Advertisement

Psychoneuromicrobiology: Cytomegalovirus Infection as a Putative Link Between Stress, Aging, and Immunity

  • Jos A. Bosch
  • Jerrald L. Rector
  • James E. Turner
  • Natalie E. Riddell
  • Briain o‘Hartaigh
  • Vikki E. Burns
Chapter

Abstract

Epidemiological evidence demonstrates increased morbidity and mortality in populations exposed to adverse psychosocial factors such as low socio-economic status and protracted psychological distress (Cohen and Herbert, Annu Rev Psychol 47:113–142, 1996; House et al., Science 241:540–545, 1988; Marmot, Lancet 365(9464):1099–1104, 2005; Schneiderman et al., Annu Rev Clin Psychol 1:607–628, 2005). While the data are clear, the precise mechanisms underlying these associations are yet to be determined (Antoni et al., Nat Rev Cancer 6(3):240–248, 2006; Cacioppo and Hawkley, Perspect Biol Med 46(3 Suppl):S39–52, 2003; Glaser and Kiecolt-Glaser, Nat Rev Immunol 5(3):243–251, 2005; McEwen, N Engl J Med 338(3):171–179, 1998; Uchino et al., Psychol Bull 119(3):488–531, 1996). We, and others, have argued that since increasing age is a major risk factor for a wide range of chronic diseases, the aging process itself may be an important target for such mechanistic research (Bosch et al., Brain Behav Immun 23(4):527–534, 2009; Nilsson, Med Hypotheses 47(1):39–42, 1996).

Keywords

Cytomegalovirus CMV T cell immunity Stress Psychoneuroimmunology Psychosocial Aging 

References

  1. Aiello AE, Haan M, Blythe L, Moore K, Gonzalez JM, Jagust W (2006) The influence of latent viral infection on rate of cognitive decline over 4 years. J Am Geriatr Soc 54(7):1046–1054PubMedCrossRefGoogle Scholar
  2. Akbar AN, Beverley PC, Salmon M (2004) Will telomere erosion lead to a loss of T-cell memory? Nat Rev Immunol 4(9):737–743PubMedCrossRefGoogle Scholar
  3. Akbar AN, Fletcher JM (2005) Memory T cell homeostasis and senescence during aging. Curr Opin Immunol 17(5):480–485PubMedCrossRefGoogle Scholar
  4. Anane LH, Edwards KM, Burns VE, Drayson MT, Riddell NE, van Zanten JJ et al (2009) Mobilization of gammadelta T lymphocytes in response to psychological stress, exercise, and beta-agonist infusion. Brain Behav ImmunGoogle Scholar
  5. Anane LH, Edwards KM, Burns VE, Zanten JJ, Drayson MT, Bosch JA (2010) Phenotypic characterization of gammadelta T cells mobilized in response to acute psychological stress. Brain Behav ImmunGoogle Scholar
  6. Antoni MH, Lutgendorf SK, Cole SW, Dhabhar FS, Sephton SE, McDonald PG et al (2006) The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer 6(3):240–248PubMedCrossRefGoogle Scholar
  7. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L et al (2002) Memory CD8 + T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8(4):379–385PubMedCrossRefGoogle Scholar
  8. Appay V, van Lier RA, Sallusto F, Roederer M (2008). Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytometry A 73(11):975–983PubMedGoogle Scholar
  9. Appels A, Bar FW, Bar J, Bruggeman C, de Baets M (2000) Inflammation, depressive symptomtology, and coronary artery disease. Psychosom Med 62(5):601–605PubMedGoogle Scholar
  10. Arvin AM, Campadelli-Fiume G, Roizman B (2007) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, CambridgeGoogle Scholar
  11. Bartik MM, Brooks WH, Roszman TL (1993) Modulation of T cell proliferation by stimulation of the beta-adrenergic receptor: lack of correlation between inhibition of T cell proliferation and cAMP accumulation. Cell Immunol 148(2):408–421PubMedCrossRefGoogle Scholar
  12. Bauer ME (2005) Stress, glucocorticoids and ageing of the immune system. Stress 8(1):69–83PubMedCrossRefGoogle Scholar
  13. Bauer ME, Vedhara K, Perks P, Wilcock GK, Lightman SL, Shanks N (2000) Chronic stress in caregivers of dementia patients is associated with reduced lymphocyte sensitivity to glucocorticoids. J Neuroimmunol 103(1):84–92PubMedCrossRefGoogle Scholar
  14. Benschop RJ, Rodriguez-Feuerhahn M, Schedlowski M (1996) Catecholamine-induced leukocytosis: early observations, current research, and future directions. Brain Behav Immun 10(2):77–91PubMedCrossRefGoogle Scholar
  15. Boeckh M, Boivin G (1998) Quantitation of cytomegalovirus: methodologic aspects and clinical applications. Clin Microbiol Rev 11(3):533–554Google Scholar
  16. Borger P, Hoekstra Y, Esselink MT, Postma DS, Zaagsma J, Vellenga E et al (1998) Beta-adrenoceptor-mediated inhibition of IFN-gamma, IL-3, and GM-CSF mRNA accumulation in activated human T lymphocytes is solely mediated by the beta2-adrenoceptor subtype. Am J Respir Cell Mol Biol 19(3):400–407PubMedGoogle Scholar
  17. Bosch JA, Berntson GG, Cacioppo JT, Dhabhar FS, Marucha PT (2003a) Acute stress evokes selective mobilization of T cells that differ in chemokine receptor expression: a potential pathway linking immunologic reactivity to cardiovascular disease. Brain Behav Immun 17(4):251–259CrossRefGoogle Scholar
  18. Bosch JA, Berntson GG, Cacioppo JT, Marucha PT (2005) Differential mobilization of functionally distinct natural killer subsets during acute psychologic stress. Psychosom Med 67(3):366–375PubMedCrossRefGoogle Scholar
  19. Bosch JA, de Geus EJ, Kelder A, Veerman EC, Hoogstraten J, Amerongen AV (2001) Differential effects of active versus passive coping on secretory immunity. Psychophysiology 38(5):836–846PubMedCrossRefGoogle Scholar
  20. Bosch JA, de Geus EJ, Veerman EC, Hoogstraten J, Nieuw Amerongen AV (2003b) Innate secretory immunity in response to laboratory stressors that evoke distinct patterns of cardiac autonomic activity. Psychosom Med 65(2):245–258CrossRefGoogle Scholar
  21. Bosch JA, Fischer JE, Fischer JF (2009) Adverse working conditions are associated with CD8 T cell differentiation indicative of immunosenescence. Brain Behav Immun 23(4):527–534PubMedCrossRefGoogle Scholar
  22. Brunner S, Herndler-Brandstetter D, Weinberger B, Grubeck-Loebenstein B (2010) Persistent viral infections and immune aging. Ageing Res RevGoogle Scholar
  23. Cacioppo JT, Hawkley LC (2003) Social isolation and health, with an emphasis on underlying mechanisms. Perspect Biol Med 46(3 Suppl):S39–52PubMedGoogle Scholar
  24. Campbell JP, Riddell NE, Burns VE, Turner M, van Zanten JJ, Drayson MT et al (2009) Acute exercise mobilises CD8 + T lymphocytes exhibiting an effector-memory phenotype. Brain Behav ImmunGoogle Scholar
  25. Cantisan S, Torre-Cisneros J, Lara R, Rodriguez-Benot A, Santos F, Gutierrez-Aroca J et al (2009) Age-dependent association between low frequency of CD27/CD28 expression on pp65 CD8 + T cells and cytomegalovirus replication after transplantation. Clin Vaccine Immunol 16(10):1429–1438PubMedCrossRefGoogle Scholar
  26. Chidrawar S, Khan N, Wei W, McLarnon A, Smith N, Nayak L et al (2009) Cytomegalovirus-seropositivity has a profound influence on the magnitude of major lymphoid subsets within healthy individuals. Clin Exp Immunol 155(3):423–432PubMedCrossRefGoogle Scholar
  27. Chilet, M, Aguilar, G, Benet, I, Belda, J, Tormo, N, Carbonell, JA et al (2010) Virological and immunological features of active cytomegalovirus infection in nonimmunosuppressed patients in a surgical and trauma intensive care unit. J Med Virol 82(8):1384–1391PubMedCrossRefGoogle Scholar
  28. Clerici M, Saresella M, Trabattoni D, Speciale L, Fossati S, Ruzzante S et al (2001) Single-cell analysis of cytokine production shows different immune profiles in multiple sclerosis patients with active or quiescent disease. J Neuroimmunol 121(1–2):88–101PubMedCrossRefGoogle Scholar
  29. Cohen S, Herbert TB (1996) Health psychology: psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annu Rev Psychol 47:113–142PubMedCrossRefGoogle Scholar
  30. Cohrs RJ, Gilden DH (2001) Human herpesvirus latency. Brain Pathol 11(4):465–474PubMedCrossRefGoogle Scholar
  31. Coskun O, Sener K, Kilic S, Erdem H, Yaman H, Besirbellioglu AB et al (2010) Stress-related Epstein-Barr virus reactivation. Clin Exp Med 10(1):15–20PubMedCrossRefGoogle Scholar
  32. Croen KD (1991) Latency of the human herpesviruses. Annu Rev Med 42:61–67PubMedCrossRefGoogle Scholar
  33. Damjanovic AK, Yang Y, Glaser R, Kiecolt-Glaser JK, Nguyen H, Laskowski B et al (2007) Accelerated telomere erosion is associated with a declining immune function of caregivers of Alzheimer’s disease patients. J Immunol 179(6):4249–4254PubMedGoogle Scholar
  34. Derhovanessian E, Maier AB, Hahnel K, Beck R, de Craen AJ, Slagboom EP, Westendorp RG, Pawelec G (2011) Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J Gen Virol 92:2746–2756Google Scholar
  35. Dhabhar FS (2002) Stress-induced augmentation of immune function—the role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav Immun 16(6):785–798PubMedCrossRefGoogle Scholar
  36. Dhabhar FS, McEwen BS (1997) Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun, 11(4):286–306PubMedCrossRefGoogle Scholar
  37. Dhabhar FS, McEwen BS (1999) Enhancing versus suppressive effects of stress hormones on skin immune function. Proc Natl Acad Sci USA 96(3):1059–1064PubMedCrossRefGoogle Scholar
  38. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T (2009) Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113(21):5134–5143Google Scholar
  39. Dimitrov S, Lange T, Born J (2010) Selective mobilization of cytotoxic leukocytes by epinephrine. J Immunol 184(1):503–511PubMedCrossRefGoogle Scholar
  40. Docke WD, Prosch S, Fietze E, Kimel V, Zuckermann H, Klug C et al (1994) Cytomegalovirus reactivation and tumour necrosis factor. Lancet 343(8892):268–269PubMedCrossRefGoogle Scholar
  41. Dopp JM, Miller GE, Myers HF, Fahey JL (2000) Increased natural killer-cell mobilization and cytotoxicity during marital conflict. Brain Behav Immun 14(1):10–26PubMedCrossRefGoogle Scholar
  42. Dowd JB, Aiello AE (2009) Socioeconomic differentials in immune response. Epidemiology 20(6):902–908PubMedCrossRefGoogle Scholar
  43. Dowd JB, Aiello AE, Alley DE (2009) Socioeconomic disparities in the seroprevalence of cytomegalovirus infection in the US population: NHANES III. Epidemiol Infect 137(1):58–65PubMedCrossRefGoogle Scholar
  44. Effros RB (2007) Role of T lymphocyte replicative senescence in vaccine efficacy. Vaccine 25(4):599–604PubMedCrossRefGoogle Scholar
  45. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (2000) The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638PubMedGoogle Scholar
  46. Epel ES, Blackburn EH, Lin J, Dhabhar FS, Adler NE, Morrow JD et al (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci USA 101(49):17312–17315PubMedCrossRefGoogle Scholar
  47. Esterling BA, Antoni MH, Kumar M, Schneiderman N (1993) Defensiveness, trait anxiety, and Epstein-Barr viral capsid antigen antibody titers in healthy college students. Health Psychol 12(2):132–139PubMedCrossRefGoogle Scholar
  48. Eysteinsdottir JH, Freysdottir J, Haraldsson A, Stefansdottir J, Skaftadottir I, Helgason H et al (2004) The influence of partial or total thymectomy during open heart surgery in infants on the immune function later in life. Clin Exp Immunol 136(2):349–355PubMedCrossRefGoogle Scholar
  49. Ferguson FG, Wikby A, Maxson P, Olsson J, Johansson B (1995) Immune parameters in a longitudinal study of a very old population of Swedish people: a comparison between survivors and nonsurvivors. J Gerontol A 50(6):B378–382CrossRefGoogle Scholar
  50. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E et al (2000) Inflamm-aging:an evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedCrossRefGoogle Scholar
  51. Freeman RB Jr (2009) The ‘indirect’ effects of cytomegalovirus infection. Am J Transplant 9(11):2453–2458PubMedCrossRefGoogle Scholar
  52. Gamadia LE, Remmerswaal EB, Weel JF, Bemelman F, van Lier RA, Ten Berge IJ (2003) Primary immune responses to human CMV: a critical role for IFN-gamma-producing CD4 + T cells in protection against CMV disease. Blood 101(7):2686–2692PubMedCrossRefGoogle Scholar
  53. Gamadia LE, Rentenaar RJ, Baars PA, Remmerswaal EB, Surachno S, Weel JF et al (2001) Differentiation of cytomegalovirus-specific CD8(+) T cells in healthy and immunosuppressed virus carriers. Blood 98(3):754–761PubMedCrossRefGoogle Scholar
  54. Gamadia LE, van Leeuwen EM, Remmerswaal EB, Yong SL, Surachno S, Wertheim-van Dillen PM et al (2004) The size and phenotype of virus-specific T cell populations is determined by repetitive antigenic stimulation and environmental cytokines. J Immunol 172(10):6107–6114PubMedGoogle Scholar
  55. Gill JM, Saligan L, Woods S, Page G (2009) PTSD is associated with an excess of inflammatory immune activities. Perspect Psychiatr Care 45(4):262–277PubMedCrossRefGoogle Scholar
  56. Glaser R, Kiecolt-Glaser JK (2005) Stress-induced immune dysfunction: implications for health. Nat Rev Immunol 5(3):243–251PubMedCrossRefGoogle Scholar
  57. Glaser R, Kiecolt-Glaser JK, Speicher CE, Holliday JE (1985) Stress, loneliness, and changes in herpesvirus latency. J Behav Med 8(3):249–260PubMedCrossRefGoogle Scholar
  58. Gratama JW, Brooimans RA, van der Holt B, Sintnicolaas K, van Doornum G, Niesters HG et al (2008) Monitoring cytomegalovirus IE-1 and pp65-specific CD4 + and CD8 + T-cell responses after allogeneic stem cell transplantation may identify patients at risk for recurrent CMV reactivations. Cytometry B Clin Cytom 74(4):211–220PubMedGoogle Scholar
  59. Hadrup SR, Strindhall J, Kollgaard T, Seremet T, Johansson B, Pawelec G et al (2006) Longitudinal studies of clonally expanded CD8 T cells reveal a repertoire shrinkage predicting mortality and an increased number of dysfunctional cytomegalovirus-specific T cells in the very elderly. J Immunol 176(4):2645–2653PubMedGoogle Scholar
  60. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR et al (1997) Phenotypic and functional separation of memory and effector human CD8 + T cells. J Exp Med 186(9):1407–1418PubMedCrossRefGoogle Scholar
  61. Hatfield SM, Petersen BH, DiMicco JA (1986) Beta adrenoceptor modulation of the generation of murine cytotoxic T lymphocytes in vitro. J Pharmacol Exp Ther 239(2):460–466PubMedGoogle Scholar
  62. Hermiston TW, Malone CL, Witte PR, Stinski MF (1987) Identification and characterization of the human cytomegalovirus immediate-early region 2 gene that stimulates gene expression from an inducible promoter. J Virol 61(10):3214–3221PubMedGoogle Scholar
  63. High K, Bradley S, Loeb M, Palmer R, Quagliarello V, Yoshikawa T (2005) A new paradigm for clinical investigation of infectious syndromes in older adults: assessing functional status as a risk factor and outcome measure. J Am Geriatr Soc 53(3):528–535PubMedCrossRefGoogle Scholar
  64. House JS, Landis KR, Umberson D (1988) Social relationships and health. Science 241:540–545PubMedCrossRefGoogle Scholar
  65. Humar A, St Louis P, Mazzulli T, McGeer A, Lipton J, Messner H et al (1999) Elevated serum cytokines are associated with cytomegalovirus infection and disease in bone marrow transplant recipients. J Infect Dis 179(2):484–488PubMedCrossRefGoogle Scholar
  66. Huppert FA, Pinto EM, Morgan K, Brayne C (2003) Survival in a population sample is predicted by proportions of lymphocyte subsets. Mech Ageing Dev 124(4):449–451PubMedCrossRefGoogle Scholar
  67. Kalinichenko VV, Mokyr MB, Graf LH Jr, Cohen RL, Chambers DA (1999) Norepinephrine-mediated inhibition of antitumor cytotoxic T lymphocyte generation involves a beta-adrenergic receptor mechanism and decreased TNF-alpha gene expression. J Immunol 163(5):2492–2499PubMedGoogle Scholar
  68. Kenneson A, Cannon MJ (2007) Review and meta-analysis of the epidemiology of congenital cytomegalovirus (CMV) infection. Rev Med Virol 17(4):253–276PubMedCrossRefGoogle Scholar
  69. Khan N, Shariff N, Cobbold M, Bruton R, Ainsworth JA, Sinclair AJ et al (2002) Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J Immunol 169(4):1984–1992PubMedGoogle Scholar
  70. Kuhlwein EC, Irwin MR, Ziegler MG, Woods VL, Kennedy B, Mills PJ (2001) Propranolol affects stress-induced leukocytosis and cellular adhesion molecule expression. Eur J Appl Physiol 86(2):135–141PubMedCrossRefGoogle Scholar
  71. Kuo CP, Wu CL, Ho HT, Chen C, Liu SI, Lu YT (2008) Detection of cytomegalovirus reactivation in cancer patients receiving chemotherapy. Clin Microbiol Infect 14(3):221–227Google Scholar
  72. Larbi A, Franceschi C, Mazzatti D, Solana R, Wikby A, Pawelec G (2008) Aging of the immune system as a prognostic factor for human longevity. Physiology (Bethesda) 23:64–74CrossRefGoogle Scholar
  73. Larbi A, Pawelec G, Witkowski JM, Schipper HM, Derhovanessian E, Goldeck D et al (2009) Dramatic shifts in circulating CD4 but not CD8 T cell subsets in mild Alzheimer’s disease. J Alzheimers Dis 17(1):91–103PubMedGoogle Scholar
  74. Leo NA, Bonneau RH (2000) Mechanisms underlying chemical sympathectomy-induced suppression of herpes simplex virus-specific cytotoxic T lymphocyte activation and function. J Neuroimmunol 110(1–2):45–56PubMedCrossRefGoogle Scholar
  75. Lilleri D, Fornara C, Chiesa A, Caldera D, Alessandrino EP, Gerna G (2008) Human cytomegalovirus-specific CD4 + and CD8 + T-cell reconstitution in adult allogeneic hematopoietic stem cell transplant recipients and immune control of viral infection. Haematologica 93(2):248–256PubMedCrossRefGoogle Scholar
  76. Limaye AP, Boeckh M (2010) CMV in critically ill patients: pathogen or bystander? Rev Med Virol 20(6):372–379PubMedCrossRefGoogle Scholar
  77. Limaye AP, Kirby KA, Rubenfeld GD, Leisenring WM, Bulger EM, Neff MJ et al (2008) Cytomegalovirus reactivation in critically ill immunocompetent patients. J. Am. Med. Assoc. 300(4):413–422CrossRefGoogle Scholar
  78. Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R (2001) CD4 + CD28- costimulation-independent T cells in multiple sclerosis. J Clin Invest 108(8):1185–1194PubMedGoogle Scholar
  79. Marmot M (2005) Social determinants of health inequalities. Lancet 365(9464):1099–1104PubMedGoogle Scholar
  80. Marsland AL, Bachen EA, Cohen S, Rabin B, Manuck SB (2002) Stress, immune reactivity and susceptibility to infectious disease. Physiol Behav 77(4–5):711–716PubMedCrossRefGoogle Scholar
  81. Matalka KZ, Sidki A, Abdul-Malik SM, Thewaini A-J (2000) Academic stress—influence on Epstein-Barr virus and cytomegalovirus reactivation, cortisol, and prolactin. Lab Med 31(3):163–168CrossRefGoogle Scholar
  82. McDade TW, Stallings JF, Angold A, Costello EJ, Burleson M, Cacioppo JT et al (2000) Epstein-Barr virus antibodies in whole blood spots: a minimally invasive method for assessing an aspect of cell-mediated immunity. Psychosom Med 62(4):560–567PubMedGoogle Scholar
  83. McEwen BS (1998) Protective and damaging effects of stress mediators. N Engl J Med 338(3):171–179PubMedCrossRefGoogle Scholar
  84. Mehta SK, Stowe RP, Feiveson AH, Tyring SK, Pierson DL (2000) Reactivation and shedding of cytomegalovirus in astronauts during spaceflight. J Infect Dis 182(6):1761–1764PubMedCrossRefGoogle Scholar
  85. Michaelis M, Doerr HW, Cinatl J (2009) The story of human cytomegalovirus and cancer: increasing evidence and open questions. Neoplasia 11(1):1–9PubMedGoogle Scholar
  86. Miller GE, Freedland KE, Duntley S, Carney RM (2005) Relation of depressive symptoms to C-reactive protein and pathogen burden (cytomegalovirus, herpes simplex virus, Epstein-Barr virus) in patients with earlier acute coronary syndromes. Am J Cardiol 95(3):317–321PubMedCrossRefGoogle Scholar
  87. Miller GE, Stetler CA, Carney RM, Freedland KE, Banks WA (2002) Clinical depression and inflammatory risk markers for coronary heart disease. Am J Cardiol 90(12):1279–1283PubMedCrossRefGoogle Scholar
  88. Mills PJ, Berry CC, Dimsdale JE, Ziegler MG, Nelesen RA, Kennedy BP (1995) Lymphocyte subset redistribution in response to acute experimental stress: effects of gender, ethnicity, hypertension, and the sympathetic nervous system. Brain Behav Immun 9(1):61–69PubMedCrossRefGoogle Scholar
  89. Mills PJ, Karnik RS, Dillon E (1997) L-selectin expression affects T-cell circulation following isoproterenol infusion in humans. Brain Behav Immun 11(4):333–342PubMedCrossRefGoogle Scholar
  90. Monteiro J, Batliwalla F, Ostrer H, Gregersen PK (1996) Shortened telomeres in clonally expanded CD28-CD8 + T cells imply a replicative history that is distinct from their CD28 + CD8 + counterparts. J Immunol 156(10):3587–3590PubMedGoogle Scholar
  91. Montminy M (1997) Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807–822PubMedCrossRefGoogle Scholar
  92. Morita-Hoshi Y, Heike Y, Kawakami M, Sugita T, Miura O, Kim SW et al (2008) Functional analysis of cytomegalovirus-specific T lymphocytes compared to tetramer assay in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 41(6):515–521PubMedCrossRefGoogle Scholar
  93. Moro-Garcia MA, Alonso-Arias R, Lopez-Vazquez A, Suarez-Garcia FM, Solano-Jaurrieta JJ, Baltar J, Lopez-Larrea C (2012) Relationship between functional ability in older people, immune system status, and intensity of response to CMV. Age 34:479–495Google Scholar
  94. Moss P (2010) The emerging role of cytomegalovirus in driving immune senescence: a novel therapeutic opportunity for improving health in the elderly. Curr Opin Immunol 22(4):529–534PubMedCrossRefGoogle Scholar
  95. Nester EW, Anderson DG, Roberts Jr CE, Nester MT (2008) Microbiology: a human perspective, 6th edn. McGraw-Hill, New YorkGoogle Scholar
  96. Nikolich-Zugich J (2008a) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev ImmunolGoogle Scholar
  97. Nikolich-Zugich J (2008b) Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat Rev Immunol 8(7):512–522CrossRefGoogle Scholar
  98. Nilsson PM (1996) Premature ageing: the link between psychosocial risk factors and disease. Med Hypotheses 47(1):39–42PubMedCrossRefGoogle Scholar
  99. Novak Z, Ross S, Patro R, Pati S, Kumbla R, Brice S et al (2008) Cytomegalovirus strain diversity in seropositive women. J Clin Microbiol 46(3):882–886Google Scholar
  100. Nyklicek I, Bosch JA, Amerongen AV (2005) A generalized physiological hyperreactivity to acute stressors in hypertensives. Biol Psychol 70(1):44–51PubMedCrossRefGoogle Scholar
  101. Ogg GS, Jin X, Bonhoeffer S, Dunbar PR, Nowak MA, Monard S et al (1998) Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279(5359):2103–2106PubMedCrossRefGoogle Scholar
  102. Ozdemir E, St John LS, Gillespie G, Rowland-Jones S, Champlin RE, Molldrem JJ et al (2002) Cytomegalovirus reactivation following allogeneic stem cell transplantation is associated with the presence of dysfunctional antigen-specific CD8 + T cells. Blood 100(10):3690–3697PubMedCrossRefGoogle Scholar
  103. Pawelec G (2006) Immunity and ageing in man. Exp Gerontol 41(12):1239–1242PubMedCrossRefGoogle Scholar
  104. Pawelec G, Akbar A, Caruso C, Effros R, Grubeck-Loebenstein B, Wikby A (2004) Is immunosenescence infectious? Trends Immunol 25(8):406–410PubMedCrossRefGoogle Scholar
  105. Pawelec G, Derhovanessian E (2011) Role of CMV in immune senescence. Virus Res 157:175–179Google Scholar
  106. Pawelec G, Derhovanessian E, Larbi A, Strindhall J, Wikby A (2009) Cytomegalovirus and human immunosenescence. Rev Med Virol 19(1):47–56PubMedCrossRefGoogle Scholar
  107. Pawelec G, McElhaney JE, Aiello AE, Derhovanessian E (2012) The impact of CMV infection on survival in older humans. Curr Opin Immunol 24:507–511Google Scholar
  108. Phillips AC, Carroll D, Khan N, Moss P (2008) Cytomegalovirus is associated with depression and anxiety in older adults. Brain Behav Immun 22(1):52–55PubMedCrossRefGoogle Scholar
  109. Pita-Lopez ML, Gayoso I, Delarosa O, Casado JG, Alonso C, Munoz-Gomariz E et al (2009) Effect of ageing on CMV-specific CD8 T cells from CMV seropositive healthy donors. Immun Ageing 6:11PubMedCrossRefGoogle Scholar
  110. Prelog M (2006) Aging of the immune system: a risk factor for autoimmunity? Autoimmun Rev 5(2):136–139PubMedCrossRefGoogle Scholar
  111. Prosch S, Docke WD, Reinke P, Volk HD, Kruger DH (1999) Human cytomegalovirus reactivation in bone-marrow-derived granulocyte/monocyte progenitor cells and mature monocytes. Intervirology 42(5–6):308–313PubMedGoogle Scholar
  112. Prosch S, Wendt CE, Reinke P, Priemer C, Oppert M, Kruger DH et al (2000) A novel link between stress and human cytomegalovirus (HCMV) infection: sympathetic hyperactivity stimulates HCMV activation. Virology 272(2):357–365PubMedCrossRefGoogle Scholar
  113. Prösch S, Wendt CEC, Reinke P, Priemer C, Oppert M, Krüger DH et al (2000) A novel link between stress and human cytomegalovirus (HCMV) infection: sympathectic hyperactivity stimulates HCMV activation. Virology 272:357–365PubMedCrossRefGoogle Scholar
  114. Roberts ET, Haan MN, Dowd JB, Aiello AE (2010) Cytomegalovirus antibody levels, inflammation, and mortality among elderly Latinos over 9 years of follow-up. Am J Epidemiol 172(4):363–371PubMedCrossRefGoogle Scholar
  115. Ross S, Arora N, Novak Z, Fowler K, Britt W, Boppana S (2010) Cytomegalovirus reinfections in healthy seroimmune women. J Infect Dis 201(3):386–389Google Scholar
  116. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763PubMedCrossRefGoogle Scholar
  117. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401(6754):708–712PubMedCrossRefGoogle Scholar
  118. Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L et al (2008) The immune system in extreme longevity. Exp Gerontol 43(2):61–65PubMedCrossRefGoogle Scholar
  119. Sarid O, Anson O, Yaari A, Margalith M (2001) Epstein-Barr virus specific salivary antibodies as related to stress caused by examinations. J Med Virol 64(2):149–156PubMedCrossRefGoogle Scholar
  120. Sarid O, Anson O, Yaari A, Margalith M (2004) Academic stress, immunological reaction, and academic performance among students of nursing and physiotherapy. Res Nurs Health 27(5):370–377PubMedCrossRefGoogle Scholar
  121. Sauce D, Larsen M, Fastenackels S, Duperrier A, Keller M, Grubeck-Loebenstein B et al (2009) Evidence of premature immune aging in patients thymectomized during early childhood. J Clin Invest 119(10):3070–3078PubMedCrossRefGoogle Scholar
  122. Saurwein-Teissl M, Lung TL, Marx F, Gschosser C, Asch E, Blasko I et al (2002) Lack of antibody production following immunization in old age: association with CD8( +)CD28(−) T cell clonal expansions and an imbalance in the production of Th1 and Th2 cytokines. J Immunol 168(11):5893–5899PubMedGoogle Scholar
  123. Schmidt D, Goronzy JJ, Weyand CM (1996) CD4 + CD7- CD28- T cells are expanded in rheumatoid arthritis and are characterized by autoreactivity. J Clin Invest 97(9):2027–2037PubMedCrossRefGoogle Scholar
  124. Schneiderman N, Ironson G, Siegel SD (2005) Stress and health: psychological, behavioral, and biological determinants. Annu Rev Clin Psychol 1:607–628PubMedCrossRefGoogle Scholar
  125. Segerstrom SC, Miller GE (2004) Psychological stress and the human immune system: a meta-analytic study of 30 years of inquiry. Psychol Bull 130(4):601–630PubMedCrossRefGoogle Scholar
  126. Sekut L, Champion BR, Page K, Menius JA Jr, Connolly KM (1995) Anti-inflammatory activity of salmeterol: down-regulation of cytokine production. Clin Exp Immunol 99(3):461–466PubMedCrossRefGoogle Scholar
  127. Shirtcliff EA, Coe CL, Pollak SD (2009) Early childhood stress is associated with elevated antibody levels to herpes simplex virus type 1. Proc Natl Acad Sci USA 106(8):2963–2967PubMedCrossRefGoogle Scholar
  128. Simon NM, Smoller JW, McNamara KL, Maser RS, Zalta AK, Pollack MH et al (2006) Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging. Biol PsychiatryGoogle Scholar
  129. Simpson RJ. (2010) Aging, persistent viral infections, and immunosenescence: can exercise “make space”? Exercise Sport Sci Rev 39(1):23–33CrossRefGoogle Scholar
  130. Soderberg-Naucler C (2006) Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 259(3):219–246PubMedCrossRefGoogle Scholar
  131. Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ (2006) Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis 43(9):1143–1151PubMedCrossRefGoogle Scholar
  132. Stein J, Volk HD, Liebenthal C, Kruger DH, Prosch S (1993) Tumour necrosis factor alpha stimulates the activity of the human cytomegalovirus major immediate early enhancer/promoter in immature monocytic cells. J Gen Virol 74(Pt 11):2333–2338PubMedCrossRefGoogle Scholar
  133. Stenberg RM, Thomsen DR, Stinski MF (1984) Structural analysis of the major immediate early gene of human cytomegalovirus. J Virol 49(1):190–199PubMedGoogle Scholar
  134. Stinski MF, Isomura H (2008) Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol 197(2):223–231PubMedCrossRefGoogle Scholar
  135. Strandberg TE, Pitkala KH, Tilvis RS (2009) Cytomegalovirus antibody level and mortality among community-dwelling older adults with stable cardiovascular disease. J. Am. Med. Assoc. 301(4):380–382CrossRefGoogle Scholar
  136. Sun Z, Zhong W, Lu X, Shi B, Zhu Y, Chen L et al (2008) Association of Graves’ disease and prevalence of circulating IFN-gamma-producing CD28(−) T cells. J Clin Immunol 28(5):464–472PubMedCrossRefGoogle Scholar
  137. Sutherland S, Bracken P, Wreghitt TG, O’Grady J, Calne RY, Williams R (1992) Donated organ as a source of cytomegalovirus in orthotopic liver transplantation. J Med Virol 37(3):170–173PubMedCrossRefGoogle Scholar
  138. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox N, Anderson LJ et al (2003) Mortality associated with influenza and respiratory syncytial virus in the United States. J. Am. Med. Assoc. 289(2):179–186CrossRefGoogle Scholar
  139. Tong CY, Bakran A, Williams H, Cuevas LE, Peiris JS, Hart CA (2001) Association of tumour necrosis factor alpha and interleukin 6 levels with cytomegalovirus DNA detection and disease after renal transplantation. J Med Virol 64(1):29–34PubMedCrossRefGoogle Scholar
  140. Torfadottir H, Freysdottir J, Skaftadottir I, Haraldsson A, Sigfusson G, Ogmundsdottir HM (2006) Evidence for extrathymic T cell maturation after thymectomy in infancy. Clin Exp Immunol 145(3):407–412PubMedCrossRefGoogle Scholar
  141. Toro AI, Ossa J (1996) PCR activity of CMV in healthy CMV-seropositive individuals: does latency need redefinition? Res Virol 147(4):233–238PubMedCrossRefGoogle Scholar
  142. Trzonkowski P, Mysliwska J, Pawelec G, Mysliwski A (2009) From bench to bedside and back: the SENIEUR Protocol and the efficacy of influenza vaccination in the elderly. Biogerontology 10(1):83–94PubMedCrossRefGoogle Scholar
  143. Turner JE, Aldred S, Witard OC, Drayson MT, Moss PM, Bosch JA (2010) Latent cytomegalovirus infection amplifies CD8 T-lymphocyte mobilisation and egress in response to exercise. Brain Behav Immun 24(8):1362–1370PubMedCrossRefGoogle Scholar
  144. Uchino BN, Cacioppo JT, Kiecolt-Glaser JK (1996) The relationship between social support and physiological processes: a review with emphasis on underlying mechanisms and implications for health. Psychol Bull 119(3):488–531.PubMedCrossRefGoogle Scholar
  145. Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de Los Santos R et al (2010) Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci USA 107(20):9470–9475PubMedCrossRefGoogle Scholar
  146. van Baarle D, Kostense S, Hovenkamp E, Ogg G, Nanlohy N, Callan MF et al (2002) Lack of Epstein-Barr virus and HIV-specific CD27- CD8 + T cells is associated with progression to viral disease in HIV-infection. AIDS 16(15):2001–2011PubMedCrossRefGoogle Scholar
  147. van de Berg PJ, Griffiths SJ, Yong SL, Macaulay R, Bemelman FJ, Jackson S et al (2010) Cytomegalovirus infection reduces telomere length of the circulating T cell pool. J Immunol 184(7):3417–3423PubMedCrossRefGoogle Scholar
  148. van der Meer JT, Drew WL, Bowden RA, Galasso GJ, Griffiths PD, Jabs DA et al (1996) Summary of the international consensus symposium on advances in the diagnosis, treatment and prophylaxis and cytomegalovirus infection. Antiviral Res 32(3):119–140PubMedCrossRefGoogle Scholar
  149. van Lier RA, ten Berge IJ, Gamadia LE (2003) Human CD8( +) T-cell differentiation in response to viruses. Nat Rev Immunol 3(12):931–939PubMedCrossRefGoogle Scholar
  150. van der Ven A, van Diest R, Hamulyák K, Maes M, Bruggeman C, Appels A (2003) Herpes viruses, cytokines, and altered hemostasis in vital exhaustion. Psychosom Med 65(2):194–200Google Scholar
  151. Weinberger B, Lazuardi L, Weiskirchner I, Keller M, Neuner C, Fischer KH et al (2007) Healthy aging and latent infection with CMV lead to distinct changes in CD8( +) and CD4( +) T-cell subsets in the elderly. [Article]. Human Immunol 68(2):86–90CrossRefGoogle Scholar
  152. Widmann T, Sester U, Gartner BC, Schubert J, Pfreundschuh M, Kohler H et al (2008) Levels of CMV specific CD4 T cells are dynamic and correlate with CMV viremia after allogeneic stem cell transplantation. PLoS One 3(11):e3634PubMedCrossRefGoogle Scholar
  153. Wikby A, Ferguson F, Forsey R, Thompson J, Strindhall J, Lofgren S et al (2005) An immune risk phenotype, cognitive impairment, and survival in very late life: impact of allostatic load in Swedish octogenarian and nonagenarian humans. J Gerontol A Biol Sci Med Sci 60(5):556–565PubMedCrossRefGoogle Scholar
  154. Wikby A, Maxson P, Olsson J, Johansson B, Ferguson FG (1998) Changes in CD8 and CD4 lymphocyte subsets, T cell proliferation responses and non-survival in the very old: the Swedish longitudinal OCTO-immune study. Mech Ageing Dev 102(2–3):187–198PubMedCrossRefGoogle Scholar
  155. Wikby A, Nilsson BO, Forsey R, Thompson J, Strindhall J, Lofgren S et al (2006) The immune risk phenotype is associated with IL-6 in the terminal decline stage: findings from the Swedish NONA immune longitudinal study of very late life functioning. Mech Ageing Dev 127(8):695–704PubMedCrossRefGoogle Scholar
  156. Woodland DL, Blackman, MA (2006) Immunity and age: living in the past? Trends Immunol 27(7):303–307PubMedCrossRefGoogle Scholar
  157. Wreghitt TG, Teare EL, Sule O, Devi R, Rice P (2003) Cytomegalovirus infection in immunocompetent patients. Clin Infect Dis 37(12):1603–1606PubMedCrossRefGoogle Scholar
  158. Yoshikawa TT (2000) Epidemiology and unique aspects of aging and infectious diseases. Clin Infect Dis 30(6):931–933PubMedCrossRefGoogle Scholar
  159. Zanghellini F, Boppana SB, Emery VC, Griffiths PD, Pass RF (1999) Asymptomatic primary cytomegalovirus infection: virologic and immunologic features. J Infect Dis 180(3):702–707PubMedCrossRefGoogle Scholar
  160. Zanni F, Vescovini R, Biasini C, Fagnoni F, Zanlari L, Telera A et al (2003) Marked increase with age of type 1 cytokines within memory and effector/cytotoxic CD8 + T cells in humans: a contribution to understand the relationship between inflammation and immunosenescence. Exp Gerontol 38(9):981–987PubMedCrossRefGoogle Scholar
  161. Zorrilla EP, Luborsky L, McKay JR, Rosenthal R, Houldin A, Tax A et al (2001) The relationship of depression and stressors to immunological assays: a meta-analytic review. Brain Behav Immun 15(3):199–226PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jos A. Bosch
    • 1
    • 2
    • 3
  • Jerrald L. Rector
    • 2
  • James E. Turner
    • 4
  • Natalie E. Riddell
    • 5
  • Briain o‘Hartaigh
    • 2
  • Vikki E. Burns
    • 2
  1. 1.Department of Clinical PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.School of Sport and Exercise SciencesUniversity of BirminghamBirminghamUK
  3. 3.Mannheim Institute of Public Health, Social and Preventive Medicine (MIPH)University of HeidelbergMannheimGermany
  4. 4.CRUK Institute of Cancer StudiesUniversity of BirminghamBirminghamUK
  5. 5.School of Infection and ImmunityUniversity College LondonLondonUK

Personalised recommendations