Skip to main content

Molecular Determinants of Allosteric Regulation in NCX Proteins

  • Chapter
  • First Online:
Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

Allosteric activation of NCX involves the binding of cytosolic Ca2+ to regulatory domains CBD1 and CBD2. Previous studies with isolated CBD12 and full-size NCX identified synergistic interactions between the two CBD domains that modify the affinity and kinetic properties of Ca2+ sensing, although it remains unclear how the Ca2+-binding signal is decoded and propagates to transmembrane domains. Biophysical analyses (X-ray, SAXS, and stopped-flow techniques) of isolated preparations of CBD1, CBD2, and CBD12 have shown that Ca2+ binding to Ca3-Ca4 sites of CBD1 results in interdomain tethering of CBDs through specific amino acids on CBD1 (Asp499 and Asp500) and CBD2 (Arg532 and Asp565). Mutant analyses of isolated CBDs suggest that the two-domain interface governs Ca2+-driven conformational alignment of CBDs, resulting in slow dissociation of Ca2+ from CBD12, and thus, it mediates Ca2+-induced conformational transitions associated with allosteric signal transmission. Specifically, occupation of Ca3-Ca4 sites by Ca2+ induces disorder-to-order transition owing to charge neutralization and coordination, thereby constraining CBD conformational freedom, rigidifying the NCX1 f-loop, and triggering allosteric signal transmission to the membrane domain. The newly found interdomain switch is highly conserved among NCX isoform/splice variants, although some additional structural motifs may shape the regulatory specificity of NCX variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M.J. Berridge, M.D. Bootman, H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nature Rev. Mol. Cell. Biol. 4, 517–529 (2003)

    Article  CAS  Google Scholar 

  • G.M. Besserer, M. Ottolia, D.A. Nicoll, V. Chaptal, D. Cascio, K.D. Philipson, J. Abramson, The second Ca2+-binding domain of the Na+/Ca2+ exchanger is essential for regulation: crystal structures and mutational analysis. Proc. Natl. Acad. Sci. U. S. A. 104, 18467–18472 (2007)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)

    PubMed  CAS  Google Scholar 

  • L. Boyman, R. Hiller, W.J. Lederer, D. Khananshvili, Direct loading of the purified endogenous inhibitor into the cytoplasm of patched cardiomyocytes blocks the ion currents and calcium transport through the NCX1 protein. Biochemistry 47, 6602–6611 (2008)

    Article  PubMed  CAS  Google Scholar 

  • L. Boyman, H. Mikhasenko, R. Hiller, D. Khananshvili, Kinetic and equilibrium properties of regulatory calcium sensors of NCX1 protein. J. Biol. Chem. 284, 6185–6193 (2009)

    Article  PubMed  CAS  Google Scholar 

  • L. Boyman, B.M. Hagen, M. Giladi, R. Hiller, W.J. Lederer, D. Khananshvili, Proton sensing Ca2+ binding domains regulate the cardiac Na+/Ca2+ exchanger. J. Biol. Chem. 286, 28811–28820 (2011)

    Article  PubMed  CAS  Google Scholar 

  • V. Breukels, G.W. Vuister, Binding of calcium is sensed structurally and dynamically throughout the second calcium-binding domain of the sodium/calcium exchanger. Proteins 78, 1813–1824 (2010)

    Article  PubMed  CAS  Google Scholar 

  • V. Breukels et al., The second Ca2+-binding domain of NCX1 binds Mg2+ with high affinity. Biochemistry 50, 8804–8812 (2011)

    Article  PubMed  CAS  Google Scholar 

  • M.B. Cannell, C. Soeller, Analysing cardiac excitation-contraction coupling with mathematical models of local control. Prog. Biophys. Mol. Biol. 85, 141–162 (2004)

    Article  PubMed  Google Scholar 

  • E. Carafoli, Intracellular calcium homeostasis. Ann. Rev. Biochem. 56, 395–433 (1987)

    Article  PubMed  CAS  Google Scholar 

  • V. Chaptal, G. Mercado-Besserer, M. Ottolia, D.A. Nicoll, D. Cascio, K.D. Philipson, J. Abramson, How does regulatory Ca2+ regulate the Na+-Ca2+ exchanger? Channels 1, 397–399 (2007)

    Article  PubMed  Google Scholar 

  • V. Chaptal, M. Ottolia, G. Mercado-Besserer, D.A. Nicoll, K.D. Philipson, J. Abramson, Structure and functional analysis of a Ca2+ sensor mutant of the Na+/Ca2+ exchanger. J. Biol. Chem. 284, 14688–14692 (2009)

    Article  PubMed  CAS  Google Scholar 

  • H.S. Choi, A.W. Trafford, C.H. Orchard, D.A. Eisner, The effect of acidosis on systolic Ca2+ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes. J. Physiol. (Lond.) 529, 661–668 (2000)

    Article  CAS  Google Scholar 

  • R. DiPolo, L. Beauge, The effects of pH on Ca2+ extrusion mechanisms in dialyzed squid axons. Biochim. Biophys. Acta 688, 237–245 (1982)

    Article  PubMed  CAS  Google Scholar 

  • R. DiPolo, L. Beauge, Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86, 155–203 (2006)

    Article  PubMed  CAS  Google Scholar 

  • A.E. Doering, W.J. Lederer, The action of Na+ as a cofactor in the inhibition by cytoplasmic protons of the cardiac Na+-Ca2+ exchanger in the guinea-pig. J. Physiol. (Lond.) 480, 9–20 (1994)

    CAS  Google Scholar 

  • A.E. Doering, D.A. Eisner, W.J. Lederer, Cardiac Na-Ca exchange and pH. Ann. N. Y. Acad. Sci. 779, 182–198 (1996)

    Article  PubMed  CAS  Google Scholar 

  • J. Dunn, C.L. Elias, H.D. Le, A. Omelchenko, L.V. Hryshko, J. Lytton, The molecular determinants of ionic regulatory differences between brain and kidney Na+/Ca2+ exchanger (NCX1) isoforms. J. Biol. Chem. 277, 33957–33962 (2002)

    Article  PubMed  CAS  Google Scholar 

  • C. Dyck, A. Omelchenko, C.L. Elias, B.D. Quednau, K.D. Philipson, M. Hnatowich, L.V. Hryshko, Ionic regulatory properties of brain and kidney splice variants of the NCX1 Na+-Ca2+ exchanger. J. Gen. Physiol. 114, 701–711 (1999)

    Article  PubMed  CAS  Google Scholar 

  • M. Giladi, L. Boyman, H. Mikhasenko, R. Hiller, D. Khananshvili, Essential role of the CBD1-CBD2 linker in slow dissociation of Ca2+ from the regulatory two-domain tandem of NCX1. J. Biol. Chem. 285, 28117–28125 (2010)

    Article  PubMed  CAS  Google Scholar 

  • M. Giladi, Y. Sasson, X. Fang, R. Hiller, T. Buki, Y.X. Wang, J.A. Hirsh, D. Khananshvili, A common Ca2+-driven interdomain module governs eukariotic NCX regulation. PloS One 7(6): e39985 (2012)

    Article  PubMed  CAS  Google Scholar 

  • K.S. Ginsburg et al., Simultaneous measurement of [Na]i, [Ca]i, and INCX in intact cardiac myocytes. Ann. N. Y. Acad. Sci. 976, 157–158 (2002)

    Article  PubMed  Google Scholar 

  • S.M. Harrison, J.E. Frampton, E. McCall, M.R. Boyett, C.H. Orchard, Contraction and intracellular Ca2+, Na+, and H+ during acidosis in rat ventricular myocytes. Am. J. Physiol. 262, C348–C357 (1992)

    PubMed  CAS  Google Scholar 

  • D. Häussinger, T. Ahrens, H.J. Sass, O. Pertz, J. Engel, S. Grzesiek, Calcium-dependent homoassociation of E-cadherin by NMR spectroscopy: changes in mobility, conformation and mapping of contact regions. J. Mol. Biol. 324, 823–839 (2002)

    Article  PubMed  Google Scholar 

  • M. Hilge, J. Aelen, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell 22, 15–25 (2006)

    Article  PubMed  CAS  Google Scholar 

  • M. Hilge, J. Aelen, A. Foarce, A. Perrakis, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc. Natl. Acad. Sci. U. S. A. 106, 14333–14338 (2009)

    Article  PubMed  CAS  Google Scholar 

  • D.W. Hilgemann, S. Matsuoka, G.A. Nagel, A. Collins, Steady-state and dynamic properties of cardiac sodium-calcium exchange. Sodium-dependent inactivation. J. Gen. Physiol. 100, 905–932 (1992a)

    Article  PubMed  CAS  Google Scholar 

  • D.W. Hilgemann, A. Collins, S. Matsuoka, Steady-state and dynamic properties of cardiac sodium-calcium exchange. Secondary modulation by cytoplasmic calcium and ATP. J. Gen. Physiol. 100, 933–961 (1992b)

    Article  PubMed  CAS  Google Scholar 

  • L. Hryshko, What regulates Na+-Ca2+ exchanger? Focus on “sodium-dependent inactivation of sodium-calcium exchange in transfected Chinese hamster ovary cells”. Am. J. Physiol. Cell Physiol. 295, C869–C871 (2008)

    Article  PubMed  CAS  Google Scholar 

  • L.V. Hryshko, S. Matsuoka, D.A. Nicoll, J.N. Weiss, E.M. Schwarz, S. Benzer, K.D. Philipson, Anomalous regulation of the Drosophila Na+-Ca2+ exchanger by Ca2+. J. Gen. Physiol. 108, 67–74 (1996)

    Article  PubMed  CAS  Google Scholar 

  • S.A. John, B. Ribalet, J.N. Weiss, K.D. Philipson, M. Ottolia, Ca2+-dependent structural rearrangements within Na+-Ca2+ exchanger dimers. Proc. Natl. Acad. Sci. U. S. A. 108, 1699–1704 (2011)

    Article  PubMed  CAS  Google Scholar 

  • E. Johnson, L. Brüschweiler-Li, S.A. Showalter, G.W. Vuister, F. Zhang, R. Brüschweiler, Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. J. Mol. Biol. 377, 945–955 (2008)

    Article  PubMed  CAS  Google Scholar 

  • D. Khananshvili, Structure, mechanism and regulation of the cardiac sarcolemma Na+-Ca2+ exchanger. Mol. Cell. Biol. 23B, 309–356 (1998)

    Google Scholar 

  • D. Khananshvili, The SLC8 gene family of sodium-calcium exchangers (NCX) – structure, function, and regulation in health and disease. Mol. Asp. Med. (2012) in press

    Google Scholar 

  • D.O. Levitsky, D.A. Nicoll, K.D. Philipson, Identification of the high affinity Ca2+-binding domain of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 269, 22847–22852 (1994)

    PubMed  CAS  Google Scholar 

  • D.O. Levitsky et al., Cooperative interaction between Ca2+ binding sites in the hydrophilic loop of the Na+-Ca2+ exchanger. Mol. Cell. Biochem. 160–161, 27–32 (1996)

    Article  PubMed  Google Scholar 

  • J. Lytton, Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport. Biochem. J. 406, 365–382 (2007)

    Article  PubMed  CAS  Google Scholar 

  • N.J. Malmberg, S. Varma, E. Jakobsson, J.J. Falke, Ca2+ activation of the cPLA2 C2 domain: ordered binding of two Ca2+ ions with positive cooperativity. Biochemistry 43, 16320–16328 (2004)

    Article  PubMed  CAS  Google Scholar 

  • S. Matsuoka, D.A. Nicoll, R.F. Reilly, D.W. Hilgemann, K.D. Philipson, Initial localization of regulatory regions of the cardiac sarcolemmal Na+-Ca2+ exchanger. Proc. Natl. Acad. Sci. U. S. A. 90, 3870–3874 (1993)

    Article  PubMed  CAS  Google Scholar 

  • S. Matsuoka, D.A. Nicoll, L.V. Hryshko, D.O. Levitsky, J.N. Weiss, K.D. Philipson, Mutant analysis of the Ca2+ binding domain. J. Gen. Physiol. 105, 403–420 (1995)

    Article  PubMed  CAS  Google Scholar 

  • P. Montaville, C. Schlicker, A. Leonov, M. Zweckstetter, G.M. Sheldrick, S. Becker, The C2A-C2B linker defines the high affinity Ca2+ binding mode of rabphilin-3A. J. Biol. Chem. 282, 5015–5025 (2007)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Nicoll, M.R. Sawaya, S. Kwon, D. Cascio, K.D. Philipson, J. Abramson, The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J. Biol. Chem. 281, 21577–21581 (2006)

    Article  PubMed  CAS  Google Scholar 

  • D.A. Nicoll, X. Ren, M. Ottolia, M. Phillips, A.R. Parades, J. Abramson, K.D. Philipson, What we know about the structure of NCX1 and how it relates to its function. Ann. NY Acad. Sci. 1099, 1–6 (2007)

    Article  PubMed  CAS  Google Scholar 

  • M. Ottolia, K.D. Philipson, S. John, Conformational changes of the Ca2+ regulatory site of the Na+-Ca2+ exchanger detected by FRET. Biophys. J. 87, 899–906 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M. Ottolia, D.A. Nicoll, K.D. Philipson, Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 284, 32735–32741 (2009)

    Article  PubMed  CAS  Google Scholar 

  • M. Ottolia, D.A. Nicoll, S. John, K.D. Philipson, Interactions between Ca2+ binding domains of the Na+-Ca2+ exchanger and secondary regulation. Channels 4, 1–4 (2010)

    Article  Google Scholar 

  • K.D. Philipson, D.A. Nicoll, Sodium-calcium exchange: a molecular perspective. Annu. Rev. Physiol. 62, 111–133 (2000)

    Article  PubMed  CAS  Google Scholar 

  • K.D. Philipson, M.M. Bersohn, A.Y. Nishimoto, Effects of pH on Na+-Ca2+ exchange in canine cardiac sarcolemmal vesicles. Circ. Res. 50, 287–293 (1982)

    Article  PubMed  CAS  Google Scholar 

  • S.M. Pogwizd, K. Schlotthauer, L. Li, W. Yuan, D.M. Bers, Arrhythmogenesis and contractile dysfunction in heart failure: roles of sodium-calcium exchange, inward rectifier potassium current, and residual beta-adrenergic responsiveness. Circ. Res. 88, 1159–1167 (2001)

    Article  PubMed  CAS  Google Scholar 

  • J. Reeves, M. Condrescu, Ionic regulation of the cardiac sodium-calcium exchanger. Channels 2, 322–328 (2008)

    Article  PubMed  Google Scholar 

  • J. Rizo, T.C. Südhof, C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem. 273, 15879–15882 (1998)

    Article  PubMed  CAS  Google Scholar 

  • P.K. Salinas, L. Brüschweiler-Li, E. Johnson, R. Brüschweiler, Ca2+ binding alters the inter-domain flexibility between the cytoplasmic calcium-binding domains in the Na+/Ca2+ exchanger. J. Biol. Chem. 286, 32123–32131 (2011)

    Article  PubMed  CAS  Google Scholar 

  • E.A. Sobie, K.W. Dilly, J. dos Santos Cruz, W.J. Lederer, M.S. Jafri, Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release. Biophys. J. 83, 59–78 (2002)

    Article  PubMed  CAS  Google Scholar 

  • R.V. Stahelin, J. Wang, N.R. Blatner, J.D. Rafter, D. Murray, W. Cho, The origin of C1A-C2 interdomain interactions in protein kinase C. J. Biol. Chem. 280, 36452–36463 (2005)

    Article  PubMed  CAS  Google Scholar 

  • C.R. Weber, K.S. Ginsburg, K.D. Philipson et al., Allosteric regulation of Na/Ca exchange current by cytosolic Ca in intact cardiomyocytes. J. Gen. Physiol. 117, 119–131 (2001)

    Article  PubMed  CAS  Google Scholar 

  • S. Wei et al., Cytosolic free magnesium modulates Na/Ca exchange currents in pig myocytes. Cardiovasc. Res. 53, 334–340 (2002)

    Article  PubMed  CAS  Google Scholar 

  • M. Wu, M. Wang, J. Nix, L.V. Hryshko, L. Zheng, Crystal structure of CBD2 from the Drosophila Na+/Ca2+ exchanger: diversity of Ca2+ regulation and its alternative splicing modification. J. Mol. Biol. 387, 104–112 (2009)

    Article  PubMed  CAS  Google Scholar 

  • M. Wu et al., Crystal structures of progressive Ca2+ binding states of the Ca2+ sensor Ca2+ binding domain 1 (CBD1) from the CALX Na+/Ca2+ exchanger reveal incremental conformational transitions. J. Biol. Chem. 285, 2554–2561 (2010)

    Article  PubMed  CAS  Google Scholar 

  • M. Wu et al., Structural basis of the Ca2+ inhibitory mechanism of Drosophila Na/Ca exchanger CALX and its modification by alternative splicing. Structure 19, 1509–1517 (2011)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Israeli Ministry of Health Grant # 2010-3-6266, the USA-Israeli Binational Research Grant # 2009-334, and the Israel Science Foundation Grant # 23/10. Financial support from the Bernstein Foundation is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Khananshvili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Giladi, M., Khananshvili, D. (2013). Molecular Determinants of Allosteric Regulation in NCX Proteins. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_4

Download citation

Publish with us

Policies and ethics