z (2011) Comparison of microwave-assisted extraction of aloe-emodin in aloe with Soxhlet extraction and ultrasound-assisted extraction. Sci China Chem 54:231–236CrossRefGoogle Scholar
  41. 41.
    Grigonis D, Venskutonis PR, Sivik B, Sandahl M, Eskilsson CS (2005) Comparison of different extraction techniques for isolation of antioxidants from sweet grass (Hierochloe odorata). J Supercrit Fluid 33:223–233CrossRefGoogle Scholar
  42. 42.
    Pan X, Niu G, Liu H (2003) Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process 42:129–133CrossRefGoogle Scholar
  43. 43.
    Hayet K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Jia C, Zhang X, Xia W (2009) Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro. Sep Purif Technol 70:63–70CrossRefGoogle Scholar
  44. 44.
    Wang JX, Xiao XH, Li GK (2008) Study of vacuum microwave-assisted extraction of polyphenolic compounds and pigment from Chinese herbs. J Chromatogr A 1198–1199:45–53Google Scholar
  45. 45.
    Mandal V, Mohan Y, Hemalatha S (2008) Microwave assisted extraction of curcumin by sample-solvent dual heating mechanism using Taguchi L9 orthogonal design. J Pharm Biomed Anal 46:322–327CrossRefGoogle Scholar
  46. 46.
    Chen L, Ding L, Zhang H, Li J, Wang Y, Wang X, Qu C, Zhang H (2006) Dynamic microwave-assisted extraction coupled with on-line spectrophotometeric determination of safflower yellow in Flos carthami. Anal Chim Acta 580:75–82CrossRefGoogle Scholar
  47. 47.
    Sun Y, Liao X, Wang Z, Hu X, Chen F (2007) Optimization of microwave-assisted extraction of anthocyanins in red raspberries and identification of anthocyanin of extracts using high-performance liquid chromatography-mass spectrometry. Eur Food Res Technol 225:511–523CrossRefGoogle Scholar
  48. 48.
    Csiktusnádi Kiss GA, Forgács E, Cserháti T, Mota T, Morais H, Ramos A (2000) Optimisation of microwave-assisted extraction of pigments from paprika (Capsicum annum L.) powders. J Chromatogr A 889:41–49CrossRefGoogle Scholar
  49. 49.
    Jun SJ, Chun JK (1998) Design of u-column microwave-assisted extraction system and its application to pigment extraction from food. Trans IChemE 76:231–236Google Scholar
  50. 50.
    Li Y, Liu M (2005) Studies on the microwave extraction of the yellow pigment from Rabdosia serra (Maxim.) Hara. J Chin Med Mater 28:330–332Google Scholar
  51. 51.
    Dabiri M, Salimi S, Ghassempour A, Rassouli A, Talebi M (2005) Optimization of microwave-assisted extraction for alizarin and purpurin in Rubiaceae plants and its comparison with conventional extraction methods. J Sep Sci 28:387–396CrossRefGoogle Scholar
  52. 52.
    Pasquet V, Chérouvrier JR, Farhat F, Thiéry V, Piot JM, Bérard JB, Kaas R, Serive B, Patrice T, Cadoret JP, Picot L (2011) Study on the microalgal pigments extraction process: performance of microwave assisted extraction. Process Biochem 46:59–67CrossRefGoogle Scholar
  53. 53.
    Liazid A, Guerrero RF, Cantos E, Palma M, Barroso CG (2010) Microwave assisted extraction of anthocyanins from grape skins. Food Chem 124:1238–1243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ying Li
    • 1
  • Anne-Sylvie Fabiano-Tixier
    • 1
  • Maryline Abert-Vian
    • 1
  • Farid Chemat
    • 1
  1. 1.Université d’Avignon et des Pays de Vaucluse, INRA, UMR408, Sécurité et Qualité des Produits d’Origine Végétale, GREEN (Groupe de Recherche en Eco-Extraction des produits Naturels)AvignonFrance

Personalised recommendations