Advertisement

NCKX5, a Natural Regulator of Human Skin Colour Variation, Regulates the Expression of Key Pigment Genes MC1R and Alpha-MSH and Alters Cholesterol Homeostasis in Normal Human Melanocytes

  • Stephen Wilson
  • Rebecca S. GingerEmail author
  • Tony Dadd
  • David Gunn
  • Fei-Ling Lim
  • Magdalena Sawicka
  • Melanie Sandel
  • Paul P. M. Schnetkamp
  • Martin R. Green
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)

Abstract

Natural human skin colour is determined both by environmental exposure to ultraviolet light and through inherited genetic variation in a very limited number of genes. Variation of a non-synonymous single-nucleotide polymorphism (nsSNP; rs1426654) in the gene (SLC24A5) encoding the NCKX5 protein is associated with differences in constitutive skin colour in South Asians. The nsSNP encodes the substitution of alanine for threonine at residue 111 (A111T) near a transmembrane region required for exchanger activity, a region which is highly conserved across different species and between NCKX family members. We have shown that NCKX5 is located at the trans-Golgi network of melanocytes and functions as a potassium-dependent sodium-calcium exchanger. When heterologously expressed, the 111T variant of NCKX5 shows significantly lower exchanger activity than the A111 variant. We have postulated that lower exchanger activity causes the reduced melanogenesis and lighter skin in Thr111-positive individuals. We used gene expression microarrays with qPCR replication and validation to assess the impact of siRNA-mediated knockdown of SLC24A5 on the transcriptome of cultured normal human melanocytes (NHM). Very few genes associated with melanogenesis were altered at the transcript level except for MC1R, suggesting that SLC24A5 interacts with at least one well-characterized melanogenic signalling pathway. More surprisingly, the expression of a number of cholesterol homeostatic genes was altered after SLC24A5 knockdown, and the total cholesterol content of NHM was increased. Cholesterol has previously been identified as a potential melanogenic regulator, and our data imply that NCKX5 exchanger function influences natural variation in skin pigmentation via a novel, unknown mechanism affecting cellular sterol levels.

Keywords

Pigmentation Cholesterol Melanocyte trans-Golgi 

Notes

Acknowledgements

We thank Carl Jarman, Wendy Filsell, Amelia Jarman, Gordon James and Dawn Mazzatti for their support and helpful discussions.

References

  1. Z.A. Abdel-Malek, M.C. Scott, M. Furumura, M.L. Lamoreux, M. Ollmann, G.S. Barsh, V.J. Hearing, The melanocortin 1 receptor is the principal mediator of the effects of agouti signaling protein on mammalian melanocytes. J. Cell Sci. 114(Pt 5), 1019–1024 (2001)PubMedGoogle Scholar
  2. H.F. Altimimi, P.P. Schnetkamp, Na+-dependent inactivation of the retinal cone/brain Na+/Ca2+-K+ exchanger NCKX2. J. Biol. Chem. 282, 3720–3729 (2007a)PubMedCrossRefGoogle Scholar
  3. H.F. Altimimi, P.P.M. Schnetkamp, Na+/Ca2+-K+ exchangers (NCKX): functional properties and physiological roles. Channels 1(2), 62–69 (2007b)PubMedGoogle Scholar
  4. K.A. Beaumont, S.N. Shekar, A.L. Cook, D.L. Duffy, R.A. Sturm, Red hair is the null phenotype of MC1R. Hum. Mutat. 29(8), E88–E94 (2008)PubMedCrossRefGoogle Scholar
  5. P.V. Burgos, C. Klattenhoff, E. de la Fuente, A. Rigotti, A. González, Cholesterol depletion induces PKA-mediated basolateral-to-apical transcytosis of the scavenger receptor class B type I in MDCK cells. Proc. Natl. Acad. Sci. U. S. A. 101(11), 3845–3850 (2004)PubMedCrossRefGoogle Scholar
  6. Y. Cheli, F. Luciani, M. Khaled, L. Beuret, K. Bille, P. Gounon, J.P. Ortonne, C. Bertolotto, R. Ballotti, αMSH and Cyclic AMP elevating agents control melanosome pH through a protein kinase A-independent mechanism. J. Biol. Chem. 284(28), 18699–18706 (2009)PubMedCrossRefGoogle Scholar
  7. H. Chen, J. Yang, P.S. Low, J.X. Cheng, Cholesterol level regulates endosome motility via Rab proteins. Biophys. J. 94(4), 1508–1520 (2008)PubMedCrossRefGoogle Scholar
  8. X. Chen, M.D. Resh, Cholesterol depletion from the plasma membrane triggers ligand-independent activation of the epidermal growth factor receptor. J. Biol. Chem. 277(51), 49631–49637 (2002)PubMedCrossRefGoogle Scholar
  9. Y. Chen, X.Z. Ruan, Q. Li, A. Huang, J.F. Moorhead, S.H. Powis, Z. Varghese, Inflammatory cytokines disrupt LDL-receptor feedback regulation and cause statin resistance: a comparative study in human hepatic cells and mesangial cells. Am. J. Physiol. Renal Physiol. 293(3), F680–F687 (2007)PubMedCrossRefGoogle Scholar
  10. A. Chi, J.C. Valencia, Z.Z. Hu, H. Watabe, H. Yamaguchi, N.J. Mangini, H. Huang, V.A. Canfield, K.C. Cheng, F. Yang, R. Abe, S. Yamagishi, J. Shabanowitz, V.J. Hearing, C. Wu, E. Appella, D.F. Hunt, Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. J. Proteome Res. 5(11), 3135–3144 (2006)PubMedCrossRefGoogle Scholar
  11. C. Chiaverini, L. Beuret, E. Flori, R. Busca, P. Abbe, K. Bille, P. Bahadoran, J.P. Ortonne, C. Bertolotto, R. Ballotti, Microphthalmia-associated transcription factor regulates RAB27A gene expression and controls melanosome transport. J. Biol. Chem. 283(18), 12635–12642 (2008)PubMedCrossRefGoogle Scholar
  12. J.A. D’Orazio, T. Nobuhisa, R. Cui, M. Arya, M. Spry, K. Wakamatsu, V. Igras, T. Kunisada, S.R. Granter, E.K. Nishimura, S. Ito, D.E. Fisher, Topical drug rescue strategy and skin protection based on the role of Mc1r in UV-induced tanning. Nature 443(7109), 340–344 (2006)PubMedCrossRefGoogle Scholar
  13. N.J. Dolman, A.V. Tepikin, Calcium gradients and the Golgi. Cell Calcium 40(5–6), 505–512 (2006)PubMedCrossRefGoogle Scholar
  14. S. Emr, B.S. Glick, A.D. Linstedt, J. Lippincott-Schwartz, A. Luini, V. Malhotra, B.J. Marsh, A. Nakano, S.R. Pfeffer, C. Rabouille, J.E. Rothman, G. Warren, F.T. Wieland, Journeys through the Golgi – taking stock in a new era. J. Cell Biol. 187(4), 449–453 (2009)PubMedCrossRefGoogle Scholar
  15. Z. Freyberg, S. Bourgoin, D. Shields, Phospholipase D2 is localized to the rims of the Golgi apparatus in mammalian cells. Mol. Biol. Cell 13(11), 3930–3942 (2002)PubMedCrossRefGoogle Scholar
  16. R.S. Ginger, S.E. Askew, R.M. Ogborne, S. Wilson, D. Ferdinando, T. Dadd, A.M. Smith, S. Kazi, R.T. Szerencsei, R.J. Winkfein, P.P. Schnetkamp, M.R. Green, SLC24A5 encodes a trans-Golgi network protein with potassium-dependent sodium-calcium exchange activity that regulates human epidermal melanogenesis. J. Biol. Chem. 283(9), 5486–5495 (2008)PubMedCrossRefGoogle Scholar
  17. A.M. Hall, L. Krishnamoorthy, S.J. Orlow, 25-hydroxycholesterol acts in the Golgi compartment to induce degradation of tyrosinase. Pigment Cell Res. 17(4), 396–406 (2004)PubMedCrossRefGoogle Scholar
  18. T. Hida, K. Wakamatsu, E.V. Sviderskaya, A.J. Donkin, L. Montoliu, M. Lynn Lamoreux, B. Yu, G.L. Millhauser, S. Ito, G.S. Barsh, K. Jimbow, D.C. Bennett, Agouti protein, mahogunin, and attractin in pheomelanogenesis and melanoblast-like alteration of melanocytes: a cAMP-independent pathway. Pigment Cell Melanoma Res. 22(5), 623–634 (2009)PubMedCrossRefGoogle Scholar
  19. K.S. Hoek, N.C. Schlegel, O.M. Eichhoff, D.S. Widmer, C. Praetorius, S.O. Einarsson, S. Valgeirsdottir, K. Bergsteinsdottir, A. Schepsky, R. Dummer, E. Steingrimsson, Novel MITF targets identified using a two-step DNA microarray strategy. Pigment Cell Melanoma Res. 21, 665–676 (2008)PubMedCrossRefGoogle Scholar
  20. M. Hozoji, Y. Munehira, Y. Ikeda, M. Makishima, M. Matsuo, N. Kioka, K. Ueda, Direct interaction of nuclear liver X receptor-beta with ABCA1 modulates cholesterol efflux. J. Biol. Chem. 283(44), 30057–30063 (2008)PubMedCrossRefGoogle Scholar
  21. International HapMap Consortium, A haplotype map of the human genome. Nature 437(7063), 1299–1320 (2005)CrossRefGoogle Scholar
  22. N. Iwamoto, S. Abe-Dohmae, R. Lu, S. Yokoyama, Involvement of protein kinase D in phosphorylation and increase of DNA binding of activator protein 2 alpha to downregulate ATP-binding cassette transporter A1. Arterioscler. Thromb. Vasc. Biol. 28(12), 2282–2287 (2008)PubMedCrossRefGoogle Scholar
  23. K. Jimbow, J.S. Park, F. Kato, K. Hirosaki, K. Toyofuku, C. Hua, T. Yamashita, Assembly, target-signaling and intracellular transport of tyrosinase gene family proteins in the initial stage of melanosome biogenesis. Pigment Cell Res. 13(4), 222–229 (2000)PubMedCrossRefGoogle Scholar
  24. S.H. Jin, Y.Y. Lee, H.Y. Kang, Methyl-beta-cyclodextrin, a specific cholesterol-binding agent, inhibits melanogenesis in human melanocytes through activation of ERK. Arch. Dermatol. Res. 300(8), 451–454 (2008)PubMedCrossRefGoogle Scholar
  25. R.W. Klemm, C.S. Ejsing, M.A. Surma, H.J. Kaiser, M.J. Gerl, J.L. Sampaio, Q. de Robillard, C. Ferguson, T.J. Proszynski, A. Shevchenko, K. Simons, Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185(4), 601–612 (2009)PubMedCrossRefGoogle Scholar
  26. H.M. Koo, M. VanBrocklin, M.J. McWilliams, S.H. Leppla, N.S. Duesbery, G.F. Woude, Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc. Natl. Acad. Sci. U. S. A. 99(5), 3052–3057 (2002)PubMedCrossRefGoogle Scholar
  27. R.L. Lamason, M.A. Mohideen, J.R. Mest, A.C. Wong, H.L. Norton, M.C. Aros, M.J. Jurynec, X. Mao, V.R. Humphreville, J.E. Humbert, S. Sinha, J.L. Moore, P. Jagadeeswaran, W. Zhao, G. Ning, I. Makalowska, P.M. McKeigue, D. O’donnell, R. Kittles, E.J. Parra, N.J. Mangini, D.J. Grunwald, M.D. Shriver, V.A. Canfield, K.C. Cheng, SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310(5755), 1782–17866 (2005)PubMedCrossRefGoogle Scholar
  28. E. Le Pape, T. Passeron, A. Giubellino, J.C. Valencia, R. Wolber, V.J. Hearing, Microarray analysis sheds light on the dedifferentiating role of agouti signal protein in murine melanocytes via the Mc1r. Proc. Natl. Acad. Sci. U. S. A. 106(6), 1802–1807 (2009)PubMedCrossRefGoogle Scholar
  29. L. Liscum, J.R. Faust, The intracellular transport of low density lipoprotein-derived cholesterol is inhibited in Chinese hamster ovary cells cultured with 3-beta-[2-(diethylamino)ethoxy]androst-5-en-17-one. J. Biol. Chem. 264(20), 11796–11806 (1989)PubMedGoogle Scholar
  30. A. Luini, A.A. Mironov, E.V. Polishchuk, R.S. Polishchuk, Morphogenesis of post-Golgi transport carriers. Histochem. Cell Biol. 129(2), 153–161 (2008)PubMedCrossRefGoogle Scholar
  31. N.J. Nadeau, F. Minvielle, S. Ito, M. Inoue-Murayama, D. Gourichon, S.A. Follett, T. Burke, N.I. Mundy, Characterization of Japanese quail yellow as a genomic deletion upstream of the avian homolog of the mammalian ASIP (agouti) gene. Genetics 178(2), 777–786 (2008)PubMedCrossRefGoogle Scholar
  32. R.A. Newton, A.L. Cook, D.W. Roberts, J.H. Leonard, R.A. Sturm, Post-transcriptional regulation of melanin biosynthetic enzymes by cAMP and resveratrol in human melanocytes. J. Invest. Dermatol. 127(9), 2216–2227 (2007)PubMedCrossRefGoogle Scholar
  33. C. Olivares, F. Solano, J.C. García-Borrón, Conformation-dependent post-translational glycosylation of tyrosinase. Requirement of a specific interaction involving the CuB metal binding site. J. Biol. Chem. 278(18), 15735–15743 (2003)PubMedCrossRefGoogle Scholar
  34. I. Palmisano, P. Bagnato, A. Palmigiano, G. Innamorati, G. Rotondo, D. Altimare, C. Venturi, E.V. Sviderskaya, R. Piccirillo, M. Coppola, V. Marigo, B. Incerti, A. Ballabio, E.M. Surace, C. Tacchetti, D.C. Bennett, M.V. Schiaffino, The ocular albinism type 1 protein, an intracellular G protein-coupled receptor, regulates melanosome transport in pigment cells. Hum. Mol. Genet. 17(22), 3487–3501 (2008)PubMedCrossRefGoogle Scholar
  35. H.Y. Park, C. Wu, L. Yonemoto, M. Murphy-Smith, H. Wu, C.M. Stachur, B.A. Gilchrest, MITF mediates cAMP-induced protein kinase C-beta expression in human melanocytes. Biochem. J. 395(3), 571–578 (2006)PubMedCrossRefGoogle Scholar
  36. A.E. Radulescu, A. Siddhanta, D. Shields, A role for clathrin in reassembly of the Golgi apparatus. Mol. Biol. Cell 18(1), 94–105 (2007)PubMedCrossRefGoogle Scholar
  37. D. Rodriguez-Agudo, S. Ren, E. Wong, D. Marques, K. Redford, G. Gil, P. Hylemon, W.M. Pandak, Intracellular cholesterol transporter StarD4 binds free cholesterol and increases cholesteryl ester formation. J. Lipid Res. 49(7), 1409–1419 (2008)PubMedCrossRefGoogle Scholar
  38. K.U. Schallreuter, S. Hasse, H. Rokos, B. Chavan, M. Shalbaf, J.D. Spencer, J.M. Wood, Cholesterol regulates melanogenesis in human epidermal melanocytes and melanoma cells. Exp. Dermatol. 18(8), 680–688 (2009)PubMedCrossRefGoogle Scholar
  39. A. Schepsky, K. Bruser, G.J. Gunnarsson, J. Goodall, J.H. Hallsson, C.R. Goding, E. Steingrimsson, A. Hecht, The microphthalmia-associated transcription factor Mitf interacts with beta-catenin to determine target gene expression. Mol. Cell. Biol. 26(23), 8914–8927 (2006)PubMedCrossRefGoogle Scholar
  40. P.P. Schnetkamp, The SLC24 Na+/Ca2+-K+ exchanger family: vision and beyond. Pflugers Arch. 447(5), 683–688 (2004)PubMedCrossRefGoogle Scholar
  41. M.C. Scott, I. Suzuki, Z.A. Abdel-Malek, Regulation of the human melanocortin 1 receptor expression in epidermal melanocytes by paracrine and endocrine factors and by ultraviolet radiation. Pigment Cell Res. 15(6), 433–439 (2002)PubMedCrossRefGoogle Scholar
  42. N. Sekar, J.D. Veldhuis, Concerted transcriptional activation of the low density lipoprotein receptor gene by insulin and luteinizing hormone in cultured porcine granulosa-luteal cells: possible convergence of protein kinase a, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase signaling pathways. Endocrinology 142(7), 2921–2928 (2001)PubMedCrossRefGoogle Scholar
  43. S.R. Setty, D. Tenza, E.V. Sviderskaya, D.C. Bennett, G. Raposo, M.S. Marks, Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature 454(7208), 1142–1146 (2008)PubMedCrossRefGoogle Scholar
  44. R.P. Stokowski, P.V. Pant, T. Dadd, A. Fereday, D.A. Hinds, C. Jarman, W. Filsell, R.S. Ginger, M.R. Green, F.J. van der Ouderaa, D.R. Cox, A genomewide association study of skin pigmentation in a South Asian population. Am. J. Hum. Genet. 81(6), 1119–1132 (2007)PubMedCrossRefGoogle Scholar
  45. P. Vogel, R.W. Read, R.B. Vance, K.A. Platt, K. Troughton, D.S. Rice, Ocular albinism and hypopigmentation defects in Slc24a5-/- mice. Vet. Pathol. 45(2), 264–279 (2008)PubMedCrossRefGoogle Scholar
  46. Y. Yamaguchi, V.J. Hearing, Physiological factors that regulate skin pigmentation. Biofactors 35(2), 193–199 (2009)PubMedCrossRefGoogle Scholar
  47. L. Zhou, H.Y. Choi, W.P. Li, F. Xu, J. Herz, LRP1 controls cPLA2 phosphorylation, ABCA1 expression and cellular cholesterol export. PLoS One 4(8), e6853 (2009)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Stephen Wilson
    • 1
  • Rebecca S. Ginger
    • 1
    Email author
  • Tony Dadd
    • 1
  • David Gunn
    • 1
  • Fei-Ling Lim
    • 1
  • Magdalena Sawicka
    • 1
  • Melanie Sandel
    • 1
  • Paul P. M. Schnetkamp
    • 2
  • Martin R. Green
    • 1
  1. 1.Unilever R&D, Colworth Science Park, SharnbrookBedfordshireUK
  2. 2.Department of Physiology and Pharmacology, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada

Personalised recommendations