New Roles of NCX in Glial Cells: Activation of Microglia in Ischemia and Differentiation of Oligodendrocytes

  • Francesca Boscia
  • Carla D’Avanzo
  • Anna Pannaccione
  • Agnese Secondo
  • Antonella Casamassa
  • Luigi Formisano
  • Natascia Guida
  • Antonella Scorziello
  • Gianfranco Di Renzo
  • Lucio Annunziato
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)

Abstract

The initiation of microglial responses to the ischemic injury involves modifications of calcium homeostasis. Changes in [Ca2+]i levels have also been shown to influence the developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of myelination and remyelination processes.

We investigated the regional and temporal changes of NCX1 protein in microglial cells of the peri-infarct and core regions after permanent middle cerebral artery occlusion (pMCAO). Interestingly, 3 and 7 days after pMCAO, NCX1 signal strongly increased in the round-shaped microglia invading the infarct core. Cultured microglial cells from the core displayed increased NCX1 expression as compared with contralateral cells and showed enhanced NCX activity in the reverse mode of operation. Similarly, NCX activity and NCX1 protein expression were significantly enhanced in BV2 microglia exposed to oxygen and glucose deprivation, whereas NCX2 and NCX3 were downregulated. Interestingly, in NCX1-silenced cells, [Ca2+]i increase induced by hypoxia was completely prevented. The upregulation of NCX1 expression and activity observed in microglia after pMCAO suggests a relevant role of NCX1 in modulating microglia functions in the postischemic brain.

Next, we explored whether calcium signals mediated by NCX1, NCX2, or NCX3 play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte. In fact, while NCX1 was downregulated, NCX3 was strongly upregulated during the oligodendrocyte development. Whereas the knocking down of the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers CNPase and MBP, its overexpression induced their upregulation. Furthermore, NCX3 knockout mice exhibited not only a reduced size of spinal cord but also a marked hypomyelination, as revealed by the decrease in MBP expression and by the accompanying increase in OPCs number. Our findings indicate that calcium signaling mediated by NCX3 plays a crucial role in oligodendrocyte maturation and myelin formation.

Keywords

Na+/Ca2+ exchanger NCX1 NCX3 Microglia Oligodendrocyte ­precursor cells (OPCs) Oligodendrocyte Cerebral ischemia MCAO Myelin 

Notes

Acknowledgments

This work was supported by COFIN2008, Ricerca-Sanitaria RF-FSL352059 Ricerca finalizzata 2006, Ricerca-Oncologica 2006, Progetto-Strategico 2007, Progetto Ordinario 2007, Ricerca finalizzata 2009, and Ricerca-Sanitaria progetto Ordinario by Ministero della Salute 2008 all to LA.

References

  1. L. Annunziato, G. Pignataro, G.F. Di Renzo, Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev. 56, ­633–654 (2004)PubMedCrossRefGoogle Scholar
  2. B.A. Barres, W.J. Koroshetz, K.J. Swartz, L.L. Chun, D.P. Corey, Ion channel expression by white matter glia: the O-2A glial progenitor cell. Neuron 4, 507–524 (1990)PubMedCrossRefGoogle Scholar
  3. F. Boscia, R. Gala, G. Pignataro, A. De Bartolomeis, M. Cicale, A. Ambesi Impiombato, G. Di Renzo, L. Annunziato, Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J. Cereb. Blood Flow Metab. 26, 502–517 (2006)PubMedCrossRefGoogle Scholar
  4. F. Boscia, R. Gala, A. Pannaccione, A. Secondo, A. Scorziello, G.F. Di Renzo, L. Annunziato, NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 40, 3608–3617 (2009)PubMedCrossRefGoogle Scholar
  5. F. Boscia, C. D’Avanzo, A. Pannaccione, A. Secondo, A. Casamassa, L. Formisano, N. Guida, L. Annunziato, Silencing or knocking out the Na+/Ca2+ exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ. 19, 562–572 (2012)PubMedCrossRefGoogle Scholar
  6. S.Y. Chong, J.R. Chan, Tapping into the glial reservoir: cells committed to remaining uncommitted. J. Cell Biol. 188, 305–312 (2010)PubMedCrossRefGoogle Scholar
  7. M.J. Craner, B.C. Hains, A.C. Lo, J.A. Black, S.G. Waxman, Co-localization of sodium channel Nav1.6 and the sodium–calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127, 294–303 (2004a)PubMedCrossRefGoogle Scholar
  8. M.J. Craner, J. Newcombe, J.A. Black, C. Hartle, M.L. Cuzner, S.G. Waxman, Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc. Natl. Acad. Sci. U. S. A. 101, 8168–8173 (2004b)PubMedCrossRefGoogle Scholar
  9. R.J.M. Franklin, C. French-Constant, Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci. 9, 839–855 (2008)PubMedCrossRefGoogle Scholar
  10. F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, P. See, S. Gokhan, M.F. Mehler, S.J. Conway, L.G. Ng, E.R. Stanley, I.M. Samokhvalov, M. Merad, Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010)PubMedCrossRefGoogle Scholar
  11. U.K. Hanisch, H. Kettenmann, Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394 (2007)PubMedCrossRefGoogle Scholar
  12. M. Ifuku, K. Färber, Y. Okuno, Y. Yamakawa, T. Miyamoto, C. Nolte, V.F. Merrino, S. Kita, T. Iwamoto, I. Komuro, B. Wang, G. Cheung, E. Ishikawa, H. Ooboshi, M. Bader, K. Wada, H. Kettenmann, M. Noda, Bradykinininduced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J. Neurosci. 27, 13065–13073 (2007)PubMedCrossRefGoogle Scholar
  13. D. Ito, K. Tanaka, S. Suzuki, T. Dembo, Y. Fukuuchi, Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32, 1208–1215 (2001)PubMedCrossRefGoogle Scholar
  14. S. Li, Q. Jiang, P.K. Stys, Important role of reverse Na+–Ca2+ exchange in spinal cord white matter injury at physiological temperature. J. Neurophysiol. 84, 1116–1119 (2000)PubMedGoogle Scholar
  15. P. Lipton, Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999)PubMedGoogle Scholar
  16. T. Matsuda, T. Nagano, M. Takemura, A. Baba, Topics on the Na+/Ca2+ exchanger: responses of Na+/Ca2+ exchanger to interferon-gamma and nitric oxide in cultured microglia. J. Pharmacol. Sci. 102, 22–26 (2006)PubMedCrossRefGoogle Scholar
  17. P. Molinaro, O. Cuomo, G. Pignataro, F. Boscia, R. Sirabella, R. Gala, S. Sokolow, A. Herchuelz, S. Schurmans, G. Di Renzo, L. Annunziato, Targeted disruption of NCX3 gene leads to a worsening of ischemic brain damage. J. Neurosci. 28, 1179–1184 (2008)PubMedCrossRefGoogle Scholar
  18. T. Nagano, Y. Kawasaki, A. Baba, M. Takemura, T. Matsuda, Up-regulation of Na+-Ca2+ exchange activity by interferon-gamma in cultured rat microglia. J. Neurochem. 90, 784–791 (2004)PubMedCrossRefGoogle Scholar
  19. E.W. Newell, E.F. Stanley, L.C. Schlichter, Reversed Na+/Ca2+ exchange contributes to Ca2+ influx and respiratory burst in microglia. Channels (Austin) 1, 366–376 (2007)Google Scholar
  20. G. Pignataro, R. Gala, O. Cuomo, A. Tortiglione, L. Giaccio, P. Castaldo, R. Sirabella, C. Matrone, A. Canitano, S. Amoroso, G.F. Di Renzo, L. Annunziato, Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35, ­2566–2570 (2004)PubMedCrossRefGoogle Scholar
  21. B.D. Quednau, D.A. Nicoll, K.D. Philipson, Tissue specificity and alternative splicing of the Na+/Ca+2 exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. 272, C1250–C1261 (1997)PubMedGoogle Scholar
  22. S. Sokolow, M. Manto, P. Gailly, J. Molgó, C. Vandebrouck, J.M. Vanderwinden, A. Herchuelz, S. Schurmans, Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. J. Clin. Invest. 113, 265–273 (2004)PubMedGoogle Scholar
  23. D.J. Tomes, S.K. Agrawal, Role of Na+–Ca2+ exchanger after traumatic or hypoxic/ischemic injury to spinal cord white matter. Spine J. 2, 35–40 (2002)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Francesca Boscia
    • 1
  • Carla D’Avanzo
    • 1
  • Anna Pannaccione
    • 1
  • Agnese Secondo
    • 1
  • Antonella Casamassa
    • 1
  • Luigi Formisano
    • 1
  • Natascia Guida
    • 1
  • Antonella Scorziello
    • 1
  • Gianfranco Di Renzo
    • 1
  • Lucio Annunziato
    • 2
  1. 1.Division of Pharmacology, Department of Neuroscience, School of Medicine‘Federico II’ University of NaplesNaplesItaly
  2. 2.Division of Pharmacology, Department of Neuroscience, School of Medicine‘Federico II’ University of NaplesNaplesItaly

Personalised recommendations