Skip to main content

Fundamentals of Microwave Extraction

  • Chapter
  • First Online:
Microwave-assisted Extraction for Bioactive Compounds

Part of the book series: Food Engineering Series ((FSES))

Abstract

Microwave-assisted extraction (MAE) is a process that removes solutes from a solid matrix into a solvent. Phenomena such as electromagnetic transfer, heat transfer, mass transfer, and momentum transfer make the process complex. For developing process engineering, the characteristics of heat and mass transfer are extremely significant. Accurate and controlled heat is possible because of the capacity of microwave radiation to penetrate and combine with a substrate. Therefore, the microwave procedure can be designed to transport electromagnetic energy with specific power to the location of the compounds of interest in the substrate. The energy-saving factors and short processing times lead to a reduction in manufacturing costs, and improvement of product uniformity and yields, resulting in products with high quality compared with other extraction techniques. This chapter provides a general review of heat and mass transfer and gives a brief discussion on the factors influencing the extraction efficiency of MAE. The performance of MAE is also compared to other classical methods, thus explaining the advantages of MAE technology as applied to plant extraction research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chemat F, Abert-Vian M, Zill-e-Huma Y-J (2009) Microwave assisted separations: green chemistry in action. In: Pearlman JT (ed) Green chemistry research trends. Nova Science Publishers, New York, pp 33–62

    Google Scholar 

  2. Périno-Issartier S, Zill-e-Huma Y-J, Abert-Vian M, Chemat F (2011) Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol 4:1020–1028

    Article  Google Scholar 

  3. Aguilera JM (2003) Solid–liquid extraction. In: Tzia C, Liadakis G (eds) Extraction optimization in food engineering. Dekker, New York, pp 35–55

    Google Scholar 

  4. Hu Z, Cai M, Liang HH (2008) Desirability function approach for the optimization of microwave-assisted extraction of saikosaponins from Radix bupleuri. Sep Purif Technol 61(3):266–275

    Article  CAS  Google Scholar 

  5. Raynie DE (2000) Extraction. In: Wilson ID, Adlard ER, Cooke M, Poolie CF (eds) Encyclopedia of separation science. Academic Press, San Diego

    Google Scholar 

  6. Majors RE (2008) Practical aspects of solvent extraction. LCGC N Am 26(12):1158–1166

    CAS  Google Scholar 

  7. Routray W, Orsat V (2011) Microwave-assisted extraction of flavonoids: a review. Food Bioprocess Technol 5(2):1–16

    Google Scholar 

  8. Eskilsson CS, Björklund E (2000) Analytical-scale microwave-assisted extraction. J Chromatogr A 902:227–250

    Article  CAS  Google Scholar 

  9. Thostenson ET, Chou TW (1999) Microwave processing: fundamentals and applications. Compos Part A Appl S 30(9):1055–1071

    Article  Google Scholar 

  10. Metaxas AC, Meredith RJ (1983) Industrial microwave heating. Peter Peregrinus, London, pp 28–31

    Google Scholar 

  11. Kingston HM, Jassie LB (1988) Introduction to microwave sample preparation. American Chemical Society, Washington, DC

    Google Scholar 

  12. Acierno D, Barba AA, d’Amore M (2004) Heat transfer phenomena during processing materials with microwave energy. Heat Mass Transfer 40:413–420

    Article  CAS  Google Scholar 

  13. Mandal V, Mohan Y, Hemalath S (2007) Microwave assisted extraction-an innovative and promising extraction tool for medicinal plant research. Phcog Rev 1(1):7–18

    CAS  Google Scholar 

  14. Jassie L, Revesz R, Kierstead T, Hasty E, Metz S (1997) In: Kingston HM, Haswell SJ (eds) Microwave-enhanced chemistry. American Chemical Society, Washington, DC, p 569

    Google Scholar 

  15. Zlotorzynski A (1995) The application of microwave radiation to analytical and environmental chemistry. Crit Rev Anal Chem 25:43–75

    Article  CAS  Google Scholar 

  16. Jain T, Jain V, Pandey R, Vyas A, Shukla SS (2009) Microwave assisted extraction for phytoconstituents: an overview. Asian J Res Chem 2(1):19–25

    CAS  Google Scholar 

  17. Buffler CR (1993) Microwave cooking and processing: engineering fundamentals for the food scientist. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  18. Chen M, Siochi EJ, Ward TC, McGrath JE (1993) Basic ideas of microwave processing of polymers. Polym Eng Sci 33:1092–1109

    Article  CAS  Google Scholar 

  19. Abhayawick L, Laguerre JC, Tauzin V, Duquenoy A (2002) Physical properties of three onion varieties as affected by the moisture content. J Food Eng 55:253–262

    Article  Google Scholar 

  20. Al-Harahshed M, Kingman SW (2004) Microwave-assisted leaching: a review. Hydrometallurgy 73:189–203

    Article  Google Scholar 

  21. Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. J Food Eng 80:80–95

    Article  Google Scholar 

  22. Datta AK (2007) Porous media approaches to studying simultaneous heat and mass transfer in food processes. II: Property data and representative results. J Food Eng 80:96–110

    Article  Google Scholar 

  23. Takeuchi TM, Pereira CG, Braga MEM, Maróstica MR Jr, Leal PF, Meireles MAA (2009) Low-pressure solvent extraction (solid–liquid extraction, microwave-assisted, and ultrasound-assisted) from condimentary plants. In: de Almeida Meireles MA (ed) Extracting bioactive compounds for food products, 1st edn. CRC Press/Taylor & Francis, Boca Raton, pp 137–218

    Google Scholar 

  24. Navarrete A, Mato RB, Cocero MJ (2012) A predictive approach in modeling and simulation of heat and mass transfer during microwave heating. Application to SFME of essential oil of lavandin super. Chem Eng Sci 68:192–201

    Article  CAS  Google Scholar 

  25. Sihvola A (2000) Mixing rules with complex dielectric coefficients. Subsurf Sensing Technol Appl 1:393–415

    Article  Google Scholar 

  26. Chen L, Song D, Tian Y, Ding L, Yu A, Zhang H (2008) Application of on-line microwave sample-preparation techniques. Trends Anal Chem 27:151–159

    Article  CAS  Google Scholar 

  27. Spigno G, De Faveri DM (2009) Microwave-assisted extraction of tea phenols: a phenomenological study. J Food Eng 93:210–217

    Article  CAS  Google Scholar 

  28. Chan C-H, Yusoff R, Ngoh G-C, Kung FW-L (2011) Microwave-assisted extractions of active ingredients from plants. J Chromatogr A 1218:6213–6225

    Article  CAS  Google Scholar 

  29. Tatke P, Jaiswal Y (2011) An overview of microwave assisted extraction and its applications in herbal drug research. Res J Med Plants 5:21–31

    Article  Google Scholar 

  30. Brachet A, Christen P, Veuthey JL (2002) Focused microwave-assisted extraction of cocaine and benzoylecgonine from coca leaves. Phytochem Anal 13:162–169

    Article  CAS  Google Scholar 

  31. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17:300–312

    Article  CAS  Google Scholar 

  32. Zhou H-Y, Liu C-Z (2006) Microwave-assisted extraction of solanesol from tobacco leaves. J Chromatogr A 1129:135–139

    Article  CAS  Google Scholar 

  33. Zigoneanu IG, Williams L, Xu Z, Sabliov CM (2008) Determination of antioxidant components in rice bran oil extracted by microwave-assisted method. Bioresour Technol 99:4910–4918

    Article  CAS  Google Scholar 

  34. Talebi M, Ghassempour A, Talebpour Z, Rassouli A, Dolatyari L (2004) Optimization of the extraction of paclitaxel from Taxus baccata L. by the use of microwave energy. J Sep Sci 27:1130–1136

    Article  CAS  Google Scholar 

  35. Song J, Li D, Liu C, Zhang Y (2011) Optimized microwave-assisted extraction of total phenolics (TP) from Ipomoea batatas leaves and its antioxidant activity. Innov Food Sci Emerg Technol 12:282–287

    Article  CAS  Google Scholar 

  36. Pan X, Niu G, Liu H (2003) Microwave assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem Eng Process 42:129–133

    Article  CAS  Google Scholar 

  37. Eskilsson CS, Björklund E, Mathiasson L, Karlsson L, Torstensson A (1999) Microwave-assisted extraction of felodipine tablets. J Chromatogr A 840:59–70

    Article  CAS  Google Scholar 

  38. Llompart MP, Lorenzo RA, Cela R, Jocelyn Pare JR, Belanger JMR, Li K (1997) Phenol and methylphenol isomers determination in soils by in-situ microwave-assisted extraction and derivatisation. J Chromatogr A 757:153–164

    Article  CAS  Google Scholar 

  39. Lu Y, Ma W, Hu R, Dai X, Pan Y (2008) Ionic liquid-based microwave-assisted extraction of phenolic alkaloids from the medicinal plant Nelumbo nucifera Gaertn. J Chromatogr A 1208:42–46

    Article  CAS  Google Scholar 

  40. Chen Y, Xie M-Y, Gong X-F (2007) Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J Food Eng 81:162–170

    Article  CAS  Google Scholar 

  41. Wang Y, You J, Yu Y, Qu C, Zhang H, Ding L et al (2008) Analysis of ginsenosides in Panax ginseng in high pressure microwave-assisted extraction. Food Chem 110(1):161–167

    Article  CAS  Google Scholar 

  42. Xiao W, Han L, Shi B (2008) Microwave-assisted extraction of flavonoids from Radix astragali. Sep Purif Technol 62(3):614–618

    Article  CAS  Google Scholar 

  43. Li J, Zu Y-G, Fu Y-J, Yang Y-C, Li S-M, Li Z-N, Wink M (2010) Optimization of microwave-assisted extraction of triterpene saponins from defatted residue of yellow horn (Xanthoceras sorbifolia Bunge.) kernel and evaluation of its antioxidant activity. Innov Food Sci Emerg Technol 11:637–664

    Article  CAS  Google Scholar 

  44. Yan MM, Liu W, Fu YJ, Zu YG, Chen CY, Luo M (2010) Optimisation of the microwave-assisted extraction process for four main astragalosides in Radix astragali. Food Chem 119(4):1663–1670

    Article  CAS  Google Scholar 

  45. Chemat S, Ait-Amar H, Lagha A, Esveld DC (2005) Microwave-assisted extraction kinetics of terpenes from caraway seeds. Chem Eng Process 44:1320–1326

    Article  CAS  Google Scholar 

  46. Khajeh M, Akbari Moghaddam AR, Sanchooli E (2009) Application of Doehlert design in the optimization of microwave assisted extraction for determination of zinc and copper in cereal samples using FAAS. Food Anal Methods 3(3):133–137

    Article  Google Scholar 

  47. Alfaro MJ, Belanger JMR, Padilla FC, Pare JRJ (2003) Influence of solvent, matrix dielectric properties, and applied power on the liquid-phase microwave-assisted processes (MAP™)1 extraction of ginger (Zingiber officinale). Food Res Int 36:499–504

    Article  Google Scholar 

  48. Raner KD, Strauss CR, Vyskoc F, Mokbel L (1993) A comparison of reaction kinetics observed under microwave irradiation and conventional heating. J Org Chem 58:950–995

    Article  CAS  Google Scholar 

  49. Huie CW (2002) A review of modern sample-preparation techniques for the extraction and analysis of medicinal plants. Anal Bioanal Chem 373:23–30

    Article  CAS  Google Scholar 

  50. Ruan GH, Li GKJ (2007) The study on the chromatographic fingerprint of Fructus xanthii by microwave assisted extraction coupled with GC-MS. J Chromatogr B 850:241–248

    Article  CAS  Google Scholar 

  51. Kovács Á, Ganzler K, Simon-Sarkadi L (1998) Microwave-assisted extraction of free amino acids from foods. Z Lebensm Unters Forsch A 207:26–30

    Article  Google Scholar 

  52. Michel T, Destandau E, Elfakir C (2011) Evaluation of a simple and promising method for extraction of antioxidants from sea buckthorn (Hippophaë rhamnoides L.) berries: pressurised solvent-free microwave-assisted extraction. Food Chem 126:1380–1386

    Article  CAS  Google Scholar 

  53. Fan JP, Zhang RF, Zhu JH (2010) Optimization of microwave-assisted extraction of total triterpenoid in Diospyros kaki leaves using response surface methodology. Asian J Chem 22(5):3487–3500

    CAS  Google Scholar 

  54. Nyiredy S (2004) Separation strategies of plant constituents: current status. J Chromatogr B 812:35–51

    CAS  Google Scholar 

  55. Yuan L, Li H, Ma R, Xu X, Zhao C, Wang Z, Chen F, Hu X (2012) Effect of energy density and citric acid concentration on anthocyanins yield and solution temperature of grape peel in microwave-assisted extraction process. J Food Eng 109:274–280

    Article  Google Scholar 

  56. Dhobi M, Mandal V, Hemalatha S (2009) Optimization of microwave assisted extraction of bioactive flavonolignan–silybinin. J Chem Metrl 3(1):13–23

    CAS  Google Scholar 

  57. Chemat F, Smadja J (2004) Brevet Européen. EP 1 439 218 A1

    Google Scholar 

  58. Vian M, Fernandez X, Visinoni F, Chemat F (2008) Solvent free microwave extraction of Elletaria cardamomum L.: a multivariate study of a new technique for the extraction of essential oil. J Chromatogr A 1190:14–17

    Article  CAS  Google Scholar 

  59. Mengal P, Mompon B (1996) Method and apparatus for solvent free microwave extraction of natural products. Eur Patent P EP 698,076 B1

    Google Scholar 

  60. Virot M, Tomao V, Colnagui G, Visinoni F, Chemat F (2007) New microwave-integrated Soxhlet extraction. An advantageous tool for the extraction of lipids from food products. J Chromatogr A 1174:138–144

    Article  CAS  Google Scholar 

  61. Chemat F, Smadja J, Lucchesi ME (2004) Solvent-free microwave extraction of volatile natural substances. US Patent 0,187,340, A1

    Google Scholar 

  62. Clayton B (1999) Heating with microwaves, Engineering World, 4–6

    Google Scholar 

  63. Wang LJ (2010) Advances in extraction of plant products in nutraceutical processing. In: Pathak Y (ed) Handbook of nutraceuticals, vol II: Scale up, processing and automation. CRC Press/Taylor & Francis, Boca Raton, pp 15–52

    Google Scholar 

  64. Chemat F, Abert-Vian M, Visinoni F (2008) Microwave hydrodiffusion for isolation of natural products. European Patent EP 1,955,749 A1

    Google Scholar 

  65. Grigonis D, Venskutonis PR, Sivik B, Sandahl M, Eskilsson CS (2005) Comparison of different extraction techniques for isolation of antioxidants from sweet grass (Hierchloë odorata). J Supercrit Fluids 33:223–233

    Article  CAS  Google Scholar 

  66. Hao J-Y, Han W, Huang S-D, Xue B-Y, Deng X (2002) Microwave-assisted extraction of artemisinin from Artemisia annua L. Sep Purif Technol 28(3):191–196

    Article  CAS  Google Scholar 

  67. Pan X, Liu H, Jia G, Shu YY (2000) Microwave-assisted extraction of glycyrrhizic acid from licorice root. Biochem Eng J 5:173–177

    Article  CAS  Google Scholar 

  68. Bagherian H, Ashtiani FZ, Fouladitajar A, Mohtashamy M (2011) Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem Eng Process 50:1237–1243

    Article  CAS  Google Scholar 

  69. Chen Y, Ming-Yong X, Xiao-Feng G (2007) Microwave-assisted extraction used for the isolation of total triterpenoid saponins from Ganoderma atrum. J Food Eng 81:162–170

    Article  CAS  Google Scholar 

  70. Wakte PS, Sachin BS, Patil AA, Mohato DM, Band TH, Shinde DB (2011) Optimization of microwave, ultrasonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Sep Purif Technol 79:50–55

    Article  CAS  Google Scholar 

  71. Gallo M, Ferracane R, Graziani G, Ritieni A, Fogliano V (2010) Microwave assisted extraction of phenolic compounds from four different spices. Molecules 15:6365–6374

    Article  CAS  Google Scholar 

  72. Raghavan S, Richards MP (2007) Comparison of solvent and microwave extracts of cranberry press cake on the inhibition of lipid oxidation in mechanically separated turkey. Food Chem 102(3):818–826

    Article  CAS  Google Scholar 

  73. Hemwimon S, Pavasant P, Shotipruk A (2007) Microwave-assisted extraction of antioxidative anthraquinones from roots of Morinda citrifolia. Sep Purif Technol 54(1):44–50

    Article  CAS  Google Scholar 

  74. Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cint P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15(5):898–902

    Article  CAS  Google Scholar 

  75. Chemat F, Lucchesi ME, Smadja J, Favretto L, Colnaghi G, Visinoni F (2006) Microwave accelerated steam distillation of essential oil from lavender: a rapid, clean and environmentally friendly approach. Anal Chim Acta 555(1):157–160

    Article  CAS  Google Scholar 

  76. Farhat A, Fabiano-Tixier A-S, Visinoni F, Romdhane M, Chemat F (2010) A surprising method for green extraction of essential oil from dry spices: microwave dry-diffusion and gravity. J Chromatogr A 1217(47):7345–7350

    Article  CAS  Google Scholar 

  77. Hongyan L, Deng Z, Wu T, Liu R, Loewen S, Tsao R (2012) Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem 130(4):928–936

    Article  Google Scholar 

  78. Kapás Á, András CD, Dobre TG, Székly G, Stroescu M, Lányi S, Ábrahám B (2011) The kinetic of essential oil separation from fennel by microwave assisted hydrodistillation (MWHD). UPB Sci Bull Ser B 73(4):113–120

    Google Scholar 

  79. Kaufmann B, Christen P, Jean-Luc V (2001) Parameters affecting microwave-assisted extraction of withanolides. Phytochem Anal 12(5):327–331

    Article  CAS  Google Scholar 

  80. Lucchesi ME, Chemat F, Smadja J (2004) Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J Chromatogr A 1043(2):323–327

    Article  CAS  Google Scholar 

  81. Lucchesi ME, Smadja J, Bradshaw S, Louw W, Chemat F (2007) Solvent free microwave extraction of Elletaria cardamomum L.: a multivariate study of a new technique for the extraction of essential oil. J Food Eng 79(3):1079–1086

    Article  CAS  Google Scholar 

  82. Mandal V, Dewanjee S, Mandal SC (2009) Microwave-assisted extraction of total bioactive saponin fraction from Gymnema sylvestre with reference to gymnemagenin: a potential biomarker. Phytochem Anal 20(6):491–497

    Article  CAS  Google Scholar 

  83. Martino E, Ramaiola I, Urbano M, Bracco F, Collina S (2006) Microwave-assisted extraction of coumarin and related compounds from Melilotus officinalis (L.) Pallas as an alternative to Soxhlet and ultrasound-assisted extraction. J Chromatogr A 1125(2):147–151

    Article  CAS  Google Scholar 

  84. Pan X, Niu G, Liu H (2001) Microwave-assisted extraction of tanshinones from Salvia miltiorrhiza Bunge. with analysis by high-performance liquid chromatography. J Chromatogr A 922(1–2):371–375

    CAS  Google Scholar 

  85. Sahraoui N, Vian MA, Bornard I, Boutekedjiret C, Chemat F (2008) Improved microwave steam distillation apparatus for isolation of essential oils: comparison with conventional steam distillation. J Chromatogr A 1210(2):229–233

    Article  CAS  Google Scholar 

  86. Zill-e-Huma Y-J, Vian MA, Fabiano-Tixier A-S, Elmaataoui M, Dangles O, Chemat F (2011) A remarkable influence of microwave extraction: enhancement of antioxidant activity of extracted onion varieties. Food Chem 127(4):1472–1480

    Article  CAS  Google Scholar 

  87. Jensen WB (2007) The origin of the Soxhlet extractor. J Chem Educ 84(12):1913–1914

    Article  CAS  Google Scholar 

  88. de Luque Castro MD, Garcia-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10

    Article  Google Scholar 

  89. Kaufmann B, Christen P, Veuthey J-L (2001) Parameters affecting microwave-assisted extraction of withanolides. Phytochem Anal 12:327–331

    Article  CAS  Google Scholar 

  90. Pan X, Niu G, Liu H (2002) Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza Bunge. Biochem Eng J 12:71–77

    Article  CAS  Google Scholar 

  91. Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33

    Article  Google Scholar 

  92. Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3:340–372

    Article  CAS  Google Scholar 

  93. Stalikas CD (2007) Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 30(18):3268–3295

    Article  CAS  Google Scholar 

  94. Chemat F, Zill-e-Huma Y-J, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18(4):813–835

    Article  CAS  Google Scholar 

  95. Jian-bing J, Xiang-hong L, Mei-qiang C, Zhi-chao X (2006) Improvement of leaching process of geniposide with ultrasound. Ultrason Sonochem 13(5):455–462

    Article  Google Scholar 

  96. Gaete-Garretón L, Vargas-Hernández Y, Cares-Pacheco MG, Sainz J, Alarcón J (2011) Ultrasonically enhanced extraction of bioactive principles from Quillaja saponaria Molina. Ultrasonics 51(5):581–585

    Article  Google Scholar 

  97. Mason TJ, Paniwnyk L, Lorimer JP (1996) The use of ultrasound in food technology. Ultrason Sonochem 3(3):253–8260

    Article  Google Scholar 

  98. Vinatoru M (2001) Na overview of the ultrasonically assisted extraction of bioactive principles from herns. Ultrason Sonochem 8(3):303–313

    Article  CAS  Google Scholar 

  99. Sivakumar V, Ravi Verma V, Rao PG, Swaminathan G (2007) Studies on the use of power ultrasound in solid–liquid myrobalan extraction process. J Cleaner Prod 15(18):1815–1820

    Article  Google Scholar 

  100. Majors RE (2006) Modern techniques for the extraction of solid materials: an update. LC-GC N Am 24(7):648–660

    CAS  Google Scholar 

  101. Cha KH, Kang SW, Kim CY, Um BH, Na YR, Pan CH (2010) Effect of pressurized liquids on extraction of antioxidants from Chlorella vulgaris. J Agric Food Chem 58(8):4756–4761

    Article  CAS  Google Scholar 

  102. Santos DT, Veggi PC, Meireles MAA (2012) Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J Food Eng 108:444–452

    Article  CAS  Google Scholar 

  103. Richter BE, Jones BA, Ezzell JL, Porter NL (1997) Accelerated solvent extraction: a new technique for sample preparation. Anal Chem 68(6):1033–1039

    Article  Google Scholar 

  104. Kaufmann B, Christen P (2002) Recent extraction techniques for natural products: microwave-assisted extraction and pressurised solvent extraction. Phytochem Anal 13(2):105–113

    Article  CAS  Google Scholar 

  105. Brachet A, Rudaz S, Mateus L, Christen P, Veuthey J-L (2001) Optimisation of accelerated solvent extraction of cocaine and benzoylecgonine from coca leaves. J Sep Sci 24(10–11):865–873

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Priscilla C. Veggi thanks Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) for Ph.D. assistantships (2008/10986-2). The authors thank FAPESP (2009/17234-9) and CNPq (302778/2007-1) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priscilla C. Veggi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Veggi, P.C., Martinez, J., Meireles, M.A.A. (2012). Fundamentals of Microwave Extraction. In: Chemat, F., Cravotto, G. (eds) Microwave-assisted Extraction for Bioactive Compounds. Food Engineering Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4830-3_2

Download citation

Publish with us

Policies and ethics