Skip to main content

Jatropha and Phytoremediation of Metal Contaminated Land

  • Chapter
  • First Online:
Jatropha, Challenges for a New Energy Crop

Abstract

Wastelands are the degraded and unutilized lands due to different constraints. The metal contaminated lands are ecologically unstable and are unsuitable for cultivation due to decline in their physico-chemical properties, biological quality and productivity. Phytoremediation is an emerging green technology which is based on potential of plants/trees to remove pollutants from contaminated soils/ecosystem. J. curcas has potential for phytoremediation of soil contaminated with heavy metals, salts and hydrocarbons, etc. Phytoremediation of metal contaminated soil with non-edible plants like J. curcas is suitable for its integration in different agroforestry systems. Besides having phytoremediation capabilities, J.curcas produces seeds for bio-diesel and its domestication can provide means of ecofriendly, socioeconomic management involving income generation, climate change mitigation, soft farming and sustainable development of reclaimed sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Srivastava P, Jamil S, Singh N (2010) Revisited Jatropha curcas as an oil plant of multiple benefits: critical research needs and prospects for the future. Environ Sci Pollut Res 18:127–131

    Article  Google Scholar 

  • Agamuthu P, Abioye OP, Aziz AA (2010) Phytoremediation of soil contaminated with used lubricating oil using Jatropha curcas. J Hazard Mater 179:891–894

    Article  PubMed  CAS  Google Scholar 

  • Ahmadpour P, Nawi AM, Abdu A, Abdul-Hamid H, Singh DK, Hassan A et al (2010) Uptake of heavy metals by Jatropha curcas L. planted in soils containing sewage sludge. Am J Appl Sci 7:1291–1299

    Article  CAS  Google Scholar 

  • Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  • Baker AJM (1981) Accumulation and excluders strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    Article  CAS  Google Scholar 

  • Becker K, Makkar HPS (1998) Toxic effects of phorbol esters in carp (Cyprinus carpio L.). Vet Hum Toxicol 40:82–86

    PubMed  CAS  Google Scholar 

  • Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 71–88

    Google Scholar 

  • Biswas PK, Pohit S, Kumar R (2010) Biodiesel from Jatropha: can India meet the 20% blending target? Energy Policy 38:1477–1484

    Article  Google Scholar 

  • Cano-Asseleih LM, Plumbly RA, Hylands PJ (1989) Purification and partial characterization of the hemagglutination from seeds of Jatropha curcas. J Food Biochem 13:1–20

    Article  Google Scholar 

  • Chehregani A, Malayeri BE (2007) Removal of heavy metals by native accumulator plants. Int J Agric Biol 9:462–465

    CAS  Google Scholar 

  • Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants, vol 664, ACS Symposium series. American Chemical Society, Washington, DC, pp 2–19

    Chapter  Google Scholar 

  • Dagar JC, Tomar OS, Kumar Y, Bhagwan H, Yadav RK, Tyagi NK (2006) Performance of some under-explored crops under saline irrigation in a semiarid climate in Northwest India. Land Degradation Dev 17:285–299

    Article  Google Scholar 

  • Dushenkov V, Motto H, Raskin I, Kumar NPBA (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 30:1239–1245

    Article  Google Scholar 

  • Ensley BD (2000) Rational for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean- up the environment. Wiley, New York, pp 3–12

    Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008a) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54:374–381

    CAS  Google Scholar 

  • Gao S, Yan R, Cao M, Yang W, Wang S, Chen F (2008b) Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant Soil Environ 54:117–122

    CAS  Google Scholar 

  • Gao S, Ou-yang C, Tang L, Zhu J, Xu Y, Wang S et al (2010) Growth and antioxidant responses in Jatropha curcas seedlings exposed to mercury toxicity. J Hazard Mater 182:591–597

    Article  PubMed  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  PubMed  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  • Gratao PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the clean up of toxic metals in the environment. Braz J Plant Physiol 17:53–64

    Article  CAS  Google Scholar 

  • Gubitz GM, Mittelbech M, Trabi M (1999) Exploitation of tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82

    Article  CAS  Google Scholar 

  • Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol 125:164–167

    Article  PubMed  CAS  Google Scholar 

  • Gunaseelan VN (2009) Biomass estimates, characteristics, biochemical methane potential, kinetics and energy flow from Jatropha curcas on dry lands. Biomass Bioenergy 33:589–596

    Article  Google Scholar 

  • Hartman WJ Jr (1975) An evaluation of land treatment of municipal wastewater and physical siting of facility installations. Washington DC, US Department of Army

    Google Scholar 

  • Jain S, Sharma MP (2010) Prospects of biodiesel from Jatropha in India: a review. Renew Sust Energy Rev 1:763–771

    Article  Google Scholar 

  • Jamil S, Abhilash PC, Singha N, Sharma PN (2009) Jatropha curcas: a potential crop for phytoremediation of coal fly ash. J Hazard Mater 172:269–275

    Article  PubMed  CAS  Google Scholar 

  • Janaun J, Ellis N (2010) Perspectives on biodiesel as a sustainable fuel. Renew Sust Energy Rev 14:1312–1320

    Article  CAS  Google Scholar 

  • Jongschaap REE, Corré WJ, Bindraben PS, Brandenburg WA (2010) Claims and Facts on Jatropha curcas L.; global Jatropha curcas evaluation, breeding and propagation programme. Plant Research International B.V., Wageningen Stichting Het Groene Woudt, Laren. Report 158

    Google Scholar 

  • Juwarkar AA, Yadav SK, Thawale PR, Kumar P, Singh SK (2008) Effect of biosludge and biofertilizer amendment on growth of Jatropha curcas in heavy metal contaminated soils. Environ Monit Assess 145:7–15

    Article  PubMed  CAS  Google Scholar 

  • Juwarkar AA, Yadav SK, Thawale PR, Kumar P, Singh SK, Chakrabarti T (2009) Developmental strategies for sustainable ecosystem on mine spoil dumps: a case of study. Environ Monit Assess 157:471–481

    Article  PubMed  CAS  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin L (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Industrial Crops and Products, 28:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kumar GP, Yadav SK, Singh SK, Thawale PR, Juwarkar AA (2008a) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter—a greenhouse study. Bioresour Technol 99:2078–2082

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Pamidimarri SDVN, Kaur M, Boricha G, Reddy MP (2008b) Effects of NaCl on growth, ion accumulation, protein, proline contents and antioxidant enzymes activity in callus cultures of Jatropha curcas. Biologia 63:378–382

    Article  CAS  Google Scholar 

  • Lim S, Teong LK (2010) Recent trends, opportunities and challenges of biodiesel in Malaysia: an overview. Renew Sust Energy Rev 14:938–954

    Article  CAS  Google Scholar 

  • Mangkoedihardjo S, Surahmaida A (2008) Jatropha curcas L. for phytoremediation of lead and cadmium polluted soil. World Appl Sci J 4:519–522

    Google Scholar 

  • Mangkoedihardjo S, Ratnawati R, Alfianti N (2008) Phytoremediation of hexavalent chromium polluted soil using Pterocarpus indicus and Jatropha curcas L. World Appl Sci J 4:338–342

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19:1–15

    Article  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Parvaiz A, Satyawati S (2008) Salt stress and phytobiochemical responses of plants—a review. Plant Soil Environ 54:89–99

    CAS  Google Scholar 

  • Prasad MNV, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Elec J Biotech 6:285–321

    Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  PubMed  CAS  Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley D, Chet I et al (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Blaylock M, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Singh SK (2007) Global agriculture information network (GAIN), Report IN7047. India Biofuels Annual. pp 5–12

    Google Scholar 

  • Siriwardhana M, Opathella GKC, Jha MK (2009) Bio-diesel: initiatives, potential and prospects in Thailand: a review. Energy Policy 37:554–559

    Article  Google Scholar 

  • Smith RAH, Bradshaw AD (1972) Stabilization of toxic mine wastes by use of tolerant plant populations. Trans Instr Mining Metallurg 81:230–237

    Google Scholar 

  • Sopper WE (1993) Municipal sludge use in land reclamation. Lewis and CRC Press, Berlin

    Google Scholar 

  • Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L: Impact of dairy sludge and biofertilizer. Bioresour Technol 100:4616–4622

    Article  PubMed  CAS  Google Scholar 

  • Yadav SK, Dhote M, Kumar P, Sharma J, Chakrabarti T, Juwarkar AA (2010) Differential antioxidative enzyme responses of Jatropha curcas L. to chromium stress. J Hazard Mater 180:609–615

    Article  PubMed  CAS  Google Scholar 

  • Ye M, Li C, Francis G, Makkar HPS (2009) Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agroforestry Syst 76:487–497

    Article  Google Scholar 

  • Zhang FL, Niu B, Wang YC, Chen F, Wang SH, Xu Y et al (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaptation to environmental stress. Plant Sci 174:510–518

    Article  CAS  Google Scholar 

  • Zhou A, Thomson E (2009) The development of biofuels in Asia. Appl Energy 86:11–20

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha A. Juwarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Juwarkar, A.A., Yadav, S.K., Kumar, G.P. (2012). Jatropha and Phytoremediation of Metal Contaminated Land. In: Carels, N., Sujatha, M., Bahadur, B. (eds) Jatropha, Challenges for a New Energy Crop. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4806-8_23

Download citation

Publish with us

Policies and ethics