Advertisement

Nonselective Cation Channels and Links to Hippocampal Ischemia, Aging, and Dementia

  • John F. MacDonaldEmail author
  • Jillian C. Belrose
  • Yu-Feng Xie
  • Michael F. Jackson
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)

Abstract

Stroke is a very strong risk factor for dementia. Furthermore, ischemic stroke and Alzheimer’s disease (AD) share a number of overlapping mechanisms of neuron loss and dysfunction, including those induced by the inappropriate activation of N-methyl-d-aspartate receptors (NMDARs). These receptors form a major subtype of excitatory glutamate receptor. They are nonselective cation channels with appreciable Ca2+ permeability, and their overactivation leads to neurotoxicity in the cortex and hippocampus. NMDARs have therefore been therapeutic targets in both conditions, but they have failed in the treatment of stroke, and there is limited rationale for using them in treating AD. In this chapter, we discuss current understanding of subtypes of NMDARs and their potential roles in ­ischemic stroke and AD. We also discuss the properties of several other nonselective cation channels, transient receptor potential melastatin 2 and 7 channels, and their implications in linking these conditions.

Keywords

N-methyl-d-aspartate receptors (NMDA receptors) Transient receptor potential melastatin channels (TRPM7, TRPM2) Src family kinases Stroke Alzheimer’s disease 

References

  1. M. Aarts, Y. Liu, L. Liu, S. Besshoh, M. Arundine, J.W. Gurd, Y.T. Wang, M.W. Salter, M. Tymianski, Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 298, 846–850 (2002)PubMedCrossRefGoogle Scholar
  2. M. Aarts, K. Iihara, W.L. Wei, Z.G. Xiong, M. Arundine, W. Cerwinski, J.F. MacDonald, M. Tymianski, A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863–877 (2003)PubMedCrossRefGoogle Scholar
  3. R.A. Al-Hallaq, T.P. Conrads, T.D. Veenstra, R.J. Wenthold, NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J. Neurosci. 27, 8334–8343 (2007)PubMedCrossRefGoogle Scholar
  4. L. Annunziato, M. Cataldi, G. Pignataro, A. Secondo, P. Molinaro, Glutamate-independent calcium toxicity: introduction. Stroke 38, 661–664 (2007)PubMedCrossRefGoogle Scholar
  5. J.-Z. Bai, J. Lipski, Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31, 204–218 (2010)PubMedCrossRefGoogle Scholar
  6. D. Bano, K.W. Young, C.J. Guerin, R. Lefeuvre, N.J. Rothwell, L. Naldini, R. Rizzuto, E. Carafoli, P. Nicotera, Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275–285 (2005)PubMedCrossRefGoogle Scholar
  7. T.E. Bartlett, N.J. Bannister, V.J. Collett, S.L. Dargan, P.V. Massey, Z.A. Bortolotto, S.M. Fitzjohn, Z.I. Bashir, G.L. Collingridge, D. Lodge, Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology 52, 60–70 (2007)PubMedCrossRefGoogle Scholar
  8. J.A. Bartos, J.D. Ulrich, H. Li, M.A. Beazely, Y. Chen, J.F. MacDonald, J.W. Hell, Postsynaptic clustering and activation of Pyk2 by PSD-95. J. Neurosci. 30, 449–463 (2010)PubMedCrossRefGoogle Scholar
  9. C. Bates-Withers, R. Sah, D. Clapham, TRPM7, the Mg2+ inhibited channel and kinase. Adv. Exp. Med. Biol. 704, 173–256 (2011)PubMedCrossRefGoogle Scholar
  10. M. Baum, P. Kurup, J. Xu, P. Lombroso, A STEP forward in neural function and degeneration. Commun. Integr. Biol. 3, 419–441 (2010)PubMedCrossRefGoogle Scholar
  11. J.C. Belrose, Y.F. Xie, L.J. Gierszewski, J.F. Macdonald, M.F. Jackson, Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol. Brain 5, 11 (2012)PubMedCrossRefGoogle Scholar
  12. S. Berberich, P. Punnakkal, V. Jensen, V. Pawlak, P.H. Seeburg, O. Hvalby, G. Kohr, Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J. Neurosci. 25, 6907–6910 (2005)PubMedCrossRefGoogle Scholar
  13. S. Berberich, V. Jensen, O. Hvalby, P.H. Seeburg, G. Kohr, The role of NMDAR subtypes and charge transfer during hippocampal LTP induction. Neuropharmacology 52, 77–86 (2007)PubMedCrossRefGoogle Scholar
  14. S. Braithwaite, S. Paul, A. Nairn, P. Lombroso, Synaptic plasticity: one STEP at a time. Trends Neurosci. 29, 452–460 (2006)PubMedCrossRefGoogle Scholar
  15. S. Brauchi, G. Krapivinsky, L. Krapivinsky, D.E. Clapham, TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane. Proc. Natl. Acad. Sci. U. S. A. 105, 8304–8308 (2008)PubMedCrossRefGoogle Scholar
  16. J.L. Brigman, T. Wright, G. Talani, S. Prasad-Mulcare, S. Jinde, G.K. Seabold, P. Mathur, M.I. Davis, R. Bock, R.M. Gustin, R.J. Colbran, V.A. Alvarez, K. Nakazawa, E. Delpire, D.M. Lovinger, A. Holmes, Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J. Neurosci. 30, 4590–4600 (2010)PubMedCrossRefGoogle Scholar
  17. W.S. Chen, M.F. Bear, Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex. Neuropharmacology 52, 200–214 (2007)PubMedCrossRefGoogle Scholar
  18. K.K. Cho, L. Khibnik, B.D. Philpot, M.F. Bear, The ratio of NR2A/B NMDA receptor subunits determines the qualities of ocular dominance plasticity in visual cortex. Proc. Natl. Acad. Sci. U. S. A. 106, 5377–5382 (2009)PubMedCrossRefGoogle Scholar
  19. D.W. Choi, Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett. 58, 293–297 (1985)PubMedCrossRefGoogle Scholar
  20. D.W. Choi, S.M. Rothman, The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu. Rev. Neurosci. 13, 171–182 (1990)PubMedCrossRefGoogle Scholar
  21. X.P. Chu, C.J. Papasian, J.Q. Wang, Z.G. Xiong, Modulation of acid-sensing ion channels: molecular mechanisms and therapeutic potential. Int. J. Physiol. Pathophysiol. Pharmacol. 3, 288–309 (2011)PubMedGoogle Scholar
  22. D.E. Clapham, L.W. Runnels, C. Strubing, The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001)PubMedCrossRefGoogle Scholar
  23. L. Crews, E. Masliah, Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum. Mol. Genet. 19(R1), R12–R20 (2010)PubMedCrossRefGoogle Scholar
  24. H. Cui, A. Hayashi, H.S. Sun, M.P. Belmares, C. Cobey, T. Phan, J. Schweizer, M.W. Salter, Y.T. Wang, R.A. Tasker, D. Garman, J. Rabinowitz, P.S. Lu, M. Tymianski, PDZ protein interactions underlying NMDA receptor-mediated excitotoxicity and neuroprotection by PSD-95 inhibitors. J. Neurosci. 27, 9901–9915 (2007)PubMedCrossRefGoogle Scholar
  25. S.G. Cull-Candy, D.N. Leszkiewicz, Role of distinct NMDA receptor subtypes at central synapses. Sci.STKE. 2004, re16 (2004)PubMedGoogle Scholar
  26. O.N. de la Perez, A. Davalos, Neuroprotection in cerebral infarction: the opportunity of new studies. Cerebrovasc. Dis. 24(Suppl 1), 153–156 (2007)Google Scholar
  27. E. Fonfria, I.C. Marshall, I. Boyfield, S.D. Skaper, J.P. Hughes, D.E. Owen, W. Zhang, B.A. Miller, C.D. Benham, S. McNulty, Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J. Neurochem. 95, 715–723 (2005)PubMedCrossRefGoogle Scholar
  28. E. Fonfria, C. Mattei, K. Hill, J.T. Brown, A. Randall, C.D. Benham, S.D. Skaper, C.A. Campbell, B. Crook, P.R. Murdock, J.M. Wilson, F.P. Maurio, D.E. Owen, P.L. Tilling, S. McNulty, TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J. Recept. Signal Transduct. Res. 26, 179–198 (2006a)PubMedCrossRefGoogle Scholar
  29. E. Fonfria, P.R. Murdock, F.S. Cusdin, C.D. Benham, R.E. Kelsell, S. McNulty, Tissue distribution profiles of the human TRPM cation channel family. J. Recept. Signal Transduct. Res. 26, 159–178 (2006b)PubMedCrossRefGoogle Scholar
  30. C.J. Fox, K.I. Russell, Y.T. Wang, B.R. Christie, Contribution of NR2A and NR2B NMDA subunits to bidirectional synaptic plasticity in the hippocampus in vivo. Hippocampus 16, 907–915 (2006)PubMedCrossRefGoogle Scholar
  31. A. Gasser, G. Glassmeier, R. Fliegert, M.F. Langhorst, S. Meinke, D. Hein, S. Kruger, K. Weber, I. Heiner, N. Oppenheimer, J.R. Schwarz, A.H. Guse, Activation of T cell calcium influx by the second messenger ADP-ribose. J. Biol. Chem. 281, 2489–2496 (2006)PubMedCrossRefGoogle Scholar
  32. M. Gielen, R.B. Siegler, L. Mony, J.W. Johnson, P. Paoletti, Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459, 703–707 (2009)PubMedCrossRefGoogle Scholar
  33. C. Gladding, L. Raymond, Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol. Cell. Neurosci. 48, 308–328 (2011)PubMedCrossRefGoogle Scholar
  34. J. Gotz, A. Eckert, M. Matamales, L.M. Ittner, X. Liu, Modes of Abeta toxicity in Alzheimer’s disease. Cell. Mol. Life Sci. 68, 3359–3375 (2011a)PubMedCrossRefGoogle Scholar
  35. J. Gotz, A. Ittner, L.M. Ittner, Tau-targeted treatment strategies in Alzheimer’s disease. Br. J. Pharmacol. 165, 1246–1259 (2011b)CrossRefGoogle Scholar
  36. J.A. Gray, Y. Shi, H. Usui, M.J. During, K. Sakimura, R.A. Nicoll, Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron 71, 1085–1101 (2011)PubMedCrossRefGoogle Scholar
  37. D.A. Greenberg, K. Jin, Neurodegeneration and neurogenesis: focus on Alzheimer’s disease. Curr. Alzheimer Res. 3, 25–28 (2006)PubMedCrossRefGoogle Scholar
  38. A. Hakim, Vascular disease: the tsunami of health care. Stroke 38, 3296–3597 (2007)PubMedCrossRefGoogle Scholar
  39. Y. Hara, M. Wakamori, M. Ishii, E. Maeno, M. Nishida, T. Yoshida, H. Yamada, S. Shimizu, E. Mori, J. Kudoh, N. Shimizu, H. Kurose, Y. Okada, K. Imoto, Y. Mori, LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol. Cell 9, 163–173 (2002)PubMedCrossRefGoogle Scholar
  40. G.E. Hardingham, Pro-survival signalling from the NMDA receptor. Biochem. Soc. Trans. 34, 936–938 (2006)PubMedCrossRefGoogle Scholar
  41. G.E. Hardingham, Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem. Soc. Trans. 37, 1147–1160 (2009)PubMedCrossRefGoogle Scholar
  42. G.E. Hardingham, H. Bading, The Yin and Yang of NMDA receptor signalling. Trends Neurosci. 26, 81–89 (2003)PubMedCrossRefGoogle Scholar
  43. I. Heiner, J. Eisfeld, M. Warnstedt, N. Radukina, E. Jungling, A. Luckhoff, Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem. J. 398, 225–232 (2006)PubMedCrossRefGoogle Scholar
  44. M. Hermosura, R. Garruto, TRPM7 and TRPM2-Candidate susceptibility genes for Western Pacific ALS and PD? Biochim. Biophys. Acta 1772, 822–857 (2007)PubMedCrossRefGoogle Scholar
  45. M. Hermosura, H. Nayakanti, M. Dorovkov, F. Calderon, A. Ryazanov, D. Haymer, R. Garruto, A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc. Natl. Acad. Sci. U. S. A. 102, 11510–11515 (2005)PubMedCrossRefGoogle Scholar
  46. M. Hermosura, A. Cui, R. Go, B. Davenport, C. Shetler, J. Heizer, C. Schmitz, G. Mocz, R. Garruto, A.-L. Perraud, Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. Proc. Natl. Acad. Sci. U. S. A. 105, 18029–18063 (2008)PubMedCrossRefGoogle Scholar
  47. S. Hestrin, Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 357, 686–689 (1992)PubMedCrossRefGoogle Scholar
  48. K. Hill, N.J. Tigue, R.E. Kelsell, C.D. Benham, S. McNulty, M. Schaefer, A.D. Randall, Characterisation of recombinant rat TRPM2 and a TRPM2-like conductance in cultured rat striatal neurones. Neuropharmacology 50, 89–97 (2006)PubMedCrossRefGoogle Scholar
  49. X.-Y. Hou, Y. Liu, G.-Y. Zhang, PP2, a potent inhibitor of Src family kinases, protects against hippocampal CA1 pyramidal cell death after transient global brain ischemia. Neurosci. Lett. 420, 235–244 (2007)PubMedCrossRefGoogle Scholar
  50. L. Hoyte, P.A. Barber, A.M. Buchan, M.D. Hill, The rise and fall of NMDA antagonists for ischemic stroke. Curr. Mol. Med. 4, 131–136 (2004)PubMedCrossRefGoogle Scholar
  51. Y.Q. Huang, W.Y. Lu, D.W. Ali, K.A. Pelkey, G.M. Pitcher, Y.M. Lu, H. Aoto, J.C. Roder, T. Sasaki, M.W. Salter, J.F. MacDonald, CAK beta/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29, 485–496 (2001)PubMedCrossRefGoogle Scholar
  52. K. Ikeda, H. Negishi, Y. Yamori, Antioxidant nutrients and hypoxia/ischemia brain injury in rodents. Toxicology 189, 55–61 (2003)PubMedCrossRefGoogle Scholar
  53. A. Inanobe, H. Furukawa, E. Gouaux, Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron 47, 71–84 (2005)PubMedCrossRefGoogle Scholar
  54. K. Inoue, D. Branigan, Z.-G. Xiong, Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J. Biol. Chem. 285, 7430–7439 (2010)PubMedCrossRefGoogle Scholar
  55. N.K. Isaev, E.V. Stelmashook, U. Dirnagl, N.A. Andreeva, L. Manuhova, V.S. Vorobjev, I.N. Sharonova, V.G. Skrebitsky, I.V. Victorov, J. Katchanov, M. Weih, D.B. Zorov, Neuroprotective effects of the antifungal drug clotrimazole. Neuroscience 113, 47–53 (2002)PubMedCrossRefGoogle Scholar
  56. L. Ittner, J. Götz, Amyloid-β and tau–a toxic pas de deux in Alzheimer’s disease. Nat. Rev. Neurosci. 12, 65–137 (2011)PubMedCrossRefGoogle Scholar
  57. L.M. Ittner, Y.D. Ke, F. Delerue, M. Bi, A. Gladbach, J. van Eersel, H. Wolfing, B.C. Chieng, M.J. Christie, I.A. Napier, A. Eckert, M. Staufenbiel, E. Hardeman, J. Gotz, Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142, 387–397 (2010)PubMedCrossRefGoogle Scholar
  58. J. Jia, S. Verma, S. Nakayama, N. Quillinan, M.R. Grafe, P.D. Hurn, P.S. Herson, Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J. Cereb. Blood Flow Metab. 31, 2160–2168 (2011)PubMedCrossRefGoogle Scholar
  59. X. Jiang, D. Mu, V. Biran, J. Faustino, S. Chang, C. Rincón, R. Sheldon, D. Ferriero, Activated Src kinases interact with the N-methyl-d-aspartate receptor after neonatal brain ischemia. Ann. Neurol. 63, 632–673 (2008)PubMedCrossRefGoogle Scholar
  60. J. Jin, B.N. Desai, B. Navarro, A. Donovan, N.C. Andrews, D.E. Clapham, Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322, 756–760 (2008)PubMedCrossRefGoogle Scholar
  61. J. Jin, L.J. Wu, J. Jun, X. Cheng, H. Xu, N.C. Andrews, D.E. Clapham, The channel kinase, TRPM7, is required for early embryonic development. Proc. Natl. Acad. Sci. U. S. A. 109, E225–E233 (2011)PubMedCrossRefGoogle Scholar
  62. J. Jo, D.J. Whitcomb, K.M. Olsen, T.L. Kerrigan, S.C. Lo, G. Bru-Mercier, B. Dickinson, S. Scullion, M. Sheng, G. Collingridge, K. Cho, Abeta(1–42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3beta. Nat. Neurosci. 14, 545–547 (2011)PubMedCrossRefGoogle Scholar
  63. S. Kaneko, S. Kawakami, Y. Hara, M. Wakamori, E. Itoh, T. Minami, Y. Takada, T. Kume, H. Katsuki, Y. Mori, A. Akaike, A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J. Pharmacol. Sci. 101, 66–76 (2006)PubMedCrossRefGoogle Scholar
  64. M. Katano, T. Numata, K. Aguan, Y. Hara, S. Kiyonaka, S. Yamamoto, T. Miki, S. Sawamura, T. Suzuki, K. Yamakawa, Y. Mori, The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium 51, 179–185 (2012)PubMedCrossRefGoogle Scholar
  65. R. Kraft, C. Grimm, K. Grosse, A. Hoffmann, S. Sauerbruch, H. Kettenmann, G. Schultz, C. Harteneck, Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am. J. Physiol. Cell Physiol. 286, C129–C137 (2004)PubMedCrossRefGoogle Scholar
  66. J. Kriz, Inflammation in ischemic brain injury: timing is important. Crit. Rev. Neurobiol. 18, 145–157 (2006)PubMedCrossRefGoogle Scholar
  67. P. Kurup, Y. Zhang, J. Xu, D.V. Venkitaramani, V. Haroutunian, P. Greengard, A.C. Nairn, P.J. Lombroso, Abeta-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J. Neurosci. 30, 5948–5957 (2010)PubMedCrossRefGoogle Scholar
  68. B. Li, N. Chen, T. Luo, Y. Otsu, T.H. Murphy, L.A. Raymond, Differential regulation of synaptic and extra-synaptic NMDA receptors. Nat. Neurosci. 5, 833–834 (2002)PubMedCrossRefGoogle Scholar
  69. M. Li, K. Inoue, D. Branigan, E. Kratzer, J.C. Hansen, J.W. Chen, R.P. Simon, Z.G. Xiong, Acid-sensing ion channels in acidosis-induced injury of human brain neurons. J. Cereb. Blood Flow Metab. 30, 1247–1260 (2010)PubMedCrossRefGoogle Scholar
  70. H.-B. Li, M. Jackson, K. Yang, C. Trepanier, M. Salter, B. Orser, J. Macdonald, Plasticity of synaptic GluN receptors is required for the Src-dependent induction of long-term potentiation at CA3-CA1 synapses. Hippocampus 21, 1053–1114 (2011)PubMedCrossRefGoogle Scholar
  71. L. Liu, T.P. Wong, M.F. Pozza, K. Lingenhoehl, Y. Wang, M. Sheng, Y.P. Auberson, Y.T. Wang, Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304, 1021–1024 (2004)PubMedCrossRefGoogle Scholar
  72. Y. Liu, G.-Y. Zhang, J.-Z. Yan, T.-L. Xu, Suppression of Pyk2 attenuated the increased tyrosine phosphorylation of NMDA receptor subunit 2A after brain ischemia in rat hippocampus. Neurosci. Lett. 379, 55–63 (2005)PubMedCrossRefGoogle Scholar
  73. Y. Liu, T.P. Wong, M. Aarts, A. Rooyakkers, L. Liu, T.W. Lai, D.C. Wu, J. Lu, M. Tymianski, A.M. Craig, Y.T. Wang, NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J. Neurosci. 27, 2846–2857 (2007)PubMedCrossRefGoogle Scholar
  74. Y.M. Lu, J.C. Roder, J. Davidow, M.W. Salter, Src activation in the induction of long-term potentiation in CA1 hippocampal neurons. Science 279, 1363–1367 (1998)PubMedCrossRefGoogle Scholar
  75. W.Y. Lu, Z.G. Xiong, S. Lei, B.A. Orser, E. Dudek, M.D. Browning, J.F. MacDonald, G-protein-coupled receptors act via protein kinase C and Src to regulate NMDA receptors. Nat. Neurosci. 2, 331–338 (1999)PubMedCrossRefGoogle Scholar
  76. W. Lu, H. Man, W. Ju, W.S. Trimble, J.F. MacDonald, Y.T. Wang, Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001)PubMedCrossRefGoogle Scholar
  77. C. Luscher, K.M. Huber, Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65, 445–459 (2010)PubMedCrossRefGoogle Scholar
  78. D.R. Lynch, R.P. Guttmann, NMDA receptor pharmacology: perspectives from molecular biology. Curr. Drug Targets 2, 215–231 (2001)PubMedCrossRefGoogle Scholar
  79. J.F. MacDonald, M.F. Jackson, M.A. Beazely, G protein-coupled receptors control NMDARs and metaplasticity in the hippocampus. Biochim. Biophys. Acta 1768, 941–951 (2006a)PubMedGoogle Scholar
  80. J.F. MacDonald, M.F. Jackson, M.A. Beazely, Hippocampal long-term synaptic plasticity and signal amplification of NMDA receptors. Crit. Rev. Neurobiol. 18, 71–84 (2006b)PubMedCrossRefGoogle Scholar
  81. J.F. MacDonald, Z.G. Xiong, M.F. Jackson, Paradox of Ca2+ signaling, cell death and stroke. Trends Neurosci. 29, 75–81 (2006c)PubMedCrossRefGoogle Scholar
  82. R.C. Malenka, M.F. Bear, LTP and LTD: an embarrassment of riches. Neuron 44, 5–21 (2004)PubMedCrossRefGoogle Scholar
  83. P.V. Massey, B.E. Johnson, P.R. Moult, Y.P. Auberson, M.W. Brown, E. Molnar, G.L. Collingridge, Z.I. Bashir, Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J. Neurosci. 24, 7821–7828 (2004)PubMedCrossRefGoogle Scholar
  84. M.P. Mattson, S.B. Kater, Development and selective neurodegeneration in cell cultures from different hippocampal regions. Brain Res. 490, 110–125 (1989)PubMedCrossRefGoogle Scholar
  85. D. McHugh, R. Flemming, S.Z. Xu, A.L. Perraud, D.J. Beech, Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J. Biol. Chem. 278, 11002–11006 (2003)PubMedCrossRefGoogle Scholar
  86. S. McNulty, E. Fonfria, The role of TRPM channels in cell death. Pflugers Arch. 451, 235–242 (2005)PubMedCrossRefGoogle Scholar
  87. M. Moran, M. McAlexander, T. Bíró, A. Szallasi, Transient receptor potential channels as therapeutic targets. Nat. Rev. Drug Discov. 10, 601–621 (2011)PubMedCrossRefGoogle Scholar
  88. M.E. Morris, T. Trippenbach, Changes in extracellular [K+] and [Ca2+] induced by anoxia in neonatal rabbit medulla. Am. J. Physiol. 264, R761–R769 (1993)PubMedGoogle Scholar
  89. Y. Mu, F.H. Gage, Adult Hippocampal Neurogenesis and its Role in Alzheimer’s Disease. Mol. Neurodegener. 6, 85 (2011)PubMedCrossRefGoogle Scholar
  90. K.W. Muir, K.R. Lees, Excitatory amino acid antagonists for acute stroke. Cochrane Database Syst. Rev. 2003, CD001244 (2003)Google Scholar
  91. T.H. Nguyen, J. Liu, P.J. Lombroso, Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 420. J. Biol. Chem. 277, 24274–24279 (2002)PubMedCrossRefGoogle Scholar
  92. H. Oh, Y. Chun, Y. Kim, S. Youn, S. Shin, M. Park, T.-W. Kim, S. Chung, Modulation of transient receptor potential melastatin related 7 (TRPM7) channel by presenilins. Dev. Neurobiol. 18 (2011). doi: 10.1002/dneu.22001
  93. M. Olah, M. Jackson, H. Li, Y. Perez, H.-S. Sun, S. Kiyonaka, Y. Mori, M. Tymianski, J. MacDonald, Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J. Physiol. 587, 965–1044 (2009)PubMedCrossRefGoogle Scholar
  94. S. Paul, A.C. Nairn, P. Wang, P.J. Lombroso, NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci. 6, 34–42 (2003)PubMedCrossRefGoogle Scholar
  95. S. Peineau, C. Taghibiglou, C. Bradley, T.P. Wong, L. Liu, J. Lu, E. Lo, D. Wu, E. Saule, T. Bouschet, P. Matthews, J.T. Isaac, Z.A. Bortolotto, Y.T. Wang, G.L. Collingridge, LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53, 703–717 (2007)PubMedCrossRefGoogle Scholar
  96. K.A. Pelkey, R. Askalan, S. Paul, L.V. Kalia, T.H. Nguyen, G.M. Pitcher, M.W. Salter, P.J. Lombroso, Tyrosine phosphatase STEP is a tonic brake on induction of long-term potentiation. Neuron 34, 127–138 (2002)PubMedCrossRefGoogle Scholar
  97. A.L. Perraud, A. Fleig, C.A. Dunn, L.A. Bagley, P. Launay, C. Schmitz, A.J. Stokes, Q. Zhu, M.J. Bessman, R. Penner, J.P. Kinet, A.M. Scharenberg, ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001)PubMedCrossRefGoogle Scholar
  98. A.L. Perraud, C. Schmitz, A.M. Scharenberg, TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium 33, 519–531 (2003)PubMedCrossRefGoogle Scholar
  99. B.D. Philpot, K.K. Cho, M.F. Bear, Obligatory role of NR2A for metaplasticity in visual cortex. Neuron 53, 495–502 (2007)PubMedCrossRefGoogle Scholar
  100. G. Pignataro, O. Cuomo, E. Esposito, R. Sirabella, R.G. Di, L. Annunziato, ASIC1a contributes to neuroprotection elicited by ischemic preconditioning and postconditioning. Int. J. Physiol. Pathophysiol. Pharmacol. 3, 1–8 (2011)PubMedGoogle Scholar
  101. R. Pumain, U. Heinemann, Stimulus- and amino acid-induced calcium and potassium changes in rat neocortex. J. Neurophysiol. 53, 1–16 (1985)PubMedGoogle Scholar
  102. I.S. Ramsey, M. Delling, D.E. Clapham, An introduction to trp channels. Annu. Rev. Physiol. 68, 619–647 (2006)PubMedCrossRefGoogle Scholar
  103. C. Rauner, G. Kohr, Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-d-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem. 286, 7558–7566 (2011)PubMedCrossRefGoogle Scholar
  104. S.M. Rothman, Synaptic activity mediates death of hypoxic neurons. Science 220, 536–537 (1983)PubMedCrossRefGoogle Scholar
  105. S. Rothman, Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death. J. Neurosci. 4, 1884–1891 (1984)PubMedGoogle Scholar
  106. S.M. Rothman, The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J. Neurosci. 5, 1483–1489 (1985)PubMedGoogle Scholar
  107. S.M. Rothman, Glutamate and anoxic neuronal death in vitro. Adv. Exp. Med. Biol. 203, 687–695 (1986)PubMedCrossRefGoogle Scholar
  108. R. Sahathevan, A. Brodtmann, G. Donnan, Dementia, stroke, and vascular risk factors; a review. Int. J. Stroke 7, 61–134 (2012)PubMedCrossRefGoogle Scholar
  109. M.W. Salter, L.V. Kalia, SRC kinases: a hub for NMDA receptor regulation. Nat. Rev. Neurosci. 5, 317–328 (2004)PubMedCrossRefGoogle Scholar
  110. R. Sattler, M. Tymianski, Molecular mechanisms of calcium-dependent excitotoxicity. J. Mol. Med. 78, 3–13 (2000)PubMedCrossRefGoogle Scholar
  111. R. Sattler, M.P. Charlton, M. Hafner, M. Tymianski, Distinct influx pathways, not calcium load, determine neuronal vulnerability to calcium neurotoxicity. J. Neurochem. 71, 2349–2364 (1998)PubMedCrossRefGoogle Scholar
  112. R. Sattler, Z. Xiong, W.Y. Lu, M. Hafner, J.F. MacDonald, M. Tymianski, Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284, 1845–1848 (1999)PubMedCrossRefGoogle Scholar
  113. R. Sattler, Z. Xiong, W.Y. Lu, J.F. MacDonald, M. Tymianski, Distinct roles of synaptic and extrasynaptic NMDA receptors in excitotoxicity. J. Neurosci. 20, 22–33 (2000)PubMedGoogle Scholar
  114. D. Selkoe, Alzheimer’s disease. Cold Spring Harb. Perspect. Biol. 3, a004457 (2011)PubMedCrossRefGoogle Scholar
  115. G.B. Smith, A.J. Heynen, M.F. Bear, Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 357–367 (2009)PubMedCrossRefGoogle Scholar
  116. E.M. Snyder, Y. Nong, C.G. Almeida, S. Paul, T. Moran, E.Y. Choi, A.C. Nairn, M.W. Salter, P.J. Lombroso, G.K. Gouras, P. Greengard, Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8, 1051–1058 (2005)PubMedCrossRefGoogle Scholar
  117. T.R. Soderling, V.A. Derkach, Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23, 75–80 (2000)PubMedCrossRefGoogle Scholar
  118. I. Song, R.L. Huganir, Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002)PubMedCrossRefGoogle Scholar
  119. X. Sun, G. He, H. Qing, W. Zhou, F. Dobie, F. Cai, M. Staufenbiel, L.E. Huang, W. Song, Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc. Natl. Acad. Sci. U. S. A. 103, 18727–18732 (2006)PubMedCrossRefGoogle Scholar
  120. H.S. Sun, M.F. Jackson, L.J. Martin, K. Jansen, L. Teves, H. Cui, S. Kiyonaka, Y. Mori, M. Jones, J.P. Forder, T.E. Golde, B.A. Orser, J.F. MacDonald, M. Tymianski, Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat. Neurosci. 12, 1300–1307 (2009)PubMedCrossRefGoogle Scholar
  121. N. Takahashi, D. Kozai, R. Kobayashi, M. Ebert, Y. Mori, Roles of TRPM2 in oxidative stress. Cell Calcium 50, 279–366 (2011)PubMedCrossRefGoogle Scholar
  122. C.L. Thompson, D.L. Drewery, H.D. Atkins, F.A. Stephenson, P.L. Chazot, Immunohistochemical localization of N-methyl-D-aspartate receptor NR1, NR2A, NR2B and NR2C/D subunits in the adult mammalian cerebellum. Neurosci. Lett. 283, 85–88 (2000)PubMedCrossRefGoogle Scholar
  123. C.L. Thompson, D.L. Drewery, H.D. Atkins, F.A. Stephenson, P.L. Chazot, Immunohistochemical localization of N-methyl-D-aspartate receptor subunits in the adult murine hippocampal formation: evidence for a unique role of the NR2D subunit. Brain Res. Mol. Brain Res. 102, 55–61 (2002)PubMedCrossRefGoogle Scholar
  124. R.J. Thompson, N. Zhou, B.A. MacVicar, Ischemia opens neuronal gap junction hemichannels. Science 312, 924–927 (2006)PubMedCrossRefGoogle Scholar
  125. R. Thompson, M. Jackson, M. Olah, R. Rungta, D. Hines, M. Beazely, J. MacDonald, B. MacVicar, Activation of pannexin-1 hemichannels augments aberrant bursting in the hippocampus. Science 322, 1555–1564 (2008)PubMedCrossRefGoogle Scholar
  126. C.H. Trepanier, M.F. Jackson, J.F. MacDonald, Regulation of NMDA receptors by the tyrosine kinase Fyn. FEBS J. 279, 12–19 (2012)PubMedCrossRefGoogle Scholar
  127. V. Tseveleki, R. Rubio, S.-S. Vamvakas, J. White, E. Taoufik, E. Petit, J. Quackenbush, L. Probert, Comparative gene expression analysis in mouse models for multiple sclerosis, Alzheimer’s disease and stroke for identifying commonly regulated and disease-specific gene changes. Genomics 96, 82–173 (2010)PubMedCrossRefGoogle Scholar
  128. S. Tsuruno, S.Y. Kawaguchi, T. Hirano, Src-family protein tyrosine kinase negatively regulates cerebellar long-term depression. Neurosci. Res. 61, 329–332 (2008)PubMedCrossRefGoogle Scholar
  129. M. Tymianski, Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat. Neurosci. 14, 1369–1373 (2011)PubMedCrossRefGoogle Scholar
  130. M. Tymianski, M.P. Charlton, P.L. Carlen, C.H. Tator, Source specificity of early calcium neurotoxicity in cultured embryonic spinal neurons. J. Neurosci. 13, 2085–2104 (1993)PubMedGoogle Scholar
  131. P. Vanhoutte, H. Bading, Opposing roles of synaptic and extrasynaptic NMDA receptors in neuronal calcium signalling and BDNF gene regulation. Curr. Opin. Neurobiol. 13, 366–371 (2003)PubMedCrossRefGoogle Scholar
  132. D.V. Venkitaramani, J. Chin, W.J. Netzer, G.K. Gouras, S. Lesne, R. Malinow, P.J. Lombroso, Beta-amyloid modulation of synaptic transmission and plasticity. J. Neurosci. 27, 11832–11837 (2007)PubMedCrossRefGoogle Scholar
  133. X. Wang, E.K. Michaelis, Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2, 12 (2010)PubMedGoogle Scholar
  134. W.-W. Wang, S.-Q. Hu, C. Li, C. Zhou, S.-H. Qi, G.-Y. Zhang, Transduced PDZ1 domain of PSD-95 decreases Src phosphorylation and increases nNOS (Ser847) phosphorylation contributing to neuroprotection after cerebral ischemia. Brain Res. 1328, 162–232 (2010)PubMedCrossRefGoogle Scholar
  135. W.L. Wei, H.S. Sun, M.E. Olah, X. Sun, E. Czerwinska, W. Czerwinski, Y. Mori, B.A. Orser, Z.G. Xiong, M.F. Jackson, M. Tymianski, J.F. MacDonald, TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc. Natl. Acad. Sci. U. S. A. 104, 16323–16328 (2007)PubMedCrossRefGoogle Scholar
  136. T.P. Wong, J.G. Howland, J.M. Robillard, Y. Ge, W. Yu, A.K. Titterness, K. Brebner, L. Liu, J. Weinberg, B.R. Christie, A.G. Phillips, Y.T. Wang, Hippocampal long-term depression mediates acute stress-induced spatial memory retrieval impairment. Proc. Natl. Acad. Sci. U. S. A. 104, 11471–11476 (2007)PubMedCrossRefGoogle Scholar
  137. P. Xia, H.S. Chen, D. Zhang, S.A. Lipton, Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci. 30, 11246–11250 (2010)PubMedCrossRefGoogle Scholar
  138. Y.F. Xie, J.C. Belrose, G. Lei, M. Tymianski, Y. Mori, J.F. MacDonald, M.F. Jackson, Dependence of NMDA/GSK3beta mediated metaplasticity on TRPM2 channels at hippocampal CA3-CA1 synapses. Mol. Brain 4, 44 (2011)PubMedCrossRefGoogle Scholar
  139. Z.G. Xiong, X.M. Zhu, X.P. Chu, M. Minami, J. Hey, W.L. Wei, J.F. MacDonald, J.A. Wemmie, M.P. Price, M.J. Welsh, R.P. Simon, Neuroprotection in ischemia; blocking calcium-permeable Acid-sensing ion channels. Cell 118, 687–698 (2004)PubMedCrossRefGoogle Scholar
  140. J. Xu, M. Weerapura, M.K. Ali, M.F. Jackson, H. Li, G. Lei, S. Xue, C.L. Kwan, M.F. Manolson, K. Yang, J.F. MacDonald, X.M. Yu, Control of excitatory synaptic transmission by C-terminal Src kinase. J. Biol. Chem. 283, 17503–17514 (2008)PubMedCrossRefGoogle Scholar
  141. Z. Xu, R.Q. Chen, Q.H. Gu, J.Z. Yan, S.H. Wang, S.Y. Liu, W. Lu, Metaplastic regulation of long-term potentiation/long-term depression threshold by activity-dependent changes of NR2A/NR2B ratio. J. Neurosci. 29, 8764–8773 (2009)PubMedCrossRefGoogle Scholar
  142. K. Yamada, N. Hara, T. Shibata, H. Osago, M. Tsuchiya, The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry. Anal. Biochem. 352, 282–285 (2006)PubMedCrossRefGoogle Scholar
  143. S. Yamamoto, T. Wajima, Y. Hara, M. Nishida, Y. Mori, Transient receptor potential channels in Alzheimer’s disease. Biochim. Biophys. Acta 1772, 958–967 (2007)PubMedCrossRefGoogle Scholar
  144. S. Yamamoto, S. Shimizu, S. Kiyonaka, N. Takahashi, T. Wajima, Y. Hara, T. Negoro, T. Hiroi, Y. Kiuchi, T. Okada, S. Kaneko, I. Lange, A. Fleig, R. Penner, M. Nishi, H. Takeshima, Y. Mori, TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat. Med. 14, 738–747 (2008)PubMedCrossRefGoogle Scholar
  145. K. Yang, J. Belrose, C.H. Trepanier, G. Lei, M.F. Jackson, J.F. MacDonald, Fyn, a potential target for Alzheimer’s disease. J. Alzheimers Dis. 27, 243–252 (2011a)PubMedGoogle Scholar
  146. K. Yang, C. Trepanier, B. Sidhu, Y.F. Xie, H. Li, G. Lei, M.W. Salter, B.A. Orser, T. Nakazawa, T. Yamamoto, M.F. Jackson, J.F. MacDonald, Metaplasticity gated through differential regulation of GluN2A versus GluN2B receptors by Src family kinases. EMBO J. 31, 805–816 (2011b)PubMedCrossRefGoogle Scholar
  147. K. Yashiro, B.D. Philpot, Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55, 1081–1094 (2008)PubMedCrossRefGoogle Scholar
  148. B.J. Yoon, G.B. Smith, A.J. Heynen, R.L. Neve, M.F. Bear, Essential role for a long-term depression mechanism in ocular dominance plasticity. Proc. Natl. Acad. Sci. U. S. A. 106, 9860–9865 (2009)PubMedCrossRefGoogle Scholar
  149. S.J. Zhang, B. Buchthal, D. Lau, S. Hayer, O. Dick, M. Schwaninger, R. Veltkamp, M. Zou, U. Weiss, H. Bading, A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J. Neurosci. 31, 4978–4990 (2011)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • John F. MacDonald
    • 1
    • 2
    • 3
    Email author
  • Jillian C. Belrose
    • 1
    • 2
  • Yu-Feng Xie
    • 2
  • Michael F. Jackson
    • 2
    • 3
  1. 1.Department of Anatomy and Cell BiologyUniversity of Western OntarioLondonCanada
  2. 2.Robarts Research Institute, Molecular Brain Research GroupUniversity of Western OntarioLondonCanada
  3. 3.Department of Physiology and PharmacologyUniversity of Western OntarioLondonCanada

Personalised recommendations