Advertisement

Bootstrap

  • Denni D Boos
  • L A Stefanski
Chapter
Part of the Springer Texts in Statistics book series (STS, volume 120)

Abstract

The bootstrap is a general technique for estimating unknown quantities associated with statistical models. Often the bootstrap is used to find 1. standard errors for estimators, 2. confidence intervals for unknown parameters,p-values for test statistics under a null hypothesis.

Keywords

Asymptotic Variance Nonparametric Bootstrap Empirical Distribution Function Parametric Bootstrap Bootstrap Confidence Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agresti, A. (2002).Categorical Data Analysis. New Jersey: Wiley.MATHCrossRefGoogle Scholar
  2. Agresti, A. and Coull, B. A. (1998). Approximate is better than “exact” for interval estimation of binomial proportions.The American Statistician, 52:119–126.MathSciNetGoogle Scholar
  3. Agresti, A. and Min, Y. (2005). Frequentist performance of Bayesian confidence intervals for comparing proportions in 2 ×2 contingency tables.Biometrics, 61(2):515–523.MATHMathSciNetCrossRefGoogle Scholar
  4. Aitchison, J. and Silvey, S. D. (1958). Maximum-likelihood estimation of parameters subject to restraints.The Annals of Mathematical Statistics, 29:813–828.MATHMathSciNetCrossRefGoogle Scholar
  5. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B. N. e. and Czaki, F. e., editors,2nd International Symposium on Information Theory, pages 267–281. Akademiai Kiado.Google Scholar
  6. Akritas, M. G. (1990). The rank transform method in some two-factor designs.Journal of the American Statistical Association, 85:73–78.MATHMathSciNetCrossRefGoogle Scholar
  7. Akritas, M. G. (1991). Limitations of the rank transform procedure: A study of repeated measures designs. Part I.Journal of the American Statistical Association, 86:457–460.Google Scholar
  8. Anderson, M. J. and Robinson, J. (2001). Permutation tests for linear models.Australian & New Zealand Journal of Statistics, 43(1):75–88.MATHMathSciNetCrossRefGoogle Scholar
  9. Andrews, D. W. K. (1987). Asymptotic results for generalized Wald tests.Econometric Theory, 3:348–358.CrossRefGoogle Scholar
  10. Arvesen, J. N. (1969). Jackknifing u-statistics.The Annals of Mathematical Statistics, 40:2076–2100.MATHMathSciNetCrossRefGoogle Scholar
  11. Bahadur, R. R. (1964). On Fisher’s bound for asymptotic variances.The Annals of Mathematical Statistics, 35:1545–1552.MATHMathSciNetCrossRefGoogle Scholar
  12. Bahadur, R. R. (1966). A note on quantiles in large samples.The Annals of Mathematical Statistics, 37:577–580.MATHMathSciNetCrossRefGoogle Scholar
  13. Barlow, R. E., Bartholomew, D. J., B. J. M., and Brunk, H. D. (1972).Statistical Inference under order restrictions: the theory and application of isotonic regression. John Wiley & Sons.Google Scholar
  14. Barnard, G. A. (1945). A new test for 2 × 2 tables.Nature, 156:177.MATHMathSciNetCrossRefGoogle Scholar
  15. Barnard, G. A. (1947). Significance tests for 2 × 2 tables.Biometrika, 34:123–138.MATHMathSciNetGoogle Scholar
  16. Barnard, G. A. (1963). Discussion on “the spectral analysis of point processes”.Journal of the Royal Statistical Society, Series B: Statistical Methodology, 25:294–294.MathSciNetGoogle Scholar
  17. Barndorff-Nielsen, O. (1978).Information and Exponential Families in Statistical Theory. John Wiley & Sons.Google Scholar
  18. Barndorff-Nielsen, O. (1982). Exponential families. In Banks, D. L., Read, C. B., and Kotz, S., editors,Encyclopedia of Statistical Sciences (9 vols. plus Supplement), Volume 2, pages 587–596. John Wiley & Sons.Google Scholar
  19. Barndorff-Nielsen, O. and Cox, D. R. (1979). Edgeworth and saddle-point approximations with statistical applications (C/R p299-312).Journal of the Royal Statistical Society, Series B: Methodological, 41:279–299.MATHMathSciNetGoogle Scholar
  20. Bartholomew, D. J. (1957). A problem in life testing.Journal of the American Statistical Association, 52:350–355.CrossRefGoogle Scholar
  21. Bartholomew, D. J. (1959). A test of homogeneity for ordered alternatives.Biometrika, 46:36–48.MATHMathSciNetCrossRefGoogle Scholar
  22. Benichou, J. and Gail, M. H. (1989). A delta method for implicitly defined random variables (C/R: 90V44 p58).The American Statistician, 43:41–44.MathSciNetGoogle Scholar
  23. Beran, R. (1986). Simulated power functions.The Annals of Statistics, 14:151–173.MATHMathSciNetCrossRefGoogle Scholar
  24. Beran, R. (1988). Prepivoting test statistics: A bootstrap view of asymptotic refinements.Journal of the American Statistical Association, 83:687–697.MATHMathSciNetCrossRefGoogle Scholar
  25. Beran, R. and Srivastava, M. S. (1985). Bootstrap tests and confidence regions for functions of a covariance matrix (Corr: V15 p470-471).The Annals of Statistics, 13:95–115.MATHMathSciNetCrossRefGoogle Scholar
  26. Berger, J. O. and Wolpert, R. L. (1984).The Likelihood Principle. Institute of Mathematical Statistics.Google Scholar
  27. Berger, R. L. (1996). More powerful tests from confidence intervalp values.The American Statistician, 50:314–318.Google Scholar
  28. Berger, R. L. and Boos, D. D. (1994).P values maximized over a confidence set for the nuisance parameter.Journal of the American Statistical Association, 89:1012–1016.MATHMathSciNetGoogle Scholar
  29. Berndt, E. R. and Savin, N. E. (1977). Conflict among criteria for testing hypotheses in the multivariate linear regression model.Econometrica, 45:1263–1277.MATHMathSciNetCrossRefGoogle Scholar
  30. Best, D. J. and Rayner, J. C. W. (1987). Welch’s approximate solution for the Behrens-Fisher problem.Technometrics, 29:205–210.MATHMathSciNetGoogle Scholar
  31. Bhattacharyya, G. K. and Johnson, R. A. (1973). On a test of independence in a bivariate exponential distribution.Journal of the American Statistical Association, 68:704–706.MATHMathSciNetCrossRefGoogle Scholar
  32. Bickel, P. J. (1974). Edgeworth expansions in nonparametric statistics.The Annals of Statistics, 2:1–20.MATHMathSciNetCrossRefGoogle Scholar
  33. Bickel, P. J. and Doksum, K. A. (1981). An analysis of transformations revisited.Journal of the American Statistical Association, 76:296–311.MATHMathSciNetCrossRefGoogle Scholar
  34. Bickel, P. J. and Freedman, D. A. (1981). Some asymptotic theory for the bootstrap.The Annals of Statistics, 9:1196–1217.MATHMathSciNetCrossRefGoogle Scholar
  35. Bickel, P. J. and van Zwet, W. R. (1978). Asymptotic expansions for the power of distribution free tests in the two-sample problem (Corr: V6 p1170-1171).The Annals of Statistics, 6:937–1004.MATHMathSciNetCrossRefGoogle Scholar
  36. Billingsley, P. (1999).Convergence of Probability Measures. John Wiley & Sons.Google Scholar
  37. Birmbaum, L. S., Morrissey, R. E., and Harris, M. W. (1991). Teratogenic effects of 2,3,7,8-tetrabromodibenzo-p-dioxin and three polybrominated dibenzofurans in c57bl/6n mice.Toxicology and Applied Pharmacology, 107:141–152.CrossRefGoogle Scholar
  38. Boos, D., Janssen, P., and Veraverbeke, N. (1989). Resampling from centered data in the two-sample problem.Journal of Statistical Planning and Inference, 21:327–345.MATHMathSciNetCrossRefGoogle Scholar
  39. Boos, D. D. (1992). On generalized score tests (Com: 93V47 p311-312).The American Statistician, 46:327–333.Google Scholar
  40. Boos, D. D. (2003). Introduction to the bootstrap world.Statistical Science, 18(2):168–174.MathSciNetCrossRefGoogle Scholar
  41. Boos, D. D. and Brownie, C. (1992). A rank-based mixed model approach to multisite clinical trials (Corr: 94V50 p322).Biometrics, 48:61–72.CrossRefGoogle Scholar
  42. Boos, D. D. and Brownie, C. (2004). Comparing variances and other measures of dispersion.Statistical Science, 19(4):571–578.MATHMathSciNetCrossRefGoogle Scholar
  43. Boos, D. D. and Hughes-Oliver, J. M. (2000). How large doesn have to be forZ andt intervals?The American Statistician, 54(2):121–128.Google Scholar
  44. Boos, D. D. and Monahan, J. F. (1986). Bootstrap methods using prior information.Biometrika, 73:77–83.CrossRefGoogle Scholar
  45. Boos, D. D. and Zhang, J. (2000). Monte Carlo evaluation of resampling-based hypothesis tests.Journal of the American Statistical Association, 95(450):486–492.CrossRefGoogle Scholar
  46. Booth, J. and Presnell, B. (1998). Allocation of Monte Carlo resources for the iterated bootstrap.Journal of Computational and Graphical Statistics, 7:92–112.MathSciNetGoogle Scholar
  47. Booth, J. G. and Hall, P. (1994). Monte Carlo approximation and the iterated bootstrap.Biometrika, 81:331–340.MATHMathSciNetGoogle Scholar
  48. Boschloo, R. D. (1970). Raised conditional level of significance for the 2 × 2-table when testing the equality of two probabiities.Statistica Neerlandica, 24:1–35.MATHMathSciNetCrossRefGoogle Scholar
  49. Box, G. E. P. and Andersen, S. L. (1955). Permutation theory in the derivation of robust criteria and the study of departures from assumption.Journal of the Royal Statistical Society, Series B: Statistical Methodology, 17:1–16.MATHGoogle Scholar
  50. Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations.Journal of the Royal Statistical Society Series B-Statistical Methodology, 26:211–252.MATHMathSciNetGoogle Scholar
  51. Box, G. E. P. and Watson, G. S. (1962). Robustness to non-normality of regression tests (Corr: V52 p669).Biometrika, 49:93–106.MATHMathSciNetCrossRefGoogle Scholar
  52. Breslow, N. (1989). Score tests in overdispersed GLM’s. In Decarli, A., Francis, B. J., Gilchrist, R., and Seeber, G. U. H., editors,Statistical Modelling, pages 64–74. Springer-Verlag Inc.Google Scholar
  53. Breslow, N. (1990). Tests of hypotheses in overdispersed Poisson regression and other quasi-likelihood models.Journal of the American Statistical Association, 85:565–571.CrossRefGoogle Scholar
  54. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models.Journal of the American Statistical Association, 88:9–25.MATHGoogle Scholar
  55. Brockwell, S. E. and Gordon, I. R. (2007). A simple method for inference on an overall effect in meta-analysis.Statistics in Medicine, 26(25):4531–4543.MathSciNetCrossRefGoogle Scholar
  56. Brown, L., Cai, T., DasGupta, A., Agresti, A., Coull, B., Casella, G., Corcoran, C., Mehta, C., Ghosh, M., Santner, T., Brown, L., Cai, T., and DasGupta, A. (2001). Interval estimation for a binomial proportion - comment - rejoinder.Statistical Science, 16(2):101–133.MATHMathSciNetGoogle Scholar
  57. Brown, L. D. (1986).Fundamentals of Statistical Exponential Families: with Applications in Statistical Decision Theory. Institute of Mathematical Statistics.Google Scholar
  58. Brownie, C., Anderson, D. R., Burnham, K. P., and Robson, D. S. (1985).Statistical Inference from Band Recovery Data: A Handbook (Second Edition). U.S. Fish and Wildlife Service [U.S. Department of Interior].Google Scholar
  59. Brownie, C. and Boos, D. D. (1994). Type I error robustness of ANOVA and ANOVA on ranks when the number of treatments is large.Biometrics, 50:542–549.MATHCrossRefGoogle Scholar
  60. Brownie, C. F. and Brownie, C. (1986). Teratogenic effect of calcium edetate (caedta) in rats and the protective effect of zinc).Toxicology and Applied Pharmacology, 82(3):426–443.MathSciNetCrossRefGoogle Scholar
  61. Carlstein, E. (1986). The use of subseries values for estimating the variance of a general statistic from a stationary sequence.The Annals of Statistics, 14:1171–1179.MATHMathSciNetCrossRefGoogle Scholar
  62. Carroll, R. J. and Ruppert, D. (1984). Power transformations when fitting theoretical models to data.Journal of the American Statistical Association, 79:321–328.MathSciNetCrossRefGoogle Scholar
  63. Carroll, R. J. and Ruppert, D. (1988).Transformation and weighting in regression. Chapman & Hall Ltd.Google Scholar
  64. Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006).Measurement error in nonlinear models: a modern perspective. Chapman & Hall.Google Scholar
  65. Casella, G. and Berger, R. L. (2002).Statistical Inference. Duxbury Press.Google Scholar
  66. Chernoff, H. (1954). On the distribution of the likelihood ratio.Annals of Mathematical Statistics, 25(3):573–578.MATHMathSciNetCrossRefGoogle Scholar
  67. Chernoff, H. and Lehmann, E. L. (1954). The use of maximum likelihood estimates in χ2 tests for goodness of fit.Annals of Mathematical Statistics, 25:579–586.MATHMathSciNetCrossRefGoogle Scholar
  68. Coles, S. G. and Dixon, M. J. (1999). Likelihood-based inference for extreme value models.Extremes, 2:5–23.MATHCrossRefGoogle Scholar
  69. Conover, W. J. (1973). Rank tests for one sample, two samples, andk samples without the assumption of a continuous distribution function.The Annals of Statistics, 1:1105–1125.MATHMathSciNetCrossRefGoogle Scholar
  70. Conover, W. J. and Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics (C/R: P129-133).The American Statistician, 35:124–129.MATHGoogle Scholar
  71. Conover, W. J. and Salsburg, D. S. (1988). Locally most powerful tests for detecting treatment effects when only a subset of patients can be expected to “respond” to treatment.Biometrics, 44:189–196.MATHMathSciNetCrossRefGoogle Scholar
  72. Cook, J. R. and Stefanski, L. A. (1994). Simulation-extrapolation estimation in parametric measurement error models.Journal of the American Statistical Association, 89:1314–1328.MATHCrossRefGoogle Scholar
  73. Cook, S. R., Gelman, A., and Rubin, D. B. (2006). Validation of software for Bayesian models using posterior quantiles.Journal of Computational and Graphical Statistics, 15(3):675–692.MathSciNetCrossRefGoogle Scholar
  74. Cox, D. R. (1970).Analysis of binary Data. Chapman & Hall.Google Scholar
  75. Cox, D. R. and Snell, E. J. (1981).Applied statistics: principles and examples. Chapman & Hall Ltd.Google Scholar
  76. Cox, D. R. and Snell, E. J. (1989).Analysis of Binary Data. Chapman & Hall Ltd.Google Scholar
  77. Cramér, H. (1946).Mathematical Methods of Statistics. Princeton University Press.Google Scholar
  78. Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests.Journal of the Royal Statistical Society, Series B: Methodological, 46:440–464.MATHMathSciNetGoogle Scholar
  79. Dacunha-Castelle, D. and Gassiat, E. (1999). Testing the order of a model using locally conic parametrization: Population mixtures and stationary ARMA processes.The Annals of Statistics, 27(4):1178–1209.MATHMathSciNetCrossRefGoogle Scholar
  80. Darmois, G. (1935). The laws of probability to exhaustive estimation.Comptes rendus hebdomadaires des seances de l academie des sciences, 200:1265–1266.Google Scholar
  81. David, H. A. (1998). First (?) occurrence of common terms in probability and statistics — A second list, with corrections (Corr: 1998V52 p371).The American Statistician, 52:36–40.MathSciNetGoogle Scholar
  82. Davies, R. B. (1977). Hypothesis testing when a nuisance parameter is present only under the alternative.Biometrika, 64:247–254.MATHMathSciNetCrossRefGoogle Scholar
  83. Davies, R. B. (1987). Hypothesis testing when a nuisance parameter is present only under the alternative.Biometrika, 74:33–43.MATHMathSciNetGoogle Scholar
  84. Davison, A. C. and Hinkley, D. V. (1997).Bootstrap Methods and Their Application. Cambridge University Press.Google Scholar
  85. DeGroot, M. H. (1970).Optimal Statistical Decisions. New York, McGraw-Hill.MATHGoogle Scholar
  86. Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via em algorithm.Journal of the Royal Statistical Society Series B-Methodological, 39:1–38.MATHMathSciNetGoogle Scholar
  87. DerSimonian, R. and Laird, N. (1986). Meta-analysis in clinical trials.Controlled Clinical Trials, 7:177–188.CrossRefGoogle Scholar
  88. DiCiccio, T. and Tibshirani, R. (1987). Bootstrap confidence intervals and bootstrap approximations.Journal of the American Statistical Association, 82:163–170.MATHMathSciNetCrossRefGoogle Scholar
  89. DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals (Disc: P212-228).Statistical Science, 11:189–212.MATHMathSciNetCrossRefGoogle Scholar
  90. Diggle, P. J., Heagerty, P., Liang, K.-Y., and Zeger, S. L. (2002).Analysis of Longitudinal Data. Oxford University Press.Google Scholar
  91. Doksum, K. and Bickel, P. (1969). Test for monotone failure rate based on normalized spacing.The Annals of Mathematical Statistics, 40:1216–1235.MATHMathSciNetCrossRefGoogle Scholar
  92. Donald, A. and Donner, A. (1990). A simulation study of the analysis of sets of 2 ×2 contingency tables under cluster sampling: Estimation of a common odds ratio.Journal of the American Statistical Association, 85:537–543.Google Scholar
  93. Dubey, S. D. (1967). Some percentile estimators for Weibull parameters.Technometrics, 9:119–129.MathSciNetCrossRefGoogle Scholar
  94. Dubinin, T. M. and Vardeman, S. B. (2003). Likelihood-based inference in some continuous exponential families with unknown threshold parameters.Journal of the American Statistical Association, 98(463):741–749.MATHMathSciNetCrossRefGoogle Scholar
  95. Dunlop, D. D. (1994). Regression for longitudinal data: A bridge from least squares regression.The American Statistician, 48:299–303.MathSciNetGoogle Scholar
  96. Efron, B. (1979). Bootstrap methods: Another look at the jackknife.The Annals of Statistics, 7:1–26.MATHMathSciNetCrossRefGoogle Scholar
  97. Efron, B. (1982).The Jackknife, the Bootstrap and Other Resampling Plans. SIAM [Society for Industrial and Applied Mathematics].Google Scholar
  98. Efron, B. (1987). Better bootstrap confidence intervals (C/R: P186-200).Journal of the American Statistical Association, 82:171–185.MATHMathSciNetCrossRefGoogle Scholar
  99. Efron, B. and Hinkley, D. V. (1978). Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information (C/R: P482-487).Biometrika, 65:457–481.MATHMathSciNetCrossRefGoogle Scholar
  100. Efron, B. and Morris, C. (1972). Empirical Bayes on vector observations: An extension of Stein’s method.Biometrika, 59:335–347.MATHMathSciNetCrossRefGoogle Scholar
  101. Efron, B. and Morris, C. (1973). Stein’s estimation rule and its competitors – An empirical Bayes approach.Journal of the American Statistical Association, 68:117–130.MATHMathSciNetGoogle Scholar
  102. Efron, B. and Stein, C. (1981). The jackknife estimate of variance.The Annals of Statistics, 9:586–596.MATHMathSciNetCrossRefGoogle Scholar
  103. Efron, B. and Tibshirani, R. (1993).An Introduction to the Bootstrap. Chapman & Hall Ltd.Google Scholar
  104. Ehrenberg, A. S. C. (1977). Rudiments of numeracy (Pkg: P277-323).Journal of the Royal Statistical Society, Series A: General, 140:277–297.CrossRefGoogle Scholar
  105. Ehrenberg, A. S. C. (1978).Data Reduction: Analysing and Interpreting Statistical Data (Revised Reprint). John Wiley & Sons.Google Scholar
  106. Ehrenberg, A. S. C. (1981). The problem of numeracy.The American Statistician, 35:67–71.Google Scholar
  107. El-Shaarawi, A. H. (1985). Some goodness-of-fit methods for the Poisson plus added zeros distribution.Applied and environmental microbiology, 49:1304–1306.Google Scholar
  108. Embrechts, P. A. L., Pugh, D., and Smith, R. L. (1985).Statistical Extremes and Risks. Course Notes. Imperial College, London, Dept. of Mathematics.Google Scholar
  109. Fawcett, R. F. and Salter, K. C. (1984). A Monte Carlo study of theF test and three tests based on ranks of treatment effects in randomized block designs.Communications in Statistics: Simulation and Computation, 13:213–225.CrossRefGoogle Scholar
  110. Fay, M. P. and Graubard, B. I. (2001). Small-sample adjustments for Wald-type tests using sandwich estimators.Biometrics, 57(4):1198–1206.MATHMathSciNetCrossRefGoogle Scholar
  111. Feller, W. (1966).An Introduction to Probability Theory and Its Applications, Vol. II. John Wiley & Sons.Google Scholar
  112. Fisher, R. A. (1912). On an absolute criterion for fitting frequency curves.Messenger of Mathematics, 41:155–160.Google Scholar
  113. Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics.Philos. Trans. Roy. Soc. London Ser. A, 222:309–368.MATHCrossRefGoogle Scholar
  114. Fisher, R. A. (1934a).Statistical Methods for Research Workers, fifth edition. Oliver & Boyd.Google Scholar
  115. Fisher, R. A. (1934b). Two new properties of mathematical likelihood.Proceedings of the Royal Society of London. Series A, 144:285–307.CrossRefGoogle Scholar
  116. Fisher, R. A. (1935).The Design of Experiments (eighth edition, 1966). Hafner Press.Google Scholar
  117. Fix, E. and Hodges, J. L. (1955). Significance probabilities of the wilcoxon test.The Annals of Mathematical Statistics, 26:301–312.MATHMathSciNetCrossRefGoogle Scholar
  118. Fouskakis, D. and Draper, D. (2002). Stochastic optimization: A review.International Statistical Review, 70(3):315–349.MATHCrossRefGoogle Scholar
  119. Freidlin, B. and Gastwirth, J. L. (2000). Should the median test be retired from general use?The American Statistician, 54(3):161–164.Google Scholar
  120. Friedman, M. (1937). The use of ranks to avoid the assumption of normality implicit in the analysis of variance.Journal of the American Statistical Association, 32:675–701.CrossRefGoogle Scholar
  121. Fuller, W. A. (1987).Measurement Error Models. John Wiley & Sons.Google Scholar
  122. Gallant, A. R. (1987).Nonlinear Statistical Models. John Wiley & Sons.Google Scholar
  123. Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities.Journal of the American Statistical Association, 85:398–409.MATHMathSciNetCrossRefGoogle Scholar
  124. Gelman, A., Pasarica, C., and Dodhia, R. (2002). Let’s practice what we preach: Turning tables into graphs.The American Statistician, 56(2):121–130.MathSciNetCrossRefGoogle Scholar
  125. Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images.IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–741.MATHCrossRefGoogle Scholar
  126. Ghosh, J. K. (1971). A new proof of the Bahadur representation of quantiles and an application.The Annals of Mathematical Statistics, 42:1957–1961.MATHCrossRefGoogle Scholar
  127. Glasser, M. (1965). Regression analysis with dependent variable censored.Biometrics, 21:300–306.MathSciNetCrossRefGoogle Scholar
  128. Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d’une série aléatoire.Annals of Mathematics, 44:423–453.MATHMathSciNetCrossRefGoogle Scholar
  129. Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation (Ack: V32 p1343).The Annals of Mathematical Statistics, 31:1208–1212.MathSciNetCrossRefGoogle Scholar
  130. Goffinet, B., Loisel, P., and Laurent, B. (1992). Testing in normal mixture models when the proportions are known.Biometrika, 79:842–846.MATHMathSciNetCrossRefGoogle Scholar
  131. Graybill, F. A. (1976).Theory and Application of the Linear Model. Duxbury Press.Google Scholar
  132. Graybill, F. A. (1988).Matrices with Applications in Statistics. Wadsworth.Google Scholar
  133. Guilbaud, O. (1979). Interval estimation of the median of a general distribution.Scandinavian Journal of Statistics, 46:29–36.MathSciNetGoogle Scholar
  134. Haberman, S. J. (1989). Concavity and estimation.The Annals of Statistics, 17:1631–1661.MATHMathSciNetCrossRefGoogle Scholar
  135. Hadi, A. S. and Wells, M. T. (1990). A note on generalized Wald’s method.Metrika, 37:309–315.MATHMathSciNetCrossRefGoogle Scholar
  136. Hajek, J. and Sidak, Z. (1967).Theory of Rank Tests. Academic Press.Google Scholar
  137. Hald, A. (1998).A History of Mathematical Statistics from 1750 to 1930. Wiley, New York.MATHGoogle Scholar
  138. Hall, P. (1986). On the bootstrap and confidence intervals.The Annals of Statistics, 14:1431–1452.MATHMathSciNetCrossRefGoogle Scholar
  139. Hall, P. (1987). Edgeworth expansion for Student’st statistic under minimal moment conditions.The Annals of Probability, 15:920–931.MATHMathSciNetCrossRefGoogle Scholar
  140. Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals (C/R: P953-985).The Annals of Statistics, 16:927–953.MATHMathSciNetCrossRefGoogle Scholar
  141. Hall, P. (1992).The Bootstrap and Edgeworth Expansion. Springer-Verlag Inc.Google Scholar
  142. Hall, P. and Titterington, D. M. (1989). The effect of simulation order on level accuracy and power of Monte Carlo tests.Journal of the Royal Statistical Society, Series B: Methodological, 51:459–467.MATHMathSciNetGoogle Scholar
  143. Hampel, F. R. (1974). The influence curve and its role in robust estimation.Journal of the American Statistical Association, 69:383–393.MATHMathSciNetCrossRefGoogle Scholar
  144. Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators.Econometrica, 50:1029–1054.MATHMathSciNetCrossRefGoogle Scholar
  145. Harville, D. (1976). Extension of the Gauss-Markov theorem to include the estimation of random effects.The Annals of Statistics, 4:384–395.MATHMathSciNetCrossRefGoogle Scholar
  146. Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems (C/R: P338-340).Journal of the American Statistical Association, 72:320–338.MATHMathSciNetCrossRefGoogle Scholar
  147. Hastie, T., Tibshirani, R., and Friedman, J. H. (2001).The Elements of Statistical Learning: Data Mining, Inference, and Prediction: with 200 Full-color Illustrations. Springer-Verlag Inc.Google Scholar
  148. Hauck, W. W. and Donner, A. (1977). Wald’s test as applied to hypotheses in logit analysis (Corr: V75 p482).Journal of the American Statistical Association, 72:851–853.MATHMathSciNetGoogle Scholar
  149. Heagerty, P. J. and Lumley, T. (2000). Window subsampling of estimating functions with application to regression models.Journal of the American Statistical Association, 95(449):197–211.MATHMathSciNetCrossRefGoogle Scholar
  150. Hernandez, F. and Johnson, R. A. (1980). The large-sample behavior of transformations to normality.Journal of the American Statistical Association, 75:855–861.MATHMathSciNetCrossRefGoogle Scholar
  151. Hettmansperger, T. P. (1984).Statistical Inference Based on Ranks. John Wiley & Sons.Google Scholar
  152. Hettmansperger, T. P. and Sheather, S. J. (1986). Confidence intervals based on interpolated order statistics (Corr: V4 p217).Statistics & Probability Letters, 4:75–79.MATHMathSciNetCrossRefGoogle Scholar
  153. Higgins, J. P. T., Thompson, S. G., and Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis.Journal of the Royal Statistical Society, Series A: Statistics in Society, 172(1):137–159.MathSciNetCrossRefGoogle Scholar
  154. Hinkley, D. V. (1977). Jackknifing in unbalanced situations.Technometrics, 19:285–292.MATHMathSciNetCrossRefGoogle Scholar
  155. Hinkley, D. V. and Runger, G. (1984). The analysis of transformed data (C/R: P309-320).Journal of the American Statistical Association, 79:302–309.MATHMathSciNetCrossRefGoogle Scholar
  156. Hirji, K. F., Mehta, C. R., and Patel, N. R. (1987). Computing distributions for exact logistic regression.Journal of the American Statistical Association, 82:1110–1117.MATHMathSciNetCrossRefGoogle Scholar
  157. Hobert, J. P. and Casella, G. (1996). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models.Journal of the American Statistical Association, 91:1461–1473.MATHMathSciNetCrossRefGoogle Scholar
  158. Hodges, J. L., J. and Lehmann, E. L. (1962). Rank methods for combination of independent experiments in the analysis of variance.The Annals of Mathematical Statistics, 33:482–497.Google Scholar
  159. Hodges, J. L. and Lehmann, E. L. (1956). The efficiency of some nonparametric competitors of thet-test.The Annals of Mathematical Statistics, 27:324–335.MATHMathSciNetCrossRefGoogle Scholar
  160. Hodges, J. L. and Lehmann, E. L. (1963). Estimates of location based on rank tests (Ref: V42 p1450-1451).The Annals of Mathematical Statistics, 34:598–611.MATHMathSciNetCrossRefGoogle Scholar
  161. Hoeffding, W. (1948). A class of statistics with asymptotically normal distribution.The Annals of Mathematical Statistics, 19:293–325.MATHMathSciNetCrossRefGoogle Scholar
  162. Hoeffding, W. (1951). A combinatorial central limit theorem.The Annals of Mathematical Statistics, 22:558–566.MATHMathSciNetCrossRefGoogle Scholar
  163. Hoeffding, W. (1952). The large-sample power of tests based on permutations of observations.The Annals of Mathematical Statistics, 23:169–192.MATHMathSciNetCrossRefGoogle Scholar
  164. Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems.Technometrics, 12:55–67.MATHCrossRefGoogle Scholar
  165. Hope, A. C. A. (1968). A simplified Monte Carlo significance test procedure.Journal of the Royal Statistical Society, Series B: Methodological, 30:582–598.MATHGoogle Scholar
  166. Hora, S. C. and Iman, R. L. (1988). Asymptotic relative efficiencies of the rank-transformation procedure in randomized complete block designs.Journal of the American Statistical Association, 83:462–470.MATHMathSciNetCrossRefGoogle Scholar
  167. Hosking, J. R. M. (1990).L-moments: Analysis and estimation of distributions using linear combinations of order statistics.Journal of the Royal Statistical Society, Series B: Methodological, 52:105–124.MATHMathSciNetGoogle Scholar
  168. Huber, P. J. (1964). Robust estimation of a location parameter.The Annals of Mathematical Statistics, 35:73–101.MATHCrossRefGoogle Scholar
  169. Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Neyman, J., editor,Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1, pages 221–233. University of California Press.Google Scholar
  170. Huber, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo.The Annals of Statistics, 1:799–821.MATHMathSciNetCrossRefGoogle Scholar
  171. Huber, P. J. (1981).Robust Statistics. John Wiley & Sons.Google Scholar
  172. Hyndman, R. J. and Fan, Y. (1996). Sample quantiles in statistical packages.The American Statistician, 50:361–365.Google Scholar
  173. Iverson, H. K. and Randles, R. H. (1989). The effects on convergence of substituting parameter estimates intoU-statistics and other families of statistics.Probability Theory and Related Fields, 81:453–471.MATHMathSciNetCrossRefGoogle Scholar
  174. James, W. and Stein, C. (1961). Estimation with quadratic loss. In Neyman, J., editor,Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1, pages 361–379. University of California Press.Google Scholar
  175. Jeffreys, H. (1961).Theory of Probability. Oxford University Press.Google Scholar
  176. Jöckel, K.-H. and Jockel, K.-H. (1986). Finite sample properties and asymptotic efficiency of Monte Carlo tests.The Annals of Statistics, 14:336–347.MATHMathSciNetCrossRefGoogle Scholar
  177. Johansen, S. (1979).Introduction to the Theory of Regular Exponential Families. University of Copenhagen.Google Scholar
  178. Johnson, R. A., Verrill, S., and Moore, D. H., I. (1987). Two-sample rank tests for detecting changes that occur in a small proportion of the treated population.Biometrics, 43:641–655.Google Scholar
  179. Jones, G. L. and Hobert, J. P. (2004). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model.The Annals of Statistics, 32(2):784–817.MATHMathSciNetCrossRefGoogle Scholar
  180. Kackar, R. N. and Harville, D. A. (1984). Approximations for standard errors of estimators of fixed and random effects in mixed linear models.Journal of the American Statistical Association, 79:853–862.MATHMathSciNetGoogle Scholar
  181. Kass, R. E. and Steffey, D. (1989). Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models).Journal of the American Statistical Association, 84:717–726.MathSciNetCrossRefGoogle Scholar
  182. Kass, R. E. and Wasserman, L. (1996). The selection of prior distributions by formal rules (Corr: 1998V93 p412).Journal of the American Statistical Association, 91:1343–1370.MATHCrossRefGoogle Scholar
  183. Kent, J. T. (1982). Robust properties of likelihood ratio tests (Corr: V69 p492).Biometrika, 69:19–27.MATHMathSciNetGoogle Scholar
  184. Kenward, M. G. and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood.Biometrics, 53:983–997.MATHCrossRefGoogle Scholar
  185. Kepner, J. L. and Wackerly, D. D. (1996). On rank transformation techniques for balanced incomplete repeated-measures designs.Journal of the American Statistical Association, 91:1619–1625.MATHMathSciNetGoogle Scholar
  186. Khatri, C. G. (1963). Some results for the singular normal multivariate regression models.Sankhyā, Series A, 30:267–280.MathSciNetGoogle Scholar
  187. Kilgore, D. L. (1970). The effects of northward dispersal on growth rate of young at birth and litter size in sigmodon hispidus.American Midland Naturalist, 84:510–520.CrossRefGoogle Scholar
  188. Kim, H.-J. and Boos, D. D. (2004). Variance estimation in spatial regression using a non-parametric semivariogram based on residuals.Scandinavian Journal of Statistics, 31(3):387–401.MATHMathSciNetCrossRefGoogle Scholar
  189. Kim, Y. and Singh, K. (1998). Sharpening estimators using resampling.Journal of Statistical Planning and Inference, 66:121–146.MATHMathSciNetCrossRefGoogle Scholar
  190. Klotz, J. (1962). Non-parametric tests for scale.The Annals of Mathematical Statistics, 33:498–512.MATHMathSciNetCrossRefGoogle Scholar
  191. Koopman, B. O. (1936). On distributions admitting a sufficient statistic.Transactions of the American Mathematical Society, 39(3):399–409.MathSciNetCrossRefGoogle Scholar
  192. Kruskal, W. H. and Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis.Journal of the American Statistical Association, 47:583–621.MATHCrossRefGoogle Scholar
  193. Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations.The Annals of Statistics, 17:1217–1241.MATHMathSciNetCrossRefGoogle Scholar
  194. Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data.Biometrics, 38:963–974.MATHCrossRefGoogle Scholar
  195. Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in manufacturing.Technometrics, 34:1–14.MATHCrossRefGoogle Scholar
  196. Landis, J. R., Heyman, E. R., and Koch, G. G. (1978). Average partial association in three-way contingency tables: A review and and discussion of alternative tests.International Statistical Review, 46:237–254.MATHMathSciNetCrossRefGoogle Scholar
  197. Larsen, R. J. and Marx, M. L. (2001).An Introduction to Mathematical Statistics and Its Applications. Prentice-Hall Inc.Google Scholar
  198. Lawless, J. F. (1982).Statistical Models and Methods for Lifetime Data. John Wiley & Sons.Google Scholar
  199. Lawley, D. N. (1956). A general method for approximating to the distribution of likelihood ratio criteria.Biometrika, 43:295–303.MATHMathSciNetCrossRefGoogle Scholar
  200. Leadbetter, M. R., Lindgren, G., and Rootzén, H. (1983).Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag Inc.Google Scholar
  201. Lehmann, E. L. (1953). The power of rank tests.The Annals of Mathematical Statistics, 24:23–43.MATHCrossRefGoogle Scholar
  202. Lehmann, E. L. (1975).Nonparametrics: Statistical Methods Based on Ranks. Holden-Day Inc.Google Scholar
  203. Lehmann, E. L. (1983).Theory of Point Estimation. John Wiley & Sons.Google Scholar
  204. Lehmann, E. L. (1986).Testing Statistical Hypotheses. John Wiley & Sons.Google Scholar
  205. Lehmann, E. L. and Casella, G. (1998).Theory of Point Estimation. Springer-Verlag Inc.Google Scholar
  206. Lehmann, E. L. and Stein, C. (1949). On the theory of some non-parametric hypotheses.The Annals of Mathematical Statistics, 20:28–45.MathSciNetCrossRefGoogle Scholar
  207. Leroux, B. G. and Puterman, M. L. (1992). Maximum-penalized-likelihood estimation for independent and Markov-dependent mixture models.Biometrics, 48:545–558.CrossRefGoogle Scholar
  208. Liang, K.-Y. (1985). Odds ratio inference with dependent data.Biometrika, 72:678–682.CrossRefGoogle Scholar
  209. Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models.Biometrika, 73:13–22.MATHMathSciNetCrossRefGoogle Scholar
  210. Lindley, D. V. and Phillips, L. D. (1976). Inference for a Bernoulli process (A Bayesian view).The American Statistician, 30:112–119.MATHMathSciNetGoogle Scholar
  211. Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum Hellinger distance and related methods.The Annals of Statistics, 22:1081–1114.MATHMathSciNetCrossRefGoogle Scholar
  212. Lindsay, B. G. and Qu, A. (2003). Inference functions and quadratic score tests.Statistical Science, 18(3):394–410.MATHMathSciNetCrossRefGoogle Scholar
  213. Little, R. J. A. and Rubin, D. B. (1987).Statistical Analysis with Missing Data. J. Wiley & Sons.Google Scholar
  214. Liu, R. Y. and Singh, K. (1987). On a partial correction by the bootstrap.The Annals of Statistics, 15:1713–1718.MATHMathSciNetCrossRefGoogle Scholar
  215. Liu, X. and Shao, Y. (2003). Asymptotics for likelihood ratio tests under loss of identifiability.The Annals of Statistics, 31(3):807–832.MATHMathSciNetCrossRefGoogle Scholar
  216. Loh, W.-Y. (1987). Calibrating confidence coefficients.Journal of the American Statistical Association, 82:155–162.MATHMathSciNetCrossRefGoogle Scholar
  217. Magee, L. (1990).R 2 measures based on Wald and likelihood ratio joint significance tests.The American Statistician, 44:250–253.Google Scholar
  218. Mahfoud, Z. R. and Randles, R. H. (2005). Practical tests for randomized complete block designs.Journal of Multivariate Analysis, 96(1):73–92.MATHMathSciNetCrossRefGoogle Scholar
  219. Makelainen, T., Schmidt, K., and Styan, G. P. H. (1981). On the existence and uniqueness of the maximum-likelihood estimate of a vector-valued parameter in fixed-size samples.Annals of Statistics, 9:758–767.MathSciNetCrossRefGoogle Scholar
  220. Mancl, L. A. and DeRouen, T. A. (2001). A covariance estimator for GEE with improved small-sample properties.Biometrics, 57(1):126–134.MATHMathSciNetCrossRefGoogle Scholar
  221. Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other.The Annals of Mathematical Statistics, 18:50–60.MATHMathSciNetCrossRefGoogle Scholar
  222. McCullagh, P. (1983). Quasi-likelihood functions.The Annals of Statistics, 11:59–67.MATHMathSciNetCrossRefGoogle Scholar
  223. McCullagh, P. (1997). Linear models, vector spaces, and residual likelihood. In Gregoire, T. G., Brillinger, D. R., Diggle, P. J., Russek-Cohen, E., Warren, W. G., and Wolfinger, R. D., editors,Modelling Longitudinal and Spatially Correlated Data: Methods, Applications, and Future Directions. Lecture Notes in Statistics, Vol. 122, pages 1–10. Springer-Verlag Inc.Google Scholar
  224. McLachlan, G.J. & Krishnan, T. (1997).The EM Algorithm and Extensions. J. Wiley & Sons.Google Scholar
  225. Mehra, K. L. and Sarangi, J. (1967). Asymptotic efficiency of certain rank tests for comparative experiments.The Annals of Mathematical Statistics, 38:90–107.MATHMathSciNetCrossRefGoogle Scholar
  226. Memon, M. A., Cooper, N. J., Memon, B., Memon, M. I., and Abrams, K. R. (2003). Meta-analysis of randomized clinical trials comparing open and laparoscopic inguinal hernia repair.British Journal of Surgery, 90:1479–1492.CrossRefGoogle Scholar
  227. Messig, M. A. and Strawderman, W. E. (1993). Minimal sufficiency and completeness for dichotomous quantal response models.The Annals of Statistics, 21:2149–2157.MATHMathSciNetCrossRefGoogle Scholar
  228. Miller, R. G., J. (1974). An unbalanced jackknife.The Annals of Statistics, 2:880–891.Google Scholar
  229. Miller, J. J. (1977). Asymptotic properties of maximum likelihood estimates in the mixed model of the analysis of variance.The Annals of Statistics, 5:746–762.MATHMathSciNetCrossRefGoogle Scholar
  230. Miller, R. G. (1980). Combining 2 ×2 contingency tables. In Miller, R. G. e., Efron, B. e., Brown, B. W., J. e., and Moses, L. E. e., editors,Biostatistics Casebook, pages 73–83. John Wiley & Sons.Google Scholar
  231. Monahan, J. F. (2001).Numerical Methods of Statistics. Cambridge University Press.Google Scholar
  232. Monahan, J. F. and Boos, D. D. (1992). Proper likelihoods for Bayesian analysis.Biometrika, 79:271–278.MATHMathSciNetCrossRefGoogle Scholar
  233. Moore, D. S. (1977). Generalized inverses, Wald’s method, and the construction of chi-squared tests of fit.Journal of the American Statistical Association, 72:131–137.MATHMathSciNetCrossRefGoogle Scholar
  234. Moore, D. S. (1986). Tests of chi-squared type. In D’Agostino, R. B. and Stephens, M. A., editors,Goodness-of-fit techniques, pages 63–95. Marcel Dekker Inc.Google Scholar
  235. Nation, J. R., Bourgeois, A. E., Clark, D. E., Baker, D. M., and Hare, M. F. (1984). The effects of oral cadmium exposure on passive avoidance performance in the adult rat.Toxicology Letters, 20:41–47.CrossRefGoogle Scholar
  236. Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized linear models.Journal of the Royal Statistical Society, Series A: General, 135:370–384.CrossRefGoogle Scholar
  237. Neyman, J. and Pearson, E. S. (1928). On the use and interpretation of certain test criteria for purposes of statistical inference.Biometrika, 20A:175–240, 263–294.Google Scholar
  238. Neyman, J. and Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses.Philosophical Transactions of the Royal Society of London, Ser. A, 231:289–337.Google Scholar
  239. Neyman, J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations.Econometrica, 16:1–32.MathSciNetCrossRefGoogle Scholar
  240. Noether, G. E. (1949). On a theorem by wald and wolfowitz.The Annals of Mathematical Statistics, 20:455–458.MATHMathSciNetCrossRefGoogle Scholar
  241. Noether, G. E. (1955). On a theorem of pitman.The Annals of Mathematical Statistics, 26:64–68.MATHMathSciNetCrossRefGoogle Scholar
  242. Noether, G. E. (1987). Sample size determination for some common nonparametric tests.Journal of the American Statistical Association, 82:645–647.MATHMathSciNetCrossRefGoogle Scholar
  243. O’Gorman, T. W. (2001). A comparison of the F-test, Friedman’s test, and several aligned rank tests for the analysis of randomized complete blocks.Journal of Agricultural, Biological, and Environmental Statistics, 6(3):367–378.CrossRefGoogle Scholar
  244. Olshen, R. A. (1967). Sign and Wilcoxon tests for linearity.The Annals of Mathematical Statistics, 38:1759–1769.MATHMathSciNetCrossRefGoogle Scholar
  245. Pace, L. and Salvan, A. (1997).Principles of Statistical Inference: from a Neo-Fisherian Perspective. World Scientific Publishing Company.Google Scholar
  246. Pirazzoli, P. A. (1982). Maree estreme a venezia (periodo 1872-1981).Acqua Aria, 10:1023–1029.Google Scholar
  247. Pitman, E. J. G. (1936). Sufficient statistics and intrinsic accuracy.Proc. Camb. Phil. Soc., 32:567–579.CrossRefGoogle Scholar
  248. Pitman, E. J. G. (1937a). Significance tests which may be applied to samples from any populations.Supplement to the Journal of the Royal Statistical Society, 4:119–130.CrossRefGoogle Scholar
  249. Pitman, E. J. G. (1937b). Significance tests which may be applied to samples from any populations. ii. the correlation coefficient test.Supplement to the Journal of the Royal Statistical Society, 4:225–232.Google Scholar
  250. Pitman, E. J. G. (1938). Significance tests which may be applied to samples from any populations. iii. the analysis of variance test.Biometrika, 29:322–335.Google Scholar
  251. Pitman, E. J. G. (1948).Notes on Non-Parametric Statitistical Inference. Columbia University (duplicated).Google Scholar
  252. Portnoy, S. (1988). Asymptotic behavior of likelihood methods for exponential families when the number of parameters tends to infinity.The Annals of Statistics, 16:356–366.MATHMathSciNetCrossRefGoogle Scholar
  253. Pratt, J. W. and Gibbons, J. D. (1981).Concepts of Nonparametric Theory. Springer-Verlag Inc.Google Scholar
  254. Prentice, R. L. (1988). Correlated binary regression with covariates specific to each binary observation.Biometrics, 44:1033–1048.MATHMathSciNetCrossRefGoogle Scholar
  255. Presnell, B. and Boos, D. D. (2004). The ios test for model misspecification.Journal of the American Statistical Association, 99(465):216–227.MATHMathSciNetCrossRefGoogle Scholar
  256. Puri, M. L. and Sen, P. K. (1971).Nonparametric Methods in Multivariate Analysis. John Wiley & Sons.Google Scholar
  257. Pyke, R. (1965). Spacings (with discussion).Journal of the Royal Statistical Society, Series B: Statistical Methodology, 27:395–449.MATHMathSciNetGoogle Scholar
  258. Qu, A., Lindsay, B. G., and Li, B. (2000). Improving generalised estimating equations using quadratic inference functions.Biometrika, 87(4):823–836.MATHMathSciNetCrossRefGoogle Scholar
  259. Quenouille, M. H. (1949). Approximate use of correlation in time series.Journal of the Royal Statistical Society, Series B, 11:18–84.MathSciNetGoogle Scholar
  260. Quenouille, M. H. (1956). Notes on bias in estimation.Biometrika, 43:353–360.MATHMathSciNetCrossRefGoogle Scholar
  261. Quesenberry, C. P. (1975). Transforming samples from truncation parameter distributions to uniformity.Communications in Statistics, 4:1149–1156.MathSciNetCrossRefGoogle Scholar
  262. Radelet, M. L. and Pierce, G. L. (1991). Choosing those who will die: race and the death penalty in florida.Florida Law Review, 43:1–34.Google Scholar
  263. Randles, R. H. (1982). On the asymptotic normality of statistics with estimated parameters.Annals of Statistics, 10:462–474.MATHMathSciNetCrossRefGoogle Scholar
  264. Randles, R. H. and Wolfe, D. A. (1979).Introduction to the Theory of Nonparametric Statistics. John Wiley & Sons.Google Scholar
  265. Randolph, P. A., Randolph, J. C., Mattingly, K., and Foster, M. M. (1977). Energy costs of reproduction in the cotton rat sigmodon hispidus.Ecology, 58:31–45.CrossRefGoogle Scholar
  266. Rao, C. R. (1948). Large sample tests of statistical hypotheses concerning several parameters with application to problems of estimation.Proceedings of the Cambridge Philosophical Society, 44:50–57.MATHCrossRefGoogle Scholar
  267. Rao, C. R. (1973).Linear Statistical Inference and Its Applications. John Wiley & Sons.Google Scholar
  268. Rao, C. R. and Wu, Y. (2001). On model selection (Pkg: P1-64). InModel selection [Institute of Mathematical Statistics lecture notes-monograph series 38], pages 1–57. IMS Press.Google Scholar
  269. Read, T. R. C. and Cressie, N. A. C. (1988).Goodness-of-fit Statistics for Discrete Multivariate Data. Springer-Verlag Inc.Google Scholar
  270. Reid, N. (1988). Saddlepoint methods and statistical inference (C/R: P228-238).Statistical Science, 3:213–227.MATHMathSciNetCrossRefGoogle Scholar
  271. Ridout, M., Hinde, J., and Demétrio, C. G. B. (2001). A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives.Biometrics, 57(1):219–223.MATHMathSciNetCrossRefGoogle Scholar
  272. Robert, C. P. (2001).The Bayesian Choice: from Decision-theoretic Foundations to Computational Implementation. Springer-Verlag Inc.Google Scholar
  273. Roberts, M. E., Tchanturia, K., Stahl, D., Southgate, L., and Treasure, J. (2007). A systematic review and metaanalysis of set-shifting ability in eating disorders.Psychol. Med., 37:1075–1084.CrossRefGoogle Scholar
  274. Robertson, T., Wright, F. T., and Dykstra, R. (1988).Order Restricted Statistical Inference. John Wiley & Sons.Google Scholar
  275. Robins, J. M., van der Vaart, A., and Ventura, V.Google Scholar
  276. Robinson, J. (1980). An asymptotic expansion for permutation tests with several samples.The Annals of Statistics, 8:851–864.MATHMathSciNetCrossRefGoogle Scholar
  277. Rosen, O. and Cohen, A. (1995). Constructing a bootstrap confidence interval for the unknown concentration in radioimmunoassay (Disc: P953-953).Statistics in Medicine, 14:935–952.CrossRefGoogle Scholar
  278. Rotnitzky, A. and Jewell, N. P. (1990). Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data.Biometrika, 77:485–497.MATHMathSciNetCrossRefGoogle Scholar
  279. Ruppert, D. (1987). What is kurtosis - an influence function-approach.American Statisitican, 41:1–5.MATHMathSciNetGoogle Scholar
  280. Sampson, A. R. (1974). A tale of two regressions.Journal of the American Statistical Association, 69:682–689.MATHMathSciNetCrossRefGoogle Scholar
  281. Santner, T. J. (1998). Teaching large-sample binomial confidence intervals.Teaching Statistics, 20:20–23.CrossRefGoogle Scholar
  282. Savage, I. R. (1956). Contributions to the theory of rank order statistics-the two-sample case.The Annals of Mathematical Statistics, 27:590–615.MATHMathSciNetCrossRefGoogle Scholar
  283. Schrader, R. M. and Hettmansperger, T. P. (1980). Robust analysis of variance based upon a likelihood ratio criterion.Biometrika, 67:93–101.MATHMathSciNetCrossRefGoogle Scholar
  284. Schucany, W. R., Gray, H. L., and Owen, D. B. (1971). On bias reduction in estimation.Journal of the American Statistical Association, 66:524–533.MATHCrossRefGoogle Scholar
  285. Schwarz, G. (1978). Estimating the dimension of a model.The Annals of Statistics, 6:461–464.MATHMathSciNetCrossRefGoogle Scholar
  286. Searle, S. R. (1971).Linear models. John Wiley & Sons.Google Scholar
  287. Seber, G. A. F. and Wild, C. J. (1989).Nonlinear Regression. John Wiley & Sons.Google Scholar
  288. Self, S. G. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions.Journal of the American Statistical Association, 82:605–610.MATHMathSciNetCrossRefGoogle Scholar
  289. Sen, P. K. (1968). On a class of aligned rank order tests in two-way layouts.The Annals of Mathematical Statistics, 39:1115–1124.MATHCrossRefGoogle Scholar
  290. Sen, P. K. (1982). OnM tests in linear models.Biometrika, 69:245–248.MATHMathSciNetGoogle Scholar
  291. Serfling, R. J. (1980).Approximation Theorems of Mathematical Statistics. Wiley, New York.MATHCrossRefGoogle Scholar
  292. Shanbhag, D. N. (1968). Some remarks concerning Khatri’s result on quadratic forms.Biometrika, 55:593–595.MATHGoogle Scholar
  293. Shao, J. and Tu, D. (1995).The Jackknife and Bootstrap. Springer-Verlag Inc.Google Scholar
  294. Shao, J. and Wu, C. F. J. (1989). A general theory for jackknife variance estimation.The Annals of Statistics, 17:1176–1197.MATHMathSciNetCrossRefGoogle Scholar
  295. Sidik, K. and Jonkman, J. N. (2007). A comparison of heterogeneity variance estimators in combining results of studies.Statistics in Medicine, 26(9):1964–1981.MathSciNetCrossRefGoogle Scholar
  296. Siegel, A. F. (1985). Modelling data containing exact zeroes using zero degrees of freedom.Journal of the Royal Statistical Society, Series B: Methodological, 47:267–271.MATHMathSciNetGoogle Scholar
  297. Silvapulle, M. J. and Sen, P. K. (2005).Constrained Statistical Inference: Inequality, Order, and Shape Restrictions. Wiley-Interscience.Google Scholar
  298. Simpson, D. G. (1987). Minimum Hellinger distance estimation for the analysis of count data.Journal of the American Statistical Association, 82:802–807.MATHMathSciNetCrossRefGoogle Scholar
  299. Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap.The Annals of Statistics, 9:1187–1195.MATHMathSciNetCrossRefGoogle Scholar
  300. Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases.Biometrika, 72:67–90.MATHMathSciNetCrossRefGoogle Scholar
  301. Smith, T. C., Spiegelhalter, D. J., and Thomas, A. (1995). Bayesian approaches to random-effects meta-analysis: A comparative study.Statistics in Medicine, 14:2685–2699.CrossRefGoogle Scholar
  302. Stacy, E. W. (1962). A generalization of the gamma distribution.The Annals of Mathematical Statistics, 33:1187–1191.MATHMathSciNetCrossRefGoogle Scholar
  303. Stefanski, L. A. and Boos, D. D. (2002). The calculus of M-estimation.The American Statistician, 56(1):29–38.MathSciNetCrossRefGoogle Scholar
  304. Stefanski, L. A. and Carroll, R. J. (1987). Conditional scores and optimal scores for generalized linear measurement-error models.Biometrika, 74:703–716.MATHMathSciNetGoogle Scholar
  305. Stefanski, L. A. and Cook, J. R. (1995). Simulation-extrapolation: The measurement error jackknife.Journal of the American Statistical Association, 90:1247–1256.MATHMathSciNetCrossRefGoogle Scholar
  306. Stephens, M. A. (1977). Goodness of fit for the extreme value distribution.Biometrika, 64:583–588.MATHMathSciNetCrossRefGoogle Scholar
  307. Student (Gosset, W. S. (1908). The probable error of a mean.Biometrika, 6(1):1–25.Google Scholar
  308. Styan, G. P. H. (1970). Notes on the distribution of quadratic forms in singular normal variables.Biometrika, 57:567–572.MATHCrossRefGoogle Scholar
  309. Suissa, S. and Shuster, J. J. (1985). Exact unconditional sample sizes for the 2 by 2 binomial trial.Journal of the Royal Statistical Society, Series A: General, 148:317–327.MATHMathSciNetCrossRefGoogle Scholar
  310. Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (C/R: P541-550).Journal of the American Statistical Association, 82:528–540.MATHMathSciNetCrossRefGoogle Scholar
  311. Tarone, R. E. (1979). Testing the goodness of fit of the binomial distribution (Corr: V77 p668).Biometrika, 66:585–590.MATHCrossRefGoogle Scholar
  312. Tarone, R. E. and Gart, J. J. (1980). On the robustness of combined tests for trends in proportions.Journal of the American Statistical Association, 75:110–116.MATHCrossRefGoogle Scholar
  313. Teo, K. K., Yusuf, S., Collins, R., Held, P. H., and Peto, R. (1991). Effects of intravenous magnesium in suspected acute myocardial infarction: Overview of randomised trials.British Medical Journal, 303:1499–1503.CrossRefGoogle Scholar
  314. Thompson, G. L. (1991). A note on the rank transform for interactions (Corr: 93V80 p711).Biometrika, 78:697–701.MATHMathSciNetCrossRefGoogle Scholar
  315. Tobin, J. (1958). Estimation of relationships for limited dependent-variables.Econometrica, 26:24–36.MATHMathSciNetCrossRefGoogle Scholar
  316. Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error.Biometrika, 88:447–458.MATHMathSciNetCrossRefGoogle Scholar
  317. Tukey, J. (1958). Bias and confidence in not quite large samples (abstract).The Annals of Mathematical Statistics, 29:614–614.CrossRefGoogle Scholar
  318. van den Broek, J. (1995). A score test for zero inflation in a Poisson distribution.Biometrics, 51:738–743.MATHMathSciNetCrossRefGoogle Scholar
  319. van der Vaart, A. W. (1998).Asymptotic Statistics. Cambridge University Press.Google Scholar
  320. van Elteren, P. H. (1960). On the combination of independent two-sample tests of wilcoxon.Bulletin of the International Statistical Institute, 37:351–361.MATHGoogle Scholar
  321. van Elteren, P. H. and Noether, G. E. (1959). The asymptotic efficiency of the χr 2-test for a balanced incomplete block design.Biometrika, 46:475–477.MATHCrossRefGoogle Scholar
  322. Venables, W. N. and Ripley, B. D. (1997).Modern Applied Statistics with S-Plus. Springer-Verlag Inc.Google Scholar
  323. Verbeke, G. and Molenberghs, G. (2003). The use of score tests for inference on variance components.Biometrics, 59(2):254–262.MATHMathSciNetCrossRefGoogle Scholar
  324. von Mises, R. (1947). On the asymptotic distribution of differentiable statistical functions.The Annals of Mathematical Statistics, 18:309–348.MATHCrossRefGoogle Scholar
  325. Wainer, H. (1993). Tabular presentation.Chance, 6(3):52–56.Google Scholar
  326. Wainer, H. (1997a). Improving tabular displays, with NAEP tables as examples and inspirations.Journal of Educational and Behavioral Statistics, 22:1–30.CrossRefGoogle Scholar
  327. Wainer, H. (1997b).Visual Revelations: Graphical Tales of Fate and Deception from Napoleon Bonaparte to Ross Perot. Springer-Verlag Inc.Google Scholar
  328. Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large.Transactions of the American Mathematical Society, 54(3):426–482.MATHMathSciNetCrossRefGoogle Scholar
  329. Wald, A. (1949). Note on the consistency of maximum likelihood estimate.The Annals of Mathematical Statistics, 20:595–601.MATHMathSciNetCrossRefGoogle Scholar
  330. Wald, A. and Wolfowitz, J. (1944). Statistical tests based on permutations of the observations.The Annals of Mathematical Statistics, 15:358–372.MATHMathSciNetCrossRefGoogle Scholar
  331. Warn, D. E., Thompson, S. G., and Spiegelhalter, D. J. (2002). Bayesian random effects meta-analysis of trials with binary outcomes: Methods for the absolute risk difference and relative risk scales.Statistics in Medicine, 21(11):1601–1623.CrossRefGoogle Scholar
  332. Wedderburn, R. W. M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method.Biometrika, 61:439–447.MATHMathSciNetGoogle Scholar
  333. Weir, B. S. (1996).Genetic Data Analysis 2: Methods for Discrete Population Genetic Data. Sunderland: Sinauer Associates.Google Scholar
  334. Welch, B. L. (1937). On the z-test in randomized blocks and latin squares.Biometrika, 29:21–52.MATHCrossRefGoogle Scholar
  335. Welch, W. J. (1987). Rerandomizing the median in matched-pairs designs.Biometrika, 74:609–614.MathSciNetCrossRefGoogle Scholar
  336. White, H. (1981). Consequences and detection of misspecified nonlinear regression models.Journal of the American Statistical Association, 76:419–433.MATHMathSciNetCrossRefGoogle Scholar
  337. White, H. (1982). Maximum likelihood estimation of misspecified models.Econometrica, 50:1–26.MATHMathSciNetCrossRefGoogle Scholar
  338. Wilcoxon, F. (1945). Individual comparisons by ranking methods.Biometrics Bulletin, 6:80–83.CrossRefGoogle Scholar
  339. Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses.Annals of Mathematical Statistics, 9:60–62.CrossRefGoogle Scholar
  340. Wilson, D. H. (2002).Signed Scale Measures: An Introduction and Application. Ph.D Thesis, NC State University.Google Scholar
  341. Wu, C. F. J. (1983). On the convergence properties of the EM algorithm.The Annals of Statistics, 11:95–103.MATHMathSciNetCrossRefGoogle Scholar
  342. Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis (C/R: P1295-1350; Ref: V16 p479).The Annals of Statistics, 14:1261–1295.MATHMathSciNetCrossRefGoogle Scholar
  343. Wu, C.-t., Gumpertz, M. L., and Boos, D. D. (2001). Comparison of GEE, MINQUE, ML, and REML estimating equations for normally distributed data.The American Statistician, 55(2):125–130.Google Scholar
  344. Zehna, P. W. (1966). Invariance of maximum likelihood estimations.The Annals of Mathematical Statistics, 37:744–744.MATHMathSciNetCrossRefGoogle Scholar
  345. Zeng, Q. and Davidian, M. (1997). Bootstrap-adjusted calibration confidence intervals for immunoassay.Journal of the American Statistical Association, 92:278–290.MATHMathSciNetCrossRefGoogle Scholar
  346. Zhang, J. and Boos, D. D. (1994). Adjusted power estimates in Monte Carlo experiments.Communications in Statistics: Simulation and Computation, 23:165–173.MATHCrossRefGoogle Scholar
  347. Zhang, J. and Boos, D. D. (1997). Mantel-Haenszel test statistics for correlated binary data.Biometrics, 53:1185–1198.MATHMathSciNetCrossRefGoogle Scholar
  348. Zhao, L. P. and Prentice, R. L. (1990). Correlated binary regression using a quadratic exponential model.Biometrika, 77:642–648.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Denni D Boos
    • 1
  • L A Stefanski
    • 1
  1. 1.Department of StatisticsNorth Carolina State UniversityRaleighUSA

Personalised recommendations