Skip to main content

Microdialysis in Ocular Drug Development

  • Chapter
  • First Online:
Microdialysis in Drug Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 4))

Abstract

Development of novel treatments for ocular diseases demands a complete understanding of ocular drug pharmacokinetics. Microdialysis is a continuous sampling technique that has been frequently applied for assessing ocular pharmacokinetic parameters. This sampling technique has gained considerable attention in ocular pharmacokinetics since it considerably reduces the requirement of large number of animals needed to obtain a complete pharmacokinetic profile. Remarkable progress has been made in ocular anterior and posterior segment microdialysis in recent years. These developments have simplified sampling of ocular fluids such as vitreous and aqueous humor. In this book chapter, the principle and application of microdialysis in measuring drug disposition in various segments of the eye will be discussed. This chapter will also highlight on recent progress on the development of various animal models and probe designs in ocular microdialysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi A, Hasegawa M, Ebihara S (1995) Measurement of circadian rhythms of ocular melatonin in the pigeon by in vivo microdialysis. NeuroReport 7:286–288

    PubMed  CAS  Google Scholar 

  • Amberg G, Lindefors N (1989) Intracerebral microdialysis: II. Mathematical studies of diffusion kinetics. J Pharmacol Methods 22:157–183

    Article  PubMed  CAS  Google Scholar 

  • Anand BS, Atluri H, Mitra AK (2004) Validation of an ocular microdialysis technique in rabbits with permanently implanted vitreous probes: systemic and intravitreal pharmacokinetics of fluorescein. Int J Pharm 281:79–88

    Article  PubMed  CAS  Google Scholar 

  • Anand BS, Katragadda S, Gunda S, Mitra AK (2006) In vivo ocular pharmacokinetics of acyclovir dipeptide ester prodrugs by microdialysis in rabbits. Mol Pharm 3:431–440

    Article  PubMed  CAS  Google Scholar 

  • Antoine ME, Edelhauser HF, O’Brien WJ (1984) Pharmacokinetics of topical ocular phenylephrine HCl. Invest Ophthalmol Vis Sci 25:48–54

    PubMed  CAS  Google Scholar 

  • Atluri H, Mitra AK (2003) Disposition of short-chain aliphatic alcohols in rabbit vitreous by ocular microdialysis. Exp Eye Res 76:315–320

    Article  PubMed  CAS  Google Scholar 

  • Beal SL, Sheiner LB (1982) Estimating population kinetics. Crit Rev Biomed Eng 8:195–222

    PubMed  CAS  Google Scholar 

  • Ben-Nun J, Cooper RL, Cringle SJ, Constable IJ (1988) Ocular dialysis. A new technique for in vivo intraocular pharmacokinetic measurements. Arch Ophthalmol 106:254–259

    Article  PubMed  CAS  Google Scholar 

  • Benveniste H, Huttemeier PC (1990) Microdialysis–theory and application. Prog Neurobiol 35:195–215

    Article  PubMed  CAS  Google Scholar 

  • Biswas NR, Das GK, Dubey AK (2010) Monoclonal antibodies in ophthalmology. Nepal Med Coll J 12:264–271

    PubMed  CAS  Google Scholar 

  • Boddu SH, Gunda S, Earla R, Mitra AK (2010) Ocular microdialysis: a continuous sampling technique to study pharmacokinetics and pharmacodynamics in the eye. Bioanalysis 2:487–507

    Article  PubMed  Google Scholar 

  • Chaurasia CS (1999) In vivo microdialysis sampling: theory and applications. Biomed Chromatogr 13:317–332

    Article  PubMed  CAS  Google Scholar 

  • Chefer VI, Thompson AC, Zapata A, Shippenberg TS (2009) Overview of brain microdialysis. Curr Protoc Neurosci. (Chapter 7, Unit7 1)

    Google Scholar 

  • Ciechanowska A, Sabalinska S, Gutowska M, Wójcicki JM (2008) Modern application of membrane technique in therapeutic and diagnostic medical systems. Biocybern Biomed Eng 28:21–33

    Google Scholar 

  • de Lange EC, de Boer BA, Breimer DD (1999) Microdialysis for pharmacokinetic analysis of drug transport to the brain. Adv Drug Deliv Rev 36:211–227

    Article  PubMed  Google Scholar 

  • Dey S, Gunda S, Mitra AK (2004) Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther 311:246–255

    Article  PubMed  CAS  Google Scholar 

  • Dias C, Nashed Y, Atluri H, Mitra A (2002) Ocular penetration of acyclovir and its peptide prodrugs valacyclovir and val-valacyclovir following systemic administration in rabbits: an evaluation using ocular microdialysis and LC-MS. Curr Eye Res 25:243–252

    Article  PubMed  Google Scholar 

  • Dias CS, Mitra AK (2003) Posterior segment ocular pharmacokinetics using microdialysis in a conscious rabbit model. Invest Ophthalmol Vis Sci 44:300–305

    Article  PubMed  Google Scholar 

  • Drusano GL, Liu W, Perkins R, Madu A, Madu C, Mayers M, Miller MH (1995) Determination of robust ocular pharmacokinetic parameters in serum and vitreous humor of albino rabbits following systemic administration of ciprofloxacin from sparse data sets by using IT2S, a population pharmacokinetic modeling program. Antimicrob Agents Chemother 39:1683–1687

    Article  PubMed  CAS  Google Scholar 

  • Duvvuri S, Gandhi MD, Mitra AK (2003) Effect of P-glycoprotein on the ocular disposition of a model substrate, quinidine. Curr Eye Res 27:345–353

    Article  PubMed  Google Scholar 

  • Duvvuri S, Janoria KG, Pal D, Mitra AK (2007) Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d, L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharmacol Ther 23:264–274

    Article  PubMed  CAS  Google Scholar 

  • Duvvuri S, Rittenhouse KD, Mitra AK (2005) Microdialysis assessment of drug delivery systems for vitreoretinal targets. Adv Drug Deliv Rev 57:2080–2091

    Article  PubMed  CAS  Google Scholar 

  • Eller MG, Schoenwald RD, Dixson JA, Segarra T, Barfknecht CF (1985) Topical carbonic anhydrase inhibitors IV: relationship between excised corneal permeability and pharmacokinetic factors. J Pharm Sci 74:525–529

    Article  PubMed  CAS  Google Scholar 

  • Fattal E, Bochot A (2006) Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Adv Drug Deliv Rev 58:1203–1223

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Ling J, Wu X (2011) Study on in vitro microdialysis recovery of Shuanghuanglian. Zhongguo Zhong Yao Za Zhi 36:1951–1954

    PubMed  Google Scholar 

  • Fukuda S, Mikitani M, Ueda T, Inatomi M, Koide R, Kurata N, Uchida E, Yasuhara H, Uchida N, Kanda Y et al (1995) Application of microdialysis for pharmacokinetic study in rabbit anterior chamber. Nihon Ganka Gakkai Zasshi 99:400–405

    PubMed  CAS  Google Scholar 

  • Gunaratna PC, Kissinger PT, Kissinger CB, Gitzen JF (2004) An automated blood sampler for simultaneous sampling of systemic blood and brain microdialysates for drug absorption, distribution, metabolism, and elimination studies. J Pharmacol Toxicol Methods 49:57–64

    Article  PubMed  CAS  Google Scholar 

  • Gunda S, Hariharan S, Mitra AK (2006) Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): in vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits. J Ocul Pharmacol Ther 22:465–476

    Article  PubMed  CAS  Google Scholar 

  • Gunnarson G, Jakobsson AK, Hamberger A, Sjostrand J (1987) Free amino acids in the pre-retinal vitreous space. Effect of high potassium and nipecotic acid. Exp Eye Res 44:235–244

    Article  PubMed  CAS  Google Scholar 

  • Hariharan S, Gunda S, Mishra GP, Pal D, Mitra AK (2009) Enhanced corneal absorption of erythromycin by modulating P-glycoprotein and MRP mediated efflux with corticosteroids. Pharm Res 26:1270–1282

    Article  PubMed  CAS  Google Scholar 

  • Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60:207–225

    Article  PubMed  CAS  Google Scholar 

  • Hosseini H, Nowroozzadeh MH, Salouti R, Nejabat M (2012) Anti-VEGF therapy with bevacizumab for anterior segment eye disease. Cornea 31:322–334

    Article  PubMed  Google Scholar 

  • Hsiao JK, Ball BA, Morrison PF, Mefford IN, Bungay PM (1990) Effects of different semipermeable membranes on in vitro and in vivo performance of microdialysis probes. J Neurochem 54:1449–1452

    Article  PubMed  CAS  Google Scholar 

  • Hughes PM, Krishnamoorthy R, Mitra AK (1996) Vitreous disposition of two acycloguanosine antivirals in the albino and pigmented rabbit models: a novel ocular microdialysis technique. J Ocul Pharmacol Ther 12:209–224

    Article  PubMed  CAS  Google Scholar 

  • Hughes PM, Mitra AK (1993) Effect of acylation on the ocular disposition of acyclovir II: Corneal permeability and anti-HSV 1 activity of 2′-esters in rabbit epithelial keratitis. J Ocul Pharmacol 9:299–309

    Article  PubMed  CAS  Google Scholar 

  • Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG (2005) Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 57:2010–2032

    Article  PubMed  CAS  Google Scholar 

  • Hutchinson PJ, O’Connell MT, Al-Rawi PG, Maskell LB, Kett-White R, Gupta AK, Richards HK, Hutchinson DB, Kirkpatrick PJ, Pickard JD (2000) Clinical cerebral microdialysis: a methodological study. J Neurosurg 93:37–43

    Article  PubMed  CAS  Google Scholar 

  • Kalant H (1958) A microdialysis procedure for extraction and isolation of corticosteroids from peripheral blood plasma. Biochem J 69:99–103

    PubMed  CAS  Google Scholar 

  • Katragadda S, Gunda S, Hariharan S, Mitra AK (2008) Ocular pharmacokinetics of acyclovir amino acid ester prodrugs in the anterior chamber: evaluation of their utility in treating ocular HSV infections. Int J Pharm 359:15–24

    Article  PubMed  CAS  Google Scholar 

  • Kendrick KM (1989) Use of microdialysis in neuroendocrinology. Methods Enzymol 168:182–205

    Article  PubMed  CAS  Google Scholar 

  • Kendrick KM (1990) Microdialysis measurement of in vivo neuropeptide release. J Neurosci Methods 34:35–46

    Article  PubMed  CAS  Google Scholar 

  • Lee VH, Robinson JR (1979) Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci 68:673–684

    Article  PubMed  CAS  Google Scholar 

  • Lehmann A (1989) Effects of microdialysis-perfusion with anisoosmotic media on extracellular amino acids in the rat hippocampus and skeletal muscle. J Neurochem 53:525–535

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Yang XG, Li X, Pan W, Li J (2007) Study on the ocular pharmacokinetics of ion-activated in situ gelling ophthalmic delivery system for gatifloxacin by microdialysis. Drug Dev Ind Pharm 33:1327–1331

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Cortes LF, Pastor-Ramos MT, Ruiz-Valderas R, Cordero E, Uceda-Montanes A, Claro-Cala CM, Lucero-Munoz MJ (2001) Intravitreal pharmacokinetics and retinal concentrations of ganciclovir and foscarnet after intravitreal administration in rabbits. Invest Ophthalmol Vis Sci 42:1024–1028

    PubMed  CAS  Google Scholar 

  • Louzada-Junior P, Dias JJ, Santos WF, Lachat JJ, Bradford HF, Coutinho-Netto J (1992) Glutamate release in experimental ischaemia of the retina: an approach using microdialysis. J Neurochem 59:358–363

    Article  PubMed  CAS  Google Scholar 

  • Macha S, Duvvuri S, Mitra AK (2004) Ocular disposition of novel lipophilic diester prodrugs of ganciclovir following intravitreal administration using microdialysis. Curr Eye Res 28:77–84

    Article  PubMed  CAS  Google Scholar 

  • Macha S, Mitra AK (2001a) Ocular pharmacokinetics in rabbits using a novel dual probe microdialysis technique. Exp Eye Res 72:289–299

    Article  PubMed  CAS  Google Scholar 

  • Macha S, Mitra AK (2001b) Ocular pharmacokinetics of cephalosporins using microdialysis. J Ocul Pharmacol Ther 17:485–498

    Article  PubMed  CAS  Google Scholar 

  • Makoid MC, Robinson JR (1979) Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye. J Pharm Sci 68:435–443

    Article  PubMed  CAS  Google Scholar 

  • Miller MH, Madu A, Samathanam G, Rush D, Madu CN, Mathisson K, Mayers M (1992) Fleroxacin pharmacokinetics in aqueous and vitreous humors determined by using complete concentration-time data from individual rabbits. Antimicrob Agents Chemother 36:32–38

    Article  PubMed  CAS  Google Scholar 

  • Miller SC, Gokhale RD, Patton TF, Himmelstein KJ (1980) Pilocarpine ocular distribution volume. J Pharm Sci 69:615–616

    Article  PubMed  CAS  Google Scholar 

  • Nicholson C, Rice ME (1986) The migration of substances in the neuronal microenvironment. Ann N Y Acad Sci 481:55–71

    Article  PubMed  CAS  Google Scholar 

  • Ohtori R, Sato H, Fukuda S, Ueda T, Koide R, Kanda Y, Kiuchi Y, Oguchi K (1998) Pharmacokinetics of topical beta-adrenergic antagonists in rabbit aqueous humor evaluated with the microdialysis method. Exp Eye Res 66:487–494

    Article  PubMed  CAS  Google Scholar 

  • Palestine AG, Polis MA, De Smet MD, Baird BF, Falloon J, Kovacs JA, Davey RT, Zurlo JJ, Zunich KM, Davis M et al (1991) A randomized, controlled trial of foscarnet in the treatment of cytomegalovirus retinitis in patients with AIDS. Ann Intern Med 115:665–673

    PubMed  CAS  Google Scholar 

  • Pavan PR, Oteiza EE, Hughes BA, Avni A (1994) Exogenous endophthalmitis initially treated without systemic antibiotics. Ophthalmology 101:1289–1296 (discussion 1296–1287)

    Google Scholar 

  • Perkins RJ, Liu W, Drusano G, Madu A, Mayers M, Madu C, Miller MH (1995) Pharmacokinetics of ofloxacin in serum and vitreous humor of albino and pigmented rabbits. Antimicrob Agents Chemother 39:1493–1498

    Article  PubMed  CAS  Google Scholar 

  • Rice ME, Gerhardt GA, Hierl PM, Nagy G, Adams RN (1985) Diffusion coefficients of neurotransmitters and their metabolites in brain extracellular fluid space. Neuroscience 15:891–902

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse KD, Peiffer RL Jr, Pollack GM (1998) Evaluation of microdialysis sampling of aqueous humor for in vivo models of ocular absorption and disposition. J Pharm Biomed Anal 16:951–959

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse KD, Peiffer RL Jr, Pollack GM (1999) Microdialysis evaluation of the ocular pharmacokinetics of propranolol in the conscious rabbit. Pharm Res 16:736–742

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse KD, Peiffer RL Jr, Pollack GM (2000) Assessment of ascorbate ocular disposition in the conscious rabbit: an approach using the microdialysis technique. Curr Eye Res 20:351–360

    Article  PubMed  CAS  Google Scholar 

  • Rittenhouse KD, Pollack GM (2000) Microdialysis and drug delivery to the eye. Adv Drug Deliv Rev 45:229–241

    Article  PubMed  CAS  Google Scholar 

  • Sato H, Fukuda S, Inatomi M, Koide R, Uchida N, Kanda Y, Kiuchi Y, Oguchi K (1996) Pharmacokinetics of norfloxacin and lomefloxacin in aqueous humour analysed by microdialysis. Nihon Ganka Gakkai Zasshi 100:513–519

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Rosenberg B, Marathe VV (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 5:445–479

    PubMed  CAS  Google Scholar 

  • Shippenberg TS, Thompson AC (2001) Overview of microdialysis. Curr Protoc Neurosci Chapter 7, Unit 7 1

    Google Scholar 

  • Sieg JW, Robinson JR (1977) Vehicle effects on ocular drug bioavailability II: evaluation of pilocarpine. J Pharm Sci 66:1222–1228

    Article  PubMed  CAS  Google Scholar 

  • Stempels N, Tassignon MJ, Sarre S (1993) A removable ocular microdialysis system for measuring vitreous biogenic amines. Graefes Arch Clin Exp Ophthalmol 231:651–655

    Article  PubMed  CAS  Google Scholar 

  • Tang-Liu DD, Liu SS, Weinkam RJ (1984) Ocular and systemic bioavailability of ophthalmic flurbiprofen. J Pharmacokinet Biopharm 12:611–626

    PubMed  CAS  Google Scholar 

  • Thompson AC, Justice JB Jr, McDonald JK (1995) Quantitative microdialysis of neuropeptide Y. J Neurosci Methods 60:189–198

    Article  PubMed  CAS  Google Scholar 

  • Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG (2011) Drug delivery to the posterior segment of the eye. Drug Discov Today 16:270–277

    Article  PubMed  CAS  Google Scholar 

  • Tirucherai GS, Dias C, Mitra AK (2002) Corneal permeation of ganciclovir: mechanism of ganciclovir permeation enhancement by acyl ester prodrug design. J Ocul Pharmacol Ther 18:535–548

    Article  PubMed  CAS  Google Scholar 

  • Torto N, Bang J, Richardson S, Nilsson GS, Gorton L, Laurell T, Marko-Varga G (1998) Optimal membrane choice for microdialysis sampling of oligosaccharides. J Chromatogr A 806:265–278

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1991) Microdialysis–principles and applications for studies in animals and man. J Intern Med 230:365–373

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30:44–55

    PubMed  CAS  Google Scholar 

  • Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Vaishya R, Ananthula HK, and Mitra A (2011) Microdialysis for vitreal pharmacokinetics. In: Kompella UB, Edelhauser HF (ed) Drug product development for the back of the eye AAPS Advances in pharmaceutical sciences series, vol 2. Springer, New York, pp 21–45

    Google Scholar 

  • Van Wylen DG, Park TS, Rubio R, Berne RM (1986) Increases in cerebral interstitial fluid adenosine concentration during hypoxia, local potassium infusion, and ischemia. J Cereb Blood Flow Metab 6:522–528

    Article  PubMed  Google Scholar 

  • Waga J, Ehinger B (1995) Passage of drugs through different intraocular microdialysis membranes. Graefes Arch Clin Exp Ophthalmol 233:31–37

    Article  PubMed  CAS  Google Scholar 

  • Waga J, Ehinger B (1997) Intravitreal concentrations of some drugs administered with microdialysis. Acta Ophthalmol Scand 75:36–40

    Article  PubMed  CAS  Google Scholar 

  • Waga J, Ohta A, Ehinger B (1991) Intraocular microdialysis with permanently implanted probes in rabbit. Acta Ophthalmol (Copenh) 69:618–624

    Article  CAS  Google Scholar 

  • Wages SA, Church WH, Justice JB Jr (1986) Sampling considerations for on-line microbore liquid chromatography of brain dialysate. Anal Chem 58:1649–1656

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Stenken JA (2006) Microdialysis sampling membrane performance during in vitro macromolecule collection. Anal Chem 78:6026–6034

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Wong SL, Sawchuk RJ (1993) Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm Res 10:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Wei G, Ding PT, Zheng JM, Lu WY (2006) Pharmacokinetics of timolol in aqueous humor sampled by microdialysis after topical administration of thermosetting gels. Biomed Chromatogr 20:67–71

    Article  PubMed  CAS  Google Scholar 

  • Winter CD, Iannotti F, Pringle AK, Trikkas C, Clough GF, Church MK (2002) A microdialysis method for the recovery of IL-1beta, IL-6 and nerve growth factor from human brain in vivo. J Neurosci Methods 119:45–50

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zhou L, Wang X, Wang L (2005) Study of the relative recovery of sinomenine microdialysis system and it’s influential factor. Zhong Yao Cai 28:1064–1067

    PubMed  Google Scholar 

Download references

Acknowledgments

Research performed in Dr. Ashim K. Mitra’s laboratory was supported by National Institute of Health (NIH) Grants R01EY09171 and R01 EY 10659.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim K. Mitra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Patel, M.R., Mandava, N.K., Mitra, A.K. (2013). Microdialysis in Ocular Drug Development. In: Müller, M. (eds) Microdialysis in Drug Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4815-0_11

Download citation

Publish with us

Policies and ethics