Skip to main content

Guidance of Visual Search by Memory and Knowledge

  • Chapter
  • First Online:
The Influence of Attention, Learning, and Motivation on Visual Search

Part of the book series: Nebraska Symposium on Motivation ((NSM))

Abstract

To behave intelligently in the world, humans must be able to find objects efficiently within the complex environments they inhabit. A growing proportion of the literature on visual search is devoted to understanding this type of natural search. In the present chapter, I review the literature on visual search through natural scenes, focusing on the role of memory and knowledge in guiding attention to task-relevant objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Smith and Henderson (2009) use the term “facilitation of return” to refer to the finding that return saccades are observed more frequently than expected by chance. Dodd et al. (2009) use “facilitation of return” to refer to the finding that, in non-search tasks, saccades are generated more quickly to abrupt onsets at previously fixated locations than at new locations.

References

  • Averbach, E., & Coriell, A. S. (1961). Short-term memory in vision. Bell System Technical Journal, 40(1), 309–328.

    Google Scholar 

  • Ballard, D. H., Hayhoe, M. M., & Pelz, J. B. (1995). Memory representations in natural tasks. Journal of Cognitive Neuroscience, 7(1), 66–80. doi:10.1162/jocn.1995.7.1.66.

    Article  Google Scholar 

  • Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20(4), 723–767.

    PubMed  Google Scholar 

  • Beck, V. M., Hollingworth, A., & Luck, S. J. (2012). Simultaneous control of attention by multiple working memory representations. Psychological Science, 23(8), 887–898. doi: 10.1177/0956797612439068.

    Google Scholar 

  • Becker, M. W., & Rasmussen, I. P. (2008). Guidance of attention to objects and locations by long-term memory of natural scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(6), 1325–1338. doi:10.1037/a0013650.

    Article  PubMed  Google Scholar 

  • Berlucchi, G. (2006). Inhibition of return: A phenomenon in search of a mechanism and a better name. Cognitive Neuropsychology, 23(7), 1065–1074. doi:10.1080/02643290600588426.

    Article  PubMed  Google Scholar 

  • Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and judging objects undergoing relational violations. Cognitive Psychology, 14(2), 143–177. doi:10.1016/0010-0285(82)90007-X.

    Article  PubMed  Google Scholar 

  • Brady, T. F., & Chun, M. M. (2007). Spatial constraints on learning in visual search: Modeling contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 798–815. doi:10.1037/0096-1523.33.4.798.

    Article  PubMed  Google Scholar 

  • Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14325–14329. doi:10.1073/pnas.0803390105.

    Article  PubMed  Google Scholar 

  • Bravo, M. J., & Farid, H. (2009). The specificity of the search template. Journal of Vision, 9(1), 34, 31–39. doi:10.1167/9.1.34.

    Article  Google Scholar 

  • Bravo, M. J., & Farid, H. (2012). Task demands determine the specificity of the search template. Attention, Perception, & Psychophysics, 74(1), 124–131. doi:10.3758/s13414-011-0224-5.

    Article  Google Scholar 

  • Brockmole, J. R., Castelhano, M. S., & Henderson, J. M. (2006). Contextual cueing in naturalistic scenes: Global and local contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 699–706. doi:10.1037/0278–7393.32.4.699.

    Article  PubMed  Google Scholar 

  • Brockmole, J. R., & Henderson, J. M. (2006a). Recognition and attention guidance during contextual cueing in real-world scenes: Evidence from eye movements. Quarterly Journal of Experimental Psychology, 59(7), 1177–1187 (2006a). doi:10.1080/17470210600665996.

    Article  Google Scholar 

  • Brockmole, J. R., & Henderson, J. M. (2006b). Using real-world scenes as contextual cues for search. Visual Cognition, 13(1), 99–108 (2006b). doi:10.1080/13506280500165188.

    Article  Google Scholar 

  • Brooks, D. I., Rasmussen, I. P., & Hollingworth, A. (2010). The nesting of search contexts within natural scenes: Evidence from contextual cuing. Journal of Experimental Psychology: Human Perception and Performance, 36(6), 1406–1418. doi:10.1037/a0019257.

    Article  PubMed  Google Scholar 

  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547. doi:10.1037/0033–295X.97.4.523.

    Article  PubMed  Google Scholar 

  • Bundesen, C., Habekost, T., & Kyllingsbaek, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112(2), 291–328. doi:10.1037/0033–295x.112.2.291.

    Article  PubMed  Google Scholar 

  • Castel, A. D., Pratt, J., & Craik, F. I. M. (2003). The role of spatial working memory in inhibition of return: Evidence from divided attention tasks. Perception & Psychophysics, 65(6), 970–981. doi:10.3758/BF03194827.

    Article  Google Scholar 

  • Castelhano, M. S., & Heaven, C. (2010). The relative contribution of scene context and target features to visual search in scenes. Attention, Perception, & Psychophysics, 72(5), 1283–1297. doi:10.3758/app.72.5.1283.

    Article  Google Scholar 

  • Castelhano, M. S., & Heaven, C. (2011). Scene context influences without scene gist: Eye movements guided by spatial associations in visual search. Psychonomic Bulletin & Review, 18(5), 890–896. doi:10.3758/s13423–011-0107–8.

    Article  Google Scholar 

  • Castelhano, M. S., & Henderson, J. M. (2005). Incidental visual memory for objects in scenes. Visual Cognition, 12(6), 1017–1040. doi:10.1080/13506280444000634.

    Article  Google Scholar 

  • Castelhano, M. S., & Henderson, J. M. (2007). Initial scene representations facilitate eye movement guidance in visual search. Journal of Experimental Psychology: Human Perception and Performance, 33(4), 753–763. doi:10.1037/0096–1523.33.4.753.

    Article  PubMed  Google Scholar 

  • Chun, M. M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170–178. doi:10.1016/S1364–6613(00)01476–5.

    Article  PubMed  Google Scholar 

  • Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71. doi:10.1006/cogp.1998.0681.

    Article  PubMed  Google Scholar 

  • Chun, M. M., & Turk-Browne, N. B. (2008). Associative learning mechanisms in vision. In S. J. Luck, & A. Hollingworth (Eds.), Visual memory (pp. 209–246). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Coltheart, M. (1980). The persistences of vision. Philosophical Transactions of the Royal Society B: Biological Sciences, 290(1038), 269–294 (1980). doi:10.1098/rstb.1980.0082.

    Article  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222. doi:10.1146/annurev.ne.18.030195.001205.

    Article  PubMed  Google Scholar 

  • Dodd, M. D., Van der Stigchel, S., & Hollingworth, A. (2009). Novelty is not always the best policy: Inhibition of return and facilitation of return as a function of visual task. Psychological Science, 20(3), 333–339. doi:10.1111/j.1467–9280.2009.02294.x.

    Article  PubMed  Google Scholar 

  • Downing, P. E., & Dodds, C. M. (2004). Competition in visual working memory for control of search. Visual Cognition, 11(6), 689–703. doi:10.1080/13506280344000446.

    Article  Google Scholar 

  • Droll, J. A., Hayhoe, M. M., Triesch, J., & Sullivan, B. T. (2005). Task demands control acquisition and storage of visual information. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1416–1438. doi:10.1037/0096–1523.31.6.1416.

    Article  PubMed  Google Scholar 

  • Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433–458. doi:10.1037//0033–295X.96.3.433.

    Article  PubMed  Google Scholar 

  • Eckstein, M. P. (2011). Visual search: A retrospective. Journal of Vision, 11(5), 14: 11–36. doi:10.1167/11.5.14.

    Article  Google Scholar 

  • Eckstein, M. P., Drescher, B. A., & Shimozaki, S. S. (2006). Attentional cues in real scenes, saccadic targeting, and Bayesian priors. Psychological Science, 17(11), 973–980. doi:10.1111/j.1467–9280.2006.01815.x.

    Article  PubMed  Google Scholar 

  • Ehinger, K. A., & Brockmole, J. R. (2008). The role of color in visual search in real-world scenes: Evidence from contextual cuing. Perception & Psychophysics, 70(7), 1366–1378. doi:10.3758/pp.70.7.1366.

    Article  Google Scholar 

  • Ehinger, K. A., Hidalgo-Sotelo, B., Torralba, A., & Oliva, A. (2009). Modelling search for people in 900 scenes: A combined source model of eye guidance. Visual Cognition, 17(6–7), 945–978. doi:10.1080/13506280902834720.

    Article  Google Scholar 

  • Einhauser, W., Rutishauser, U., & Koch, C. (2008a). Task-demands can immediately reverse the effects of sensory-driven saliency in complex visual stimuli. Journal of Vision, 8(2), 2: 1–19. doi:10.1167/8.2.2.

    Article  Google Scholar 

  • Einhauser, W., Spain, M., & Perona, P. (2008b). Objects predict fixations better than early saliency. Journal of Vision, 8(14), 18: 11–26. doi:10.1167/8.14.18.

    Article  Google Scholar 

  • Findlay, J. M., & Gilchrist, I. D. (2003). Active vision: The psychology of looking and seeing. Oxford: Oxford University Press.

    Google Scholar 

  • Foulsham, T., Alan, R., & Kingstone, A. (2011). Scrambled eyes? Disrupting scene structure impedes focal processing and increases bottom-up guidance. Attention, Perception, & Psychophysics, 73(7), 2008–2025. doi:10.3758/s13414–011-0158-y.

    Article  Google Scholar 

  • Foulsham, T., & Underwood, G. (2007). How does the purpose of inspection influence the potency of visual salience in scene perception? Perception, 36(8), 1123–1138. doi:10.1068/p5659.

    Article  PubMed  Google Scholar 

  • Foulsham, T., & Underwood, G. (2008). What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. Journal of Vision, 8(2), 6: 1–17. doi:10.1167/8.2.6.

    Article  PubMed  Google Scholar 

  • Gibson, B. S., Li, L., Skow, E., Brown, K., & Cooke, L. (2000). Searching for one versus two identical targets: When visual search has a memory. Psychological Science, 11(4), 324–327. doi:10.1111/1467–9280.00264.

    Article  PubMed  Google Scholar 

  • Gilchrist, I. D., North, A., & Hood, B. (2001). Is visual search really like foraging? Perception, 30(12), 1459–1464. doi:10.1068/p3249.

    Article  PubMed  Google Scholar 

  • Han, S. W., & Kim, M. S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1292–1302. doi:10.1037/a0016452.

    Article  PubMed  Google Scholar 

  • Harrison, S. A., & Tong, F. (2009). Decoding reveals the contents of visual working memory in early visual areas. Nature, 458(7238), 632–635. doi:10.1038/nature07832.

    Article  PubMed  Google Scholar 

  • Hayhoe, M. (2000). Vision using routines: A functional account of vision. Visual Cognition, 7(1–3), 43–64. doi:1080/135062800394676.

    Article  Google Scholar 

  • Henderson, J. M. (2003). Human gaze control during real-world scene perception. Trends in Cognitive Sciences, 7(11), 498–504. doi:10.1016/j.tics.2003.09.006.

    Article  PubMed  Google Scholar 

  • Henderson, J. M., Brockmole, J. R., Castelhano, M. S., & Mack, M. (2007). Visual saliency does not account for eye movements during search in real-world scenes. In R. van Gompel, M. Fischer, W. Murray, & R. Hill (Eds.), Eye movements: A window on mind and brain (pp. 537–562). Oxford: Elsevier.

    Google Scholar 

  • Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual Review of Psychology, 50, 243–271. doi:10.1146/annurev.psych.50.1.243.

    Article  PubMed  Google Scholar 

  • Henderson, J. M., Malcolm, G. L., & Schandl, C. (2009). Searching in the dark: Cognitive relevance drives attention in real-world scenes. Psychonomic Bulletin & Review, 16(5), 850–856. doi:10.3758/pbr.16.5.850.

    Article  Google Scholar 

  • Henderson, J. M., Weeks, P. A., & Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 25(1), 210–228. doi:10.1037//0096–1523.25.1.210.

    Article  Google Scholar 

  • Hillstrom, A. P., Scholey, H., Liversedge, S. P., & Benson, V. (2012). The effect of the first glimpse at a scene on eye movements during search. Psychonomic Bulletin & Review, 19(2), 204–210. doi:10.3758/s13423–011-0205–7.

    Article  Google Scholar 

  • Hollingworth, A. (2004). Constructing visual representations of natural scenes: The roles of short- and long-term visual memory. Journal of Experimental Psychology: Human Perception and Performance, 30(3), 519–537. doi:10.1037/0096–1523.30.3.519.

    Article  PubMed  Google Scholar 

  • Hollingworth, A. (2005). The relationship between online visual representation of a scene and long-term scene memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(3), 396–411. doi:10.1037/0278–7393.31.3.396.

    Article  PubMed  Google Scholar 

  • Hollingworth, A. (2006). Visual memory for natural scenes: Evidence from change detection and visual search. Visual Cognition, 14(4–8), 781–807. doi:10.1080/13506280500193818.

    Article  Google Scholar 

  • Hollingworth, A. (2008). Visual memory for natural scenes. In S. J. Luck, & A. Hollingworth (Eds.), Visual memory (pp. 123–162). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Hollingworth, A. (2009). Two forms of scene memory guide visual search: Memory for scene context and memory for the binding of target object to scene location. Visual Cognition, 17(1–2), 273–291. doi:10.1080/13506280802193367.

    Article  Google Scholar 

  • Hollingworth, A. (in press). Task specificity and the influence of memory on visual search: Commentary on Võ and Wolfe (2012). Journal of Experimental Psychology: Human Perception and Performance.

    Google Scholar 

  • Hollingworth, A., & Henderson, J. M. (2002). Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 28(1), 113–136. doi:10.1037//0096–1523.28.1.113.

    Article  Google Scholar 

  • Hollingworth, A., & Luck, S. J. (2009). The role of visual working memory (VWM) in the control of gaze during visual search. Attention, Perception, & Psychophysics, 71(4), 936–949. doi:10.3758/APP.71.4.936.

    Article  Google Scholar 

  • Hollingworth, A., & Matsukura, M. (2011). Visual working memory content biases the allocation of gaze during search through natural scenes. Paper presented at the Annual Meeting of the Psychonomic Society, Seattle, WA.

    Google Scholar 

  • Hollingworth, A., Matsukura, M., & Luck, S. J. (in press). Visual working memory modulates rapid eye movements to simple onset targets. Psychological Science.

    Google Scholar 

  • Hollingworth, A., & Maxcey-Richard, A. M. (in press). Selective maintenance in visual working memory does not require sustained visual attention. Journal of Experimental Psychology: Human Perception and Performance.

    Google Scholar 

  • Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short-term memory: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General, 137(1), 163–181. doi:10.1037/0096–3445.137.1.163.

    Article  Google Scholar 

  • Hooge, I. T. C., Over, E. A. B., van Wezel, R. J. A., & Frens, M. A. (2005). Inhibition of return is not a foraging facilitator in saccadic search and free viewing. Vision Research, 45(14), 1901–1908. doi:10.1016/j.visres.2005.01.030.

    Article  PubMed  Google Scholar 

  • Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 394(6693), 575–577. doi:10.1038/29068.

    Article  PubMed  Google Scholar 

  • Howard, C. J., Pharaon, R. G., Körner, C., Smith, A. D., & Gilchrist, I. D. (2011). Visual search in the real world: Evidence for the formation of distractor representations. Perception, 40(10), 1143–1153. doi:10.1068/p7088.

    Article  PubMed  Google Scholar 

  • Hwang, A. D., Higgins, E. C., & Pomplun, M. (2009). A model of top-down attentional control during visual search in complex scenes. Journal of Vision, 9(5), 25: 21–18. doi:10.1167/9.5.25.

    Article  Google Scholar 

  • Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive Psychology, 23(3), 420–456. doi:10.1016/0010–0285(91)90015-G.

    Article  PubMed  Google Scholar 

  • Itti, L. (2005). Quantifying the contribution of low-level saliency to human eye movements in dynamic scenes. Visual Cognition, 12(6), 1093–1123. doi:10.1080/13506280444000661.

    Article  Google Scholar 

  • Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40(10–12), 1489–1506. doi:10.1016/S0042–6989(99)00163–7.

    Article  Google Scholar 

  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203. doi:10.1038/35058500.

    Article  PubMed  Google Scholar 

  • Kanan, C., Tong, M. H., Zhang, L., & Cottrell, G. W. (2009). SUN: Top-down saliency using natural statistics. Visual Cognition, 17(6–7), 979–1003. doi:10.1080/13506280902771138.

    Article  Google Scholar 

  • Kang, M. S., Hong, S. W., Blake, R., & Woodman, G. F. (2011). Visual working memory contaminates perception. Psychonomic Bulletin & Review, 18(5), 860–869. doi:10.3758/s13423–011-0126–5.

    Article  Google Scholar 

  • Klein, R. M. (1988). Inhibitory tagging system facilitates visual search. Nature, 334(6181), 430–431. doi:10.1038/334430a0.

    Article  PubMed  Google Scholar 

  • Klein, R. M., & MacInnes, W. J. (1999). Inhibition of return is a foraging facilitator in visual search. Psychological Science, 10(4), 346–352. doi:10.1111/1467–9280.00166.

    Article  Google Scholar 

  • Konkle, T., Brady, T. F., Alvarez, G. A., & Oliva, A. (2010). Scene memory is more detailed than you think: The role of categories in visual long-term memory. Psychological Science, 21(11), 1551–1556. doi:10.1177/0956797610385359.

    Article  PubMed  Google Scholar 

  • Körner, C., & Gilchrist, I. D. (2007). Finding a new target in an old display: Evidence for a memory recency effect in visual search. Psychonomic Bulletin & Review, 14(5), 846–851. doi:10.3758/bf03194110.

    Article  Google Scholar 

  • Kristjánsson, A. (2000). In search of remembrance: Evidence for memory in visual search. Psychological Science, 11(4), 328–332. doi:10.1111/1467–9280.00265.

    Article  PubMed  Google Scholar 

  • Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision Research, 41(25–26), 3559–3565. doi:10.1016/S0042–6989(01)00102-X.

    Article  Google Scholar 

  • Land, M. F., Mennie, N., & Rusted, J. (1999). The roles of vision and eye movements in the control of activities of daily living. Perception, 28(11), 1311–1328. doi:10.1068/p2935.

    Article  PubMed  Google Scholar 

  • Ludwig, C. J. H., & Gilchrist, I. D. (2002). Stimulus-driven and goal-driven control over visual selection. Journal of Experimental Psychology: Human Perception and Performance, 28(4), 902–912. doi:10.1037//0096–1523.28.4.902.

    Article  PubMed  Google Scholar 

  • Mack, S. C., & Eckstein, M. P. (2011). Object co-occurrence serves as a contextual cue to guide and facilitate visual search in a natural viewing environment. Journal of Vision, 11(9), 9: 1–16. doi:10.1167/11.9.9.

    Article  PubMed  Google Scholar 

  • Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8: 1–13. doi:10.1167/9.11.8.

    Article  PubMed  Google Scholar 

  • Malcolm, G. L., & Henderson, J. M. (2010). Combining top-down processes to guide eye movements during real-world scene search. Journal of Vision, 10(2), 4: 1–11. doi:10.1167/10.2.4.

    Article  PubMed  Google Scholar 

  • Mannan, S. K., Kennard, C., Potter, D., Pan, Y., & Soto, D. (2010). Early oculomotor capture by new onsets driven by the contents of working memory. Vision Research, 50(16), 1590–1597. doi:10.1016/j.visres.2010.05.015.

    Article  PubMed  Google Scholar 

  • McCarley, J. S., Wang, R. X. F., Kramer, A. F., Irwin, D. E., & Peterson, M. S. (2003). How much memory does oculomotor search have? Psychological Science, 14(5), 422–426. doi:10.1111/1467–9280.01457.

    Article  PubMed  Google Scholar 

  • McPeek, R. M., & Keller, E. L. (2002). Superior colliculus activity related to concurrent processing of saccade goals in a visual search task. Journal of Neurophysiology, 87(4), 1805–1815. doi:10.1152/jn.00501.2001.

    PubMed  Google Scholar 

  • Müller, H. J., & Von Mühlenen, A. (2000). Probing distractor inhibition in visual search: Inhibition of return. Journal of Experimental Psychology: Human Perception and Performance, 26(5), 1591–1605. doi:10.1037/0096–1523.26.5.1591.

    Article  PubMed  Google Scholar 

  • Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45(2), 205–231. doi:10.1016/j.visres.2004.07.042.

    Article  PubMed  Google Scholar 

  • Neider, M. B., & Zelinsky, G. J. (2006). Scene context guides eye movements during visual search. Vision Research, 46(5), 614–621. doi:10.1016/j.visres.2005.08.025.

    Article  PubMed  Google Scholar 

  • Olivers, C. N. L. (2009). What drives memory-driven attentional capture? The effects of memory type, display type, and search type. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1275–1291. doi:10.1037/a0013896.

    Article  PubMed  Google Scholar 

  • Olivers, C. N. L. (2011). Long-term visual associations affect attentional guidance. Acta Psychologica, 137(2), 243–247. doi:10.1016/j.actpsy.2010.07.001.

    Article  PubMed  Google Scholar 

  • Olivers, C. N. L., Meijer, F., & Theeuwes, J. (2006). Feature-based memory-driven attentional capture: Visual working memory content affects visual attention. Journal of Experimental Psychology: Human Perception and Performance, 32(5), 1243–1265. doi:10.1037/0096–1523.32.5.1243.

    Article  PubMed  Google Scholar 

  • Olson, I. R., & Chun, M. M. (2002). Perceptual constraints on implicit learning of spatial context. Visual Cognition, 9(3), 273–302. doi:10.1080/13506280042000162.

    Article  Google Scholar 

  • Parkhurst, D., Law, K., & Niebur, E. (2002). Modeling the role of salience in the allocation of overt visual attention. Vision Research, 42(1), 107–123. doi:10.1016/S0042–6989(01)00250–4.

    Article  PubMed  Google Scholar 

  • Pearson, J., Clifford, C. W. G., & Tong, F. (2008). The functional impact of mental imagery on conscious perception. Current Biology, 18(13), 982–986. doi:10.1016/j.cub.2008.05.048.

    Article  PubMed  Google Scholar 

  • Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12(4), 287–292. doi:10.1111/1467–9280.00353.

    Article  PubMed  Google Scholar 

  • Phillips, W. A. (1974). On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 16(2), 283–290. doi:10.3758/BF03203943.

    Article  Google Scholar 

  • Pomplun, M. (2006). Saccadic selectivity in complex visual search displays. Vision Research, 46(12), 1886–1900. doi:10.1016/j.visres.2005.12.003.

    Article  PubMed  Google Scholar 

  • Posner, M. I., & Cohen, Y. (1984). Components of visual orienting. In H. Bouma, & D. G. Bouwhuis (Eds.), Attention and performance X (pp. 531–556). Hillsdale: Erlbaum.

    Google Scholar 

  • Schmidt, J., & Zelinsky, G. J. (2009). Search guidance is proportional to the categorical specificity of a target cue. Quarterly Journal of Experimental Psychology, 62(10), 1904–1914. doi:10.1080/17470210902853530.

    Article  Google Scholar 

  • Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information-processing: 1. Detection, search, and attention. Psychological Review, 84(1), 1–66. doi:10.1037/0033–295x.84.1.1.

    Article  Google Scholar 

  • Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009). Stimulus-specific delay activity in human primary visual cortex. Psychological Science, 20(2), 207–214. doi:10.1111/j.1467–9280.2009.02276.x.

    Article  PubMed  Google Scholar 

  • Shore, D. I., & Klein, R. M. (2000). On the manifestations of memory in visual search. Spatial Vision, 14(1), 59–75. doi:10.1163/156856801741369.

    Article  PubMed  Google Scholar 

  • Smith, T. J., & Henderson, J. M. (2009). Facilitation of return during scene viewing. Visual Cognition, 17(6–7), 1083–1108. doi:10.1080/13506280802678557.

    Article  Google Scholar 

  • Smith, T. J., & Henderson, J. M. (2011a). Does oculomotor inhibition of return influence fixation probability during scene search? Attention, Perception, & Psychophysics, 73(8), 2384–2398 (2011a). doi:10.3758/s13414–011-0191-x.

    Article  Google Scholar 

  • Smith, T. J., & Henderson, J. M. (2011b). Looking back at Waldo: Oculomotor inhibition of return does not prevent return fixations. Journal of Vision, 11(1), 3: 1–11 (2011b). doi:10.1167/11.1.3.

    Article  Google Scholar 

  • Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology: Human Perception and Performance, 31(2), 248–261. doi:10.1037/0096–1523.31.2.248.

    Article  PubMed  Google Scholar 

  • Soto, D., & Humphreys, G. W. (2007). Automatic guidance of visual attention from verbal working memory. Journal of Experimental Psychology: Human Perception and Performance, 33(3), 730–737. doi:10.1037/0096–1523.33.3.730.

    Article  PubMed  Google Scholar 

  • Soto, D., Humphreys, G. W., & Heinke, D. (2006). Working memory can guide pop-out search. Vision Research, 46(6–7), 1010–1018. doi:10.1016/j.visres.2005.09.008.

    Article  Google Scholar 

  • Soto, D., Wriglesworth, A., Bahrami-Balani, A., & Humphreys, G. W. (2010). Working memory enhances visual perception: Evidence from signal detection analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 36(2), 441–456. doi:10.1037/a0018686.

    Article  PubMed  Google Scholar 

  • Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74, (11, Whole no. 498).

    Google Scholar 

  • Standing, L. (1973). Learning 10,000 pictures. Quarterly Journal of Experimental Psychology, 25(2), 207–222. doi:10.1080/14640747308400340.

    Article  PubMed  Google Scholar 

  • Standing, L., Conezio, J., & Haber, R. N. (1970). Perception and memory for pictures: Single-trial learning of 2500 visual stimuli. Psychonomic Science, 19(2), 73–74.

    Google Scholar 

  • Takeda, Y., & Yagi, A. (2000). Inhibitory tagging in visual search can be found if search stimuli remain visible. Perception & Psychophysics, 62(5), 927–934 (2000). doi:10.3758/BF03212078.

    Article  Google Scholar 

  • Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of Vision, 11(5), 5: 1–23. doi:10.1167/11.5.5.

    Article  Google Scholar 

  • Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113(4), 766–786. doi:10.1037/0033–295X.113.4.766.

    Article  PubMed  Google Scholar 

  • Treisman, A., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97–136. doi:10.1016/0010–0285(80)90005–5.

    Article  PubMed  Google Scholar 

  • Underwood, G., Foulsham, T., & Humphrey, K. (2009). Saliency and scan patterns in the inspection of real-world scenes: Eye movements during encoding and recognition. Visual Cognition, 17(6–7), 812–834. doi:10.1080/13506280902771278.

    Article  Google Scholar 

  • van Zoest, W., Donk, M., & Theeuwes, J. (2004). The role of stimulus-driven and goal-driven control in saccadic visual selection. Journal of Experimental Psychology: Human Perception and Performance, 30(4), 746–759. doi:10.1037/0096–1523.30.4.746.

    Google Scholar 

  • Vickery, T. J., King, L. W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5(1), 81–92. doi:10.1167/5.1.8.

    Article  PubMed  Google Scholar 

  • Võ, M. L. H., & Henderson, J. M. (2010). The time course of initial scene processing for eye movement guidance in natural scene search. Journal of Vision, 10(3), 14: 11–13. doi:10.1167/10.3.14.

    Article  Google Scholar 

  • Võ, M. L. H., & Wolfe, J. M. (2012). When Does Repeated Search in Scenes Involve Memory? Looking At Versus Looking For Objects in Scenes. Journal of Experimental Psychology: Human Perception and Performance, 38(1), 23–41. doi:10.1037/a0024147.

    Article  PubMed  Google Scholar 

  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1436–1451. doi:10.1037/0096–1523.32.6.1436.

    Article  PubMed  Google Scholar 

  • von Mühlenen, A., Müller, H. J., & Müller, D. (2003). Sit-and-wait strategies in dynamic visual search. Psychological Science, 14(4), 309–314. doi:10.1111/1467–9280.14441.

    Google Scholar 

  • Wang, Z., & Klein, R. M. (2010). Searching for inhibition of return in visual search: A review. Vision Research, 50(2), 220–228. doi:10.1016/j.visres.2009.11.013.

    Article  PubMed  Google Scholar 

  • Weierich, M. R., Treat, T. A., & Hollingworth, A. (2008). Theories and measurement of visual attentional processing in anxiety. Cognition & Emotion, 22(6), 985–1018. doi:10.1080/02699930701597601.

    Article  Google Scholar 

  • Williams, C. C., Henderson, J. M., & Zacks, R. T. (2005). Incidental visual memory for targets and distractors in visual search. Perception & Psychophysics, 67(5), 816–827. doi:10.3758/BF03193535.

    Article  Google Scholar 

  • Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238. doi:10.3758/bf03200774.

    Article  Google Scholar 

  • Wolfe, J. M. (1999). Inattentional amnesia. In V. Coltheart (Ed.), Fleeting memories (pp. 71–94). Cambridge: MIT Press.

    Google Scholar 

  • Wolfe, J. M., Alvarez, G. A., Rosenholtz, R., Kuzmova, Y. I., & Sherman, A. M. (2011). Visual search for arbitrary objects in real scenes. Attention, Perception, & Psychophysics, 73(6), 1650–1671 (2011). doi:10.3758/s13414–011-0153–3.

    Article  Google Scholar 

  • Wolfe, J. M., Horowitz, T. S., Kenner, N., Hyle, M., & Vasan, N. (2004). How fast can you change your mind? The speed of top-down guidance in visual search. Vision Research, 44(12), 1411–1426. doi:10.1016/j.visres.2003.11.024.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M., Klempen, N., & Dahlen, K. (2000). Postattentive vision. Journal of Experimental Psychology: Human Perception and Performance, 26(2), 693–716. doi:10.1037/0096–1523.26.2.693.

    Article  PubMed  Google Scholar 

  • Wolfe, J. M., Võ, M. L., Evans, K. K., & Greene, M. R. (2011). Visual search in scenes involves selective and nonselective pathways. Trends in Cognitive Sciences, 15(2), 77–84. doi:10.1016/j.tics.2010.12.001.

    Article  PubMed  Google Scholar 

  • Woodman, G. F., & Arita, J. T. (2011). Direct electrophysiological measurement of attentional templates in visual working memory. Psychological Science, 22(2), 212–215. doi:10.1177/0956797610395395.

    Article  PubMed  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11(2), 269–274. doi:10.3758/BF03196569.

    Article  Google Scholar 

  • Woodman, G. F., & Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363–377. doi:10.1037/0096–1523.33.2.363.

    Article  PubMed  Google Scholar 

  • Woodman, G. F., Luck, S. J., & Schall, J. D. (2007). The role of working memory representations in the control of attention. Cerebral Cortex, 17, 118–124. doi:10.1093/cercor/bhm065.

    Article  Google Scholar 

  • Yang, H., & Zelinsky, G. J. (2009). Visual search is guided to categorically-defined targets. Vision Research, 49(16), 2095–2103. doi:10.1016/j.visres.2009.05.017.

    Article  PubMed  Google Scholar 

  • Zelinsky, G. J. (1996). Using eye saccades to assess the selectivity of search movements. Vision Research, 36(14), 2177–2187. doi:10.1016/0042–6989(95)00300–2.

    Article  PubMed  Google Scholar 

  • Zelinsky, G. J. (2008). A theory of eye movements during target acquisition. Psychological Review, 115(4), 787–835. doi:10.1037/a0013118.

    Article  PubMed  Google Scholar 

  • Zelinsky, G. J., Rao, R. P. N., Hayhoe, M. M., & Ballard, D. H. (1997). Eye movements reveal the spatiotemporal dynamics of visual search. Psychological Science, 8(6), 448–453. doi:10.1111/j.1467–9280.1997.tb00459.x.

    Article  Google Scholar 

  • Zelinsky, G. J., Zhang, W., Yu, B., Chen, X., & Samaras, D. (2006). The role of top-down and bottom-up processes in guiding eye movements during visual search. In Y. Weiss, B. Scholkopf, & J. Platt (Eds.), Advances in neural information processing systems (Vol. 18, pp. 1569–1576). Cambridge: MIT Press.

    Google Scholar 

  • Zhang, W., & Luck, S. J. (2009). Feature-based attention modulates feedforward visual processing. Nature Neuroscience, 12(1), 24–25 (2009). doi:10.1038/nn.2223.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Hollingworth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hollingworth, A. (2012). Guidance of Visual Search by Memory and Knowledge. In: Dodd, M., Flowers, J. (eds) The Influence of Attention, Learning, and Motivation on Visual Search. Nebraska Symposium on Motivation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4794-8_4

Download citation

Publish with us

Policies and ethics