Advertisement

Molecular Determinants of Allosteric Regulation in NCX Proteins

  • Moshe Giladi
  • Daniel KhananshviliEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)

Abstract

Allosteric activation of NCX involves the binding of cytosolic Ca2+ to regulatory domains CBD1 and CBD2. Previous studies with isolated CBD12 and full-size NCX identified synergistic interactions between the two CBD domains that modify the affinity and kinetic properties of Ca2+ sensing, although it remains unclear how the Ca2+-binding signal is decoded and propagates to transmembrane domains. Biophysical analyses (X-ray, SAXS, and stopped-flow techniques) of isolated preparations of CBD1, CBD2, and CBD12 have shown that Ca2+ binding to Ca3-Ca4 sites of CBD1 results in interdomain tethering of CBDs through specific amino acids on CBD1 (Asp499 and Asp500) and CBD2 (Arg532 and Asp565). Mutant analyses of isolated CBDs suggest that the two-domain interface governs Ca2+-driven conformational alignment of CBDs, resulting in slow dissociation of Ca2+ from CBD12, and thus, it mediates Ca2+-induced conformational transitions associated with allosteric signal transmission. Specifically, occupation of Ca3-Ca4 sites by Ca2+ induces disorder-to-order transition owing to charge neutralization and coordination, thereby constraining CBD conformational freedom, rigidifying the NCX1 f-loop, and triggering allosteric signal transmission to the membrane domain. The newly found interdomain switch is highly conserved among NCX isoform/splice variants, although some additional structural motifs may shape the regulatory specificity of NCX variants.

Keywords

NCX Allosteric regulation Interdomain Ca2+ switch Disorder-­to-order transition 

Notes

Acknowledgments

This work was partially funded by the Israeli Ministry of Health Grant # 2010-3-6266, the USA-Israeli Binational Research Grant # 2009-334, and the Israel Science Foundation Grant # 23/10. Financial support from the Bernstein Foundation is highly appreciated.

References

  1. M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell. Biol. 4, 517–529 (2003)CrossRefGoogle Scholar
  2. G.M. Besserer, M. Ottolia, D.A. Nicoll, V. Chaptal, D. Cascio, K.D. Philipson, J. Abramson, The second Ca2+-binding domain of the Na+/Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proc. Natl. Acad. Sci. U. S. A. 104, 18467–18472 (2007)PubMedCrossRefGoogle Scholar
  3. M.P. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)PubMedGoogle Scholar
  4. L. Boyman, R. Hiller, W.J. Lederer, D. Khananshvili, Direct loading of the purified endogenous inhibitor into the cytoplasm of patched cardiomyocytes blocks the ion currents and calcium transport through the NCX1 protein. Biochemistry 47, 6602–6611 (2008)PubMedCrossRefGoogle Scholar
  5. L. Boyman, H. Mikhasenko, R. Hiller, D. Khananshvili, Kinetic and equilibrium properties of regulatory calcium sensors of NCX1 protein. J. Biol. Chem. 284, 6185–6193 (2009)PubMedCrossRefGoogle Scholar
  6. L. Boyman, B.M. Hagen, M. Giladi, R. Hiller, W.J. Lederer, D. Khananshvili, Proton sensing Ca2+ binding domains regulate the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 286, 28811–28820 (2011)PubMedCrossRefGoogle Scholar
  7. V. Breukels, G.W. Vuister, Binding of calcium is sensed structurally and dynamically throughout the second calcium-binding domain of the sodium/calcium exchanger. Proteins 78, 1813–1824 (2010)PubMedCrossRefGoogle Scholar
  8. V. Breukels et al., The second Ca2+-binding domain of NCX1 binds Mg2+ with high affinity. Biochemistry 50, 8804–8812 (2011)PubMedCrossRefGoogle Scholar
  9. M.B. Cannell, C. Soeller, Analysing cardiac excitation-contraction coupling with mathematical models of local control. Prog. Biophys. Mol. Biol. 85, 141–162 (2004)PubMedCrossRefGoogle Scholar
  10. E. Carafoli, Intracellular calcium homeostasis. Ann. Rev. Biochem. 56, 395–433 (1987)PubMedCrossRefGoogle Scholar
  11. V. Chaptal, G. Mercado-Besserer, M. Ottolia, D.A. Nicoll, D. Cascio, K.D. Philipson, J. Abramson, How does regulatory Ca2+ regulate the Na+-Ca2+ exchanger? Channels 1, 397–399 (2007)PubMedCrossRefGoogle Scholar
  12. V. Chaptal, M. Ottolia, G. Mercado-Besserer, D.A. Nicoll, K.D. Philipson, J. Abramson, Structure and functional analysis of a Ca2+ sensor mutant of the Na+/Ca2+ exchanger. J. Biol. Chem. 284, 14688–14692 (2009)PubMedCrossRefGoogle Scholar
  13. H.S. Choi, A.W. Trafford, C.H. Orchard, D.A. Eisner, The effect of acidosis on systolic Ca2+ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes. J. Physiol. (Lond.) 529, 661–668 (2000)CrossRefGoogle Scholar
  14. R. DiPolo, L. Beauge, The effects of pH on Ca2+ extrusion mechanisms in dialyzed squid axons. Biochim. Biophys. Acta 688, 237–245 (1982)PubMedCrossRefGoogle Scholar
  15. R. DiPolo, L. Beauge, Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86, 155–203 (2006)PubMedCrossRefGoogle Scholar
  16. A.E. Doering, W.J. Lederer, The action of Na+ as a cofactor in the inhibition by cytoplasmic protons of the cardiac Na+-Ca2+ exchanger in the guinea-pig. J. Physiol. (Lond.) 480, 9–20 (1994)Google Scholar
  17. A.E. Doering, D.A. Eisner, W.J. Lederer, Cardiac Na-Ca exchange and pH. Ann. N. Y. Acad. Sci. 779, 182–198 (1996)PubMedCrossRefGoogle Scholar
  18. J. Dunn, C.L. Elias, H.D. Le, A. Omelchenko, L.V. Hryshko, J. Lytton, The molecular determinants of ionic regulatory differences between brain and kidney Na+/Ca2+ exchanger (NCX1) isoforms. J. Biol. Chem. 277, 33957–33962 (2002)PubMedCrossRefGoogle Scholar
  19. C. Dyck, A. Omelchenko, C.L. Elias, B.D. Quednau, K.D. Philipson, M. Hnatowich, L.V. Hryshko, Ionic regulatory properties of brain and kidney splice variants of the NCX1 Na+-Ca2+ exchanger. J. Gen. Physiol. 114, 701–711 (1999)PubMedCrossRefGoogle Scholar
  20. M. Giladi, L. Boyman, H. Mikhasenko, R. Hiller, D. Khananshvili, Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1. J. Biol. Chem. 285, 28117–28125 (2010)PubMedCrossRefGoogle Scholar
  21. M. Giladi, Y. Sasson, X. Fang, R. Hiller, T. Buki, Y.X. Wang, J.A. Hirsh, D. Khananshvili, A common Ca2+-driven interdomain module governs eukariotic NCX regulation. PloS One 7(6): e39985 (2012)PubMedCrossRefGoogle Scholar
  22. K.S. Ginsburg et al., Simultaneous measurement of [Na]i, [Ca]i, and INCX in intact cardiac myocytes. Ann. N. Y. Acad. Sci. 976, 157–158 (2002)PubMedCrossRefGoogle Scholar
  23. S.M. Harrison, J.E. Frampton, E. McCall, M.R. Boyett, C.H. Orchard, Contraction and intracellular Ca2+, Na+, and H+ during acidosis in rat ventricular myocytes. Am. J. Physiol. 262, C348–C357 (1992)PubMedGoogle Scholar
  24. D. Häussinger, T. Ahrens, H.J. Sass, O. Pertz, J. Engel, S. Grzesiek, Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions. J. Mol. Biol. 324, 823–839 (2002)PubMedCrossRefGoogle Scholar
  25. M. Hilge, J. Aelen, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell 22, 15–25 (2006)PubMedCrossRefGoogle Scholar
  26. M. Hilge, J. Aelen, A. Foarce, A. Perrakis, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc. Natl. Acad. Sci. U. S. A. 106, 14333–14338 (2009)PubMedCrossRefGoogle Scholar
  27. D.W. Hilgemann, S. Matsuoka, G.A. Nagel, A. Collins, Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J. Gen. Physiol. 100, 905–932 (1992a)PubMedCrossRefGoogle Scholar
  28. D.W. Hilgemann, A. Collins, S. Matsuoka, Steady-state and dynamic properties of cardiac sodium-calcium exchange. Secondary modulation by cytoplasmic calcium and ATP. J. Gen. Physiol. 100, 933–961 (1992b)PubMedCrossRefGoogle Scholar
  29. L. Hryshko, What regulates Na+-Ca2+ exchanger? Focus on “sodium-dependent inactivation of sodium-calcium exchange in transfected Chinese hamster ovary cells”. Am. J. Physiol. Cell Physiol. 295, C869–C871 (2008)PubMedCrossRefGoogle Scholar
  30. L.V. Hryshko, S. Matsuoka, D.A. Nicoll, J.N. Weiss, E.M. Schwarz, S. Benzer, K.D. Philipson, Anomalous regulation of the Drosophila Na+-Ca2+ exchanger by Ca2+. J. Gen. Physiol. 108, 67–74 (1996)PubMedCrossRefGoogle Scholar
  31. S.A. John, B. Ribalet, J.N. Weiss, K.D. Philipson, M. Ottolia, Ca2+-dependent structural rearrangements within Na+-Ca2+ exchanger dimers. Proc. Natl. Acad. Sci. U. S. A. 108, 1699–1704 (2011)PubMedCrossRefGoogle Scholar
  32. E. Johnson, L. Brüschweiler-Li, S.A. Showalter, G.W. Vuister, F. Zhang, R. Brüschweiler, Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. J. Mol. Biol. 377, 945–955 (2008)PubMedCrossRefGoogle Scholar
  33. D. Khananshvili, Structure, mechanism and regulation of the cardiac sarcolemma Na+-Ca2+ exchanger. Mol. Cell. Biol. 23B, 309–356 (1998)Google Scholar
  34. D. Khananshvili, The SLC8 gene family of sodium-calcium exchangers (NCX) – structure, function, and regulation in health and disease. Mol. Asp. Med. (2012) in pressGoogle Scholar
  35. D.O. Levitsky, D.A. Nicoll, K.D. Philipson, Identification of the high affinity Ca2+-binding domain of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 269, 22847–22852 (1994)PubMedGoogle Scholar
  36. D.O. Levitsky et al., Cooperative interaction between Ca2+ binding sites in the hydrophilic loop of the Na+-Ca2+ exchanger. Mol. Cell. Biochem. 160–161, 27–32 (1996)PubMedCrossRefGoogle Scholar
  37. J. Lytton, Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem. J. 406, 365–382 (2007)PubMedCrossRefGoogle Scholar
  38. N.J. Malmberg, S. Varma, E. Jakobsson, J.J. Falke, Ca2+ activation of the cPLA2 C2 domain: ordered binding of two Ca2+ ions with positive cooperativity. Biochemistry 43, 16320–16328 (2004)PubMedCrossRefGoogle Scholar
  39. S. Matsuoka, D.A. Nicoll, R.F. Reilly, D.W. Hilgemann, K.D. Philipson, Initial localization of regulatory regions of the cardiac sarcolemmal Na+-Ca2+ exchanger. Proc. Natl. Acad. Sci. U. S. A. 90, 3870–3874 (1993)PubMedCrossRefGoogle Scholar
  40. S. Matsuoka, D.A. Nicoll, L.V. Hryshko, D.O. Levitsky, J.N. Weiss, K.D. Philipson, Mutant analysis of the Ca2+ binding domain. J. Gen. Physiol. 105, 403–420 (1995)PubMedCrossRefGoogle Scholar
  41. P. Montaville, C. Schlicker, A. Leonov, M. Zweckstetter, G.M. Sheldrick, S. Becker, The C2A-C2B linker defines the high affinity Ca2+ binding mode of rabphilin-3A. J. Biol. Chem. 282, 5015–5025 (2007)PubMedCrossRefGoogle Scholar
  42. D.A. Nicoll, M.R. Sawaya, S. Kwon, D. Cascio, K.D. Philipson, J. Abramson, The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J. Biol. Chem. 281, 21577–21581 (2006)PubMedCrossRefGoogle Scholar
  43. D.A. Nicoll, X. Ren, M. Ottolia, M. Phillips, A.R. Parades, J. Abramson, K.D. Philipson, What we know about the structure of NCX1 and how it relates to its function. Ann. NY Acad. Sci. 1099, 1–6 (2007)PubMedCrossRefGoogle Scholar
  44. M. Ottolia, K.D. Philipson, S. John, Conformational changes of the Ca2+ regulatory site of the Na+-Ca2+ exchanger detected by FRET. Biophys. J. 87, 899–906 (2004)PubMedCrossRefGoogle Scholar
  45. M. Ottolia, D.A. Nicoll, K.D. Philipson, Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 284, 32735–32741 (2009)PubMedCrossRefGoogle Scholar
  46. M. Ottolia, D.A. Nicoll, S. John, K.D. Philipson, Interactions between Ca2+ binding domains of the Na+-Ca2+ exchanger and secondary regulation. Channels 4, 1–4 (2010)CrossRefGoogle Scholar
  47. K.D. Philipson, D.A. Nicoll, Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133 (2000)PubMedCrossRefGoogle Scholar
  48. K.D. Philipson, M.M. Bersohn, A.Y. Nishimoto, Effects of pH on Na+-Ca2+ exchange in canine cardiac sarcolemmal vesicles. Circ. Res. 50, 287–293 (1982)PubMedCrossRefGoogle Scholar
  49. S.M. Pogwizd, K. Schlotthauer, L. Li, W. Yuan, D.M. Bers, Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 88, 1159–1167 (2001)PubMedCrossRefGoogle Scholar
  50. J. Reeves, M. Condrescu, Ionic regulation of the cardiac sodium-calcium exchanger. Channels 2, 322–328 (2008)PubMedCrossRefGoogle Scholar
  51. J. Rizo, T.C. Südhof, C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998)PubMedCrossRefGoogle Scholar
  52. P.K. Salinas, L. Brüschweiler-Li, E. Johnson, R. Brüschweiler, Ca2+ binding alters the inter-domain flexibility between the cytoplasmic calcium-binding domains in the Na+/Ca2+ exchanger. J. Biol. Chem. 286, 32123–32131 (2011)PubMedCrossRefGoogle Scholar
  53. E.A. Sobie, K.W. Dilly, J. dos Santos Cruz, W.J. Lederer, M.S. Jafri, Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys. J. 83, 59–78 (2002)PubMedCrossRefGoogle Scholar
  54. R.V. Stahelin, J. Wang, N.R. Blatner, J.D. Rafter, D. Murray, W. Cho, The origin of C1A-C2 interdomain interactions in protein kinase C. J. Biol. Chem. 280, 36452–36463 (2005)PubMedCrossRefGoogle Scholar
  55. C.R. Weber, K.S. Ginsburg, K.D. Philipson et al., Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiomyocytes. J. Gen. Physiol. 117, 119–131 (2001)PubMedCrossRefGoogle Scholar
  56. S. Wei et al., Cytosolic free magnesium modulates Na/Ca exchange currents in pig myocytes. Cardiovasc. Res. 53, 334–340 (2002)PubMedCrossRefGoogle Scholar
  57. M. Wu, M. Wang, J. Nix, L.V. Hryshko, L. Zheng, Crystal structure of CBD2 from the Drosophila Na+/Ca2+ exchanger: diversity of Ca2+ regulation and its alternative splicing modification. J. Mol. Biol. 387, 104–112 (2009)PubMedCrossRefGoogle Scholar
  58. M. Wu et al., Crystal structures of progressive Ca2+ binding states of the Ca2+ sensor Ca2+ binding domain 1 (CBD1) from the CALX Na+/Ca2+ exchanger reveal incremental conformational transitions. J. Biol. Chem. 285, 2554–2561 (2010)PubMedCrossRefGoogle Scholar
  59. M. Wu et al., Structural basis of the Ca2+ inhibitory mechanism of Drosophila Na/Ca exchanger CALX and its modification by alternative splicing. Structure 19, 1509–1517 (2011)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physiology and PharmacologyTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations