Skip to main content

Phytochemicals in Jatropha Seeds and Potential Agro-Pharmaceutical Applications of Jatropha curcas Phorbol Esters

  • Chapter
  • First Online:
  • 1707 Accesses

Abstract

Jatropha curcas (Euphorbiaceae) is a promising energy plant since its seeds are rich in oil (23–37 %) and the biodiesel produced on esterification of the oil meets the European and American biodiesel standards. However, the oil and the residues left after extraction of the oil (seed cake/kernel meal) are non-edible due to the presence of antinutritional and toxic compounds. In this review, information on antinutritional and toxic compounds present in seeds of toxic and non-toxic genotypes of J. curcas and of J. platyphylla are discussed with a view to underpin the main toxin and to enable future developments on detoxification of the seed cake and kernel meal for use as livestock and aquafeeds. In addition, the potential of using phorbol esters—a group of diterpene phytochemicals present in high amounts in the seed oil of the toxic J. curcas for agro-pharmaceutical applications is analyzed. Use of these co-products would contribute towards enhancing sustainability of the J. curcas based biodiesel industry, which is expected to grow at a fast pace in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adam SE, Magzoub M (1975) Toxicity of Jatropha curcas for goats. Toxicology 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Aderibigbe AO, Johnson COLE, Makkar HPS, Becker K, Foidl N (1997) Chemical composition and effect of heat on organic matter and nitrogen degradability and some anti-nutritional components of Jatropha meal. Anim Feed Sci Technol 67:223–243

    Article  CAS  Google Scholar 

  • Agbo NW (2008) Oilseed meals as dietary protein sources for Juvenile Nile tilapia (Oreochromis niloticus L.). Ph.D. thesis. University of Stirling, Scotland

    Google Scholar 

  • Ames BN, Profet M, Gold LS (1990) Nature’s chemicals and synthetic chemicals: comparative toxicology. Proc Natl Acad Sci USA 87:7782–7786

    Article  PubMed  CAS  Google Scholar 

  • Aregheore EM, Becker K, Makkar HPS (2003) Detoxification of a toxic variety of Jatropha curcas using heat and chemical treatments, and preliminary nutritional evaluation with rats. S Pac J Nat Sci 21:50–56

    Google Scholar 

  • Barbieri L, Battelli M, Stripe F (1993) Ribosome-inactivating protein from plants. Biochim Biophys Acta 1154:237–282

    Article  PubMed  CAS  Google Scholar 

  • Becker K, Makkar HPS (1998) Effects of phorbol esters in carp (Cyprinus carpio L.). Vet Hum Toxicol 40:82–86

    PubMed  CAS  Google Scholar 

  • Bedford MR (2000) Exogenous enzymes in monogastric nutrition—their current value and future benefits. Anim Feed Sci Technol 86:1–13

    Article  CAS  Google Scholar 

  • Bedford MR, Schulze H (1998) Exogenous enzymes for pigs and poultry. Nutr Res Rev 11:91–114

    Article  PubMed  CAS  Google Scholar 

  • Bertolini TM, Giorgione J, Harvey DF, Newton AC (2003) Protein kinase C translocation by modified phorbol esters with functionalized lipophilic regions. J Org Chem 68:5028–5036

    Article  PubMed  CAS  Google Scholar 

  • Beutler JA, Ada AB, McCloud TG, Cragg GM (1989) Distribution of phorbol ester bioactivity in the Euphorbiaceae. Phytother Res 3:188–192

    Article  CAS  Google Scholar 

  • Bohm R, Flaschentrager B, Lendle L (1935) The activity of substances from Croton oil. Arch Exp Pathol Pharmacol 177:212

    CAS  Google Scholar 

  • Butler L, Rogler J, Mehansho H, Carlson D (1986) Dietary effects of tannins. In: Cody V, Middleton E, Harborne JB (eds) Plant flavonoids in biology and medicine: biochemical, pharmacological, and structure activity relationships. A. R. Liss, New York, pp 141–157

    Google Scholar 

  • Cairnes DA, Mirvish SS, Wallcave L, Nagel DL, Smith JW (1981) A rapid method for isolating phorbol from croton oil. Cancer Lett 14:85–91

    Article  PubMed  CAS  Google Scholar 

  • Clemens MJ, Trayner I, Menaya J (1992) The role of protein kinase C isoenzymes in the regulation of cell proliferation and differentiation. J Cell Sci 103:881–887

    PubMed  CAS  Google Scholar 

  • Devappa RK (2012) Isolation, characterization and potential agro-pharmaceutical application of phorbol esters from Jatropha oil. Ph.D. thesis, University of Hohenheim

    Google Scholar 

  • Devappa RK, Maes J, Makkar HPS, Greyt WD, Becker K (2009) Isolation of phorbol esters from Jatropha curcas oil and quality of produced biodiesel. 2nd International Congress on Biodiesel, The Science and the Technologies, Munich

    Google Scholar 

  • Devappa RK, Makkar HP, Becker K (2010a) Biodegradation of Jatropha curcas phorbol esters in soil. J Sci Food Agric 90:2090–2097

    PubMed  CAS  Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2010b) Quality of biodiesel prepared from phorbol ester extracted Jatropha curcas oil. J Am Oil Chem Soc 87:697–704

    Article  CAS  Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2010c) Jatropha diterpenes: a review. J Am Oil Chem 88:301–322

    Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2010d) Jatropha toxicity—a review. J Toxicol Environ Health B Crit Rev 13:476–507

    Article  PubMed  CAS  Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2010e) Optimization of conditions for the extraction of phorbol esters from Jatropha oil. Biomass Bioenergy 34:1125–1133

    Article  CAS  Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2010f) Nutritional, biochemical, and pharmaceutical potential of proteins and peptides from Jatropha: review. J Agric Food Chem 58:6543–6555

    Article  PubMed  CAS  Google Scholar 

  • Devappa RK, Roach J, Makkar HPS, Becker K (2011) In vitro toxicity of Jatropha curcas oil phorbol esters. In vitro Biology Meeting, Raleigh

    Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2012a) In vitro tumour promotion studies on Jatropha curcas phorbol esters. Mutat Res-Gen Tox En (in press)

    Google Scholar 

  • Devappa RK, Angulo-Escalante MA, Makkar HPS, Becker K (2012b) Potential of using phorbol esters as an insecticide in agricultural applications. Ind Crop Prod 38:50–53

    Article  CAS  Google Scholar 

  • Devappa RK, Makkar HPS, Becker K (2012c) Localisation of antinutrients and qualitative identification of toxic components in Jatropha curcas seed. J Sci Food Agric 92:1519–1525

    Google Scholar 

  • Devappa RK, Malakar CC, Makkar HPS, Becker K (2012d) Pharmaceutical potential of phorbol esters from Jatropha curcas oil. J Nat Prod Res (in press)

    Google Scholar 

  • Duffus CM, Duffus JH (1991) Introduction and overview. In: D’Mello FJP, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. Royal Society of Chemistry, Cambridge, pp 1–21

    Chapter  Google Scholar 

  • El-Badwi SM, Adam SE (1992) Toxic effects of low levels of dietary Jatropha curcas seed on brown Hisex chicks. Vet Hum Toxicol 34:112–115

    PubMed  CAS  Google Scholar 

  • Endo Y, Tsurugi K (1988) The RNA N-glycosidase activity of ricin A-chain: the characteristics of the enzymatic activity of ricin A-chain with ribosomes and with rRNA. J Biol Chem 263:8735–8739

    PubMed  CAS  Google Scholar 

  • European Food Safety Authority (2009) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on saponins in Madhuca longifolia L. as undesirable substances in animal feed. EFSA J 979:1–36

    Google Scholar 

  • Freeman BC, Beattie GA (2008) An overview of plant defenses against pathogens and herbivores. Plant Health Instructor. doi:10.1094/PHI-I-2008-0226-01

  • Gandhi VM, Cherian KM, Mulky MJ (1995) Toxicological studies on ratanjyot oil. Food Chem Toxicol 33:39–42

    Article  PubMed  CAS  Google Scholar 

  • Goel G, Makkar HPS, Francis G, Becker K (2007) Phorbol esters: structure, biological activity and toxicity in animals. Int J Toxicol 26:279–288

    Article  PubMed  CAS  Google Scholar 

  • Haas W (2003) Isolation and characterization of the phorbol esters from Jatropha curcas seed oil. Ph.D. thesis, Karl-Franzens-Universitat Graz, Germany

    Google Scholar 

  • Haas W, Sterk H, Mittlebach M (2002) Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J Nat Prod 65:1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Hertrampf JW, Piedad-Pascual F (2000) Handbook on ingredients for aquaculture feeds. Kluwer, Dordrecht

    Book  Google Scholar 

  • Huang MX, Hou P, Wei EQ, Xu Y, Chen F (2008) A ribosome inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Regul 54:115–123

    Article  CAS  Google Scholar 

  • Jiang HM, Yang S, Hu DY, Xue W, Song BA (2007) Research progress in pesticidal and medicinal activity of curcin of Jatropha curcas. Agrochemicals 46:10–13

    CAS  Google Scholar 

  • Jin-ping Z, Xia-bo Q, Ying X, Fang C (2005) Isolation and analysis on the genomic DNA sequence of members of a curcin gene-family encoding a ribosome-inactivating protein from Jatropha curcas. Sichuan Daxue Xuebao (Ziran Kexueban) 42:1042–1046

    Google Scholar 

  • Kinzel V, Richards J, Goerttler K, Loehrke H, Furstenberger G, Marks F (1984) Interaction of phorbol derivatives with replicating cells. IARC Sci Publ 56:253–264

    PubMed  CAS  Google Scholar 

  • Knudsen KEB (1997) Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Sci Technol 67:319–338

    Article  Google Scholar 

  • Kumar V, Makkar HP, Devappa RK, Becker K (2011a) Isolation of phytate from Jatropha curcas kernel meal and effects of isolated phytate on growth, digestive physiology and metabolic changes in Nile tilapia (Oreochromis niloticus L.). Food Chem Toxicol 49:2144–2156

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Makkar HPS, Becker K (2011b) Detoxified Jatropha curcas kernel meal as a dietary protein source: growth performance, nutrient utilization and digestive enzymes in common carp (Cyprinus carpio L.) fingerlings. Aquacult Nutr 17:313–326

    Article  CAS  Google Scholar 

  • Li CY, Devappa RK, Liu JX, Makkar HPS, Becker K (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48:620–625

    Article  PubMed  CAS  Google Scholar 

  • Liener IE (1989) Antinutritional factors in legume seeds: state of the art. In: Huisman J, Van der Poel TFB, Liener IE (eds) Recent advances of research in antinutritional factors in legume seeds. Pudoc, Wageningen, pp 6–14

    Google Scholar 

  • Liener IE, Kakade ML (1980) Protease inhibitors. In: Anonymous (ed) Toxic constituents of plant foodstuffs. Academic, New York, pp 7–71

    Google Scholar 

  • Lin J, Chen Y, Xu Y, Yan F, Tang L, Chen F (2003a) Cloning and expression of curcin, a ribosome-inactivating protein from the seeds of Jatropha curcas. Acta Bot Sin 45:858–863

    CAS  Google Scholar 

  • Lin J, Yan F, Tang L, Chen F (2003b) Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 24:241–246

    PubMed  CAS  Google Scholar 

  • Lin J, Zhou X, Wang J, Jiang P, Tang K (2010) Purification and characterization of curcin, a toxic lectin from the seed of Jatropha curcas. Prep Biochem Biotechnol 40:107–118

    Article  PubMed  CAS  Google Scholar 

  • Makkar HPS (1993) Antinutritional factors in foods for livestock. In: Gill M, Owen E, Pollot GE, Lawrence TLJ (eds) Animal production in developing countries. British Society of Animal Production, Edinburgh, pp 69–85

    Google Scholar 

  • Makkar HPS, Becker K (1999) Nutritional studies on rats and fish carp (Cyprinus carpio) fed diets containing unheated and heated Jatropha curcas meal of a nontoxic provenance. Plant Foods Hum Nutr 53:182–292

    Article  Google Scholar 

  • Makkar HPS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added co-products. Eur J lipid Sci Technol 111:773–787

    Article  CAS  Google Scholar 

  • Makkar HPS, Becker K (2010) Method for detoxifying plant constituents. WO/2010/092143

    Google Scholar 

  • Makkar HPS, Becker K, Sporer F, Wink M (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agric Food Chem 45:3152–3157

    Article  CAS  Google Scholar 

  • Makkar HPS, Aderibigbe AO, Becker K (1998a) Comparative evaluation of nontoxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215

    Article  CAS  Google Scholar 

  • Makkar HPS, Becker K, Schmook B (1998b) Edible provenances of Jatropha curcas from Quintana Roo state of Mexico and effect of roasting on antinutrient and toxic factors in seeds. Plant Foods Hum Nutr 52:31–36

    Article  PubMed  CAS  Google Scholar 

  • Makkar HPS, Francis G, Becker K (2007) Bioactivity of phytochemicals in some lesser known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1:1371–1391

    Article  PubMed  CAS  Google Scholar 

  • Makkar HPS, Kumar V, Karaj S, Kratzeisen M, Tipraqsa P, Muller J, et al (2009a) Sustainable land development and ecosystem conservation through enhancing economic viability of the Jatropha curcas based biodiesel production chain using a bio-refinery concept. In: ERSEC International Conference; Beijing

    Google Scholar 

  • Makkar HPS, Maes J, De Greyt W, Becker K (2009b) Removal and degradation of phorbol esters during pre-treatment and transesterification of Jatropha curcas oil. J Amer Oil Chem Soc 86:173–181

    Article  CAS  Google Scholar 

  • Makkar HPS, Kumar V, Oyeleye OO, Akinleye AO, Angulo-Escalante MA, Becker K (2011) Jatropha platyphylla, a new nontoxic Jatropha species: physical properties and chemical constituents including toxic and antinutritional factors of seeds. Food Chem 125:63–71

    Article  CAS  Google Scholar 

  • Makkar HPS, Kumar V, Becker K (2012) Use of detoxified Jatropha kernel meal and protein isolate in diets of farm animals. In: Makkar HPS (ed) Opportunities and challenges in utilization of co-products of the biofuel industry as livestock feed. FAO, Rome

    Google Scholar 

  • McDaniel J, Freking B (2006) Chap. 9. Goat nutrition, Oklahoma State University. http://meatgoat.okstate.edu/oklahoma-basic-meat-goat-manual-1/Chapter%209%20-%20Nutrition.pdf

  • McDonald P, Edwards RA, Greenhaugh JF (1995) Animal nutrition, 5th edn. Longman Group, London

    Google Scholar 

  • Nishizuka Y (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258:607–614

    Article  PubMed  CAS  Google Scholar 

  • Norton G (1991) Proteinase inhibitors. In: D’Mello FJP, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. Royal Society of Chemistry, Cambridge, pp 68–106

    Chapter  Google Scholar 

  • Popluechai S, Breviario D, Mulpuri S, Makkar HPS, Raorane M, Reddy AR et al (2009) Narrow genetic and apparent phenetic diversity in Jatropha curcas: initial success with generating low phorbol ester interspecific hybrids. http://hdl.handle.net/10101/npre.2009.2782.1

  • Qin X, Zheng X, Shao C, Gao J, Jiang L, Zhu X et al (2009) Stress-induced curcin-L promoter in leaves of Jatropha curcas L. and characterization in transgenic tobacco. Planta 230:387–395

    Article  PubMed  CAS  Google Scholar 

  • Richardson NL, Higgs DA, Beames RM, McBride JR (1985) Influence of dietary calcium, phosphorous, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile Chinook salmon Oncorhynchus tshawytscha. J Nutr 115:553–567

    PubMed  CAS  Google Scholar 

  • Roach JS, Devappa RK, Makkar PS, Becker K (2012) Isolation, stability and bioactivity of Jatropha curcas phorbol esters. Fitoterapia 83:586–592

    Google Scholar 

  • Sen S, Makkar HPS, Becker K (1998) Alfalfa saponins and their implication in animal nutrition. J Agric Food Chem 46:131–140

    Article  PubMed  CAS  Google Scholar 

  • Silinsky EM, Searl TJ (2003) Phorbol esters and neurotransmitter release; more than just protein kinase C? Br J Pharmacol 138:1191–1201

    Article  PubMed  CAS  Google Scholar 

  • Stripe F, Pession-Brizzi A, Lorenzoni E, Strocchi P, Montanaro L, Sperti S (1976) Studies on the proteins from the seeds of Croton tiglium and of Jatropha curcas. Biochem J 156:1–6

    Google Scholar 

  • Vasconcelos IM, Oliveira JTA (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403

    Article  PubMed  CAS  Google Scholar 

  • Wei Q, Huang MX, Xu Y, Zhang XS, Chen F (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:351–357

    Article  CAS  Google Scholar 

  • Weinstein IB, Lee LS, Fisher PB, Mufson A, Yamasaki H (1979) Action of phorbol esters in cell culture: mimicry of transformation, altered differentiation, and effects on cell membranes. J Supramol Struct 12:195–208

    Article  PubMed  CAS  Google Scholar 

  • Wender PA, Kirschberg TA, Williams PD, Bastiaans HMM, Irie K (1999) A new class of simplified phorbol ester analogues: synthesis and binding to PKC and ηPKC-C1B (ηPKC-CRD2). Org Lett 1:1009–1012

    Article  PubMed  CAS  Google Scholar 

  • Wender PA, Kee JM, Warrington JM (2008) Practical synthesis of prostratin, DPP, and their analogs, adjuvant leads against latent HIV. Science 320:649–652

    Article  PubMed  CAS  Google Scholar 

  • Wender PA, Warrington JM, Kee J (2009) Process to produce prostratin and structural or functional analogs thereof. US Patent US 2009/0187046

    Google Scholar 

  • Wink M, Koschmieder C, Sauerweien M, Sporer F (1997) Phorbol esters of Jatropha curcas—biological activities and potential applications. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuel and industrial products from Jatropha curcas. Dbv-Verlag fiir die Technische Universitat Graz, Germany, pp 160–166

    Google Scholar 

  • Xu R, Zhao W, Jiang C (2009) Ester prodrugs of prostratin and related phorbol compounds. US Patent 2,009,016,358

    Google Scholar 

Download references

Acknowledgement

Authors are grateful to the Bundesministerium für Bildung und Forschung (BMBF), Berlin, Germany for the financial assistance provided for the research work. The technical assistance of Mr. Vikas Kumar, Mr. Herrmann Baumgartner, Mrs. Beatrix Fischer and Ms. Saskia Pfeffer is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder P. S. Makkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Devappa, R.K., Makkar, H.P.S., Becker, K. (2012). Phytochemicals in Jatropha Seeds and Potential Agro-Pharmaceutical Applications of Jatropha curcas Phorbol Esters. In: Carels, N., Sujatha, M., Bahadur, B. (eds) Jatropha, Challenges for a New Energy Crop. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4806-8_21

Download citation

Publish with us

Policies and ethics