Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 961))

Abstract

Astrocytes exhibit their excitability based on variations in cytosolic Ca2+ levels, which leads to variety of signalling events. Only recently, however, intracellular fluctuations of more abundant cation Na+ are brought in the limelight of glial signalling. Indeed, astrocytes possess several plasmalemmal molecular entities that allow rapid transport of Na+ across the plasma membrane: (1) ionotropic receptors, (2) canonical transient receptor potential cation channels, (3) neurotransmitter transporters and (4) sodium-calcium exchanger. Concerted action of these molecules in controlling cytosolic Na+ may complement Ca2+ signalling to provide basis for complex bidirectional astrocyte-neurone communication at the tripartite synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • C. Agulhon, J. Petravicz, A.B. McMullen, E.J. Sweger, S.K. Minton, S.R. Taves, K.B. Casper, T.A. Fiacco, K.D. McCarthy, What is the role of astrocyte calcium in neurophysiology? Neuron 59, 932–946 (2008)

    Article  PubMed  CAS  Google Scholar 

  • F. Ashour, J. Deuchars, Electron microscopic localisation of P2X4 receptor subunit immunoreactivity to pre- and post-synaptic neuronal elements and glial processes in the dorsal vagal complex of the rat. Brain Res. 1026, 44–55 (2004)

    Article  PubMed  CAS  Google Scholar 

  • A.M. Benjamin, Influence of Na+, K+, and Ca2+ on glutamine synthesis and distribution in rat brain cortex slices: a possible linkage of glutamine synthetase with cerebral transport processes and energetics in the astrocytes. J. Neurochem. 48, 1157–1164 (1987)

    Article  PubMed  CAS  Google Scholar 

  • M. Bennay, J. Langer, S.D. Meier, K.W. Kafitz, C.R. Rose, Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission. Glia 56, 1138–1149 (2008)

    Article  PubMed  Google Scholar 

  • B. Benz, G. Grima, K.Q. Do, Glutamate-induced homocysteic acid release from astrocytes: possible implication in glia-neuron signaling. Neuroscience 124, 377–386 (2004)

    Article  PubMed  CAS  Google Scholar 

  • Y. Bernardinelli, P.J. Magistretti, J.Y. Chatton, Astrocytes generate Na+-mediated metabolic waves. Proc. Natl. Acad. Sci. U. S. A. 101, 14937–14942 (2004)

    Article  PubMed  CAS  Google Scholar 

  • M.P. Blaustein, M. Juhaszova, V.A. Golovina, P.J. Church, E.F. Stanley, Na/Ca exchanger and PMCA localization in neurons and astrocytes: functional implications. Ann. N. Y. Acad. Sci. 976, 356–366 (2002)

    Article  PubMed  CAS  Google Scholar 

  • N. Burnashev, A. Villarroel, B. Sakmann, Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. J. Physiol. (Lond.) 496, 165–173 (1996)

    CAS  Google Scholar 

  • J.Y. Chatton, L. Pellerin, P.J. Magistretti, GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc. Natl. Acad. Sci. U. S. A. 100, 12456–12461 (2003)

    Article  PubMed  CAS  Google Scholar 

  • B.A. Clark, B. Barbour, Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices. J. Physiol. (Lond.) 502(Pt 2), 335–350 (1997)

    Article  CAS  Google Scholar 

  • D.F. Condorelli, F. Conti, V. Gallo, F. Kirchhoff, G. Seifert, C. Steinhauser, A. Verkhratsky, X. Yuan, Expression and functional analysis of glutamate receptors in glial cells. Adv. Exp. Med. Biol. 468, 49–67 (1999)

    Article  PubMed  CAS  Google Scholar 

  • F. Conti, A. Minelli, N.C. Brecha, Cellular localization and laminar distribution of AMPA glutamate receptor subunits mRNAs and proteins in the rat cerebral cortex. J. Comp. Neurol. 350, 241–259 (1994)

    Article  PubMed  CAS  Google Scholar 

  • F. Conti, S. DeBiasi, A. Minelli, M. Melone, Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia 17, 254–258 (1996)

    Article  PubMed  CAS  Google Scholar 

  • N.C. Danbolt, Glutamate uptake. Prog. Neurobiol. 65, 1–105 (2001)

    Article  PubMed  CAS  Google Scholar 

  • J.W. Deitmer, C.R. Rose, Ion changes and signalling in perisynaptic glia. Brain Res. Rev. 63, 113–129 (2010)

    Article  PubMed  CAS  Google Scholar 

  • R. DiPolo, L. Beauge, The calcium pump and sodium-calcium exchange in squid axons. Annu. Rev. Physiol. 45, 313–324 (1983)

    Article  PubMed  CAS  Google Scholar 

  • C.L. Floyd, F.A. Gorin, B.G. Lyeth, Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 51, 35–46 (2005)

    Article  PubMed  Google Scholar 

  • H. Franke, J. Grosche, H. Schadlich, U. Krugel, C. Allgaier, P. Illes, P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108, 421–429 (2001)

    Article  PubMed  CAS  Google Scholar 

  • H. Franke, A. Gunther, J. Grosche, R. Schmidt, S. Rossner, R. Reinhardt, H. Faber-Zuschratter, D. Schneider, P. Illes, P2X7 receptor expression after ischemia in the cerebral cortex of rats. J. Neuropathol. Exp. Neurol. 63, 686–699 (2004)

    PubMed  CAS  Google Scholar 

  • M. Fumagalli, R. Brambilla, N. D’Ambrosi, C. Volonte, M. Matteoli, C. Verderio, M.P. Abbracchio, Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43, 218–230 (2003)

    Article  PubMed  Google Scholar 

  • A. Gadea, A.M. Lopez-Colome, Glial transporters for glutamate, glycine and GABA I. Glutamate transporters. J. Neurosci. Res. 63, 453–460 (2001)

    Article  PubMed  CAS  Google Scholar 

  • V. Gallo, C.A. Ghiani, Glutamate receptors in glia: new cells, new inputs and new functions. Trends Pharmacol. Sci. 21, 252–258 (2000)

    Article  PubMed  CAS  Google Scholar 

  • J.R. Geiger, T. Melcher, D.S. Koh, B. Sakmann, P.H. Seeburg, P. Jonas, H. Monyer, Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15, 193–204 (1995)

    Article  PubMed  CAS  Google Scholar 

  • W.F. Goldman, P.J. Yarowsky, M. Juhaszova, B.K. Krueger, M.P. Blaustein, Sodium/calcium exchange in rat cortical astrocytes. J. Neurosci. 14, 5834–5843 (1994)

    PubMed  CAS  Google Scholar 

  • V.A. Golovina, Visualization of localized store-operated calcium entry in mouse astrocytes. Close proximity to the endoplasmic reticulum. J. Physiol. (Lond.) 564, 737–749 (2005)

    Article  CAS  Google Scholar 

  • M. Grimaldi, M. Maratos, A. Verma, Transient receptor potential channel activation causes a novel form of [Ca 2+]I oscillations and is not involved in capacitative Ca 2+ entry in glial cells. J. Neurosci. 23, 4737–4745 (2003)

    PubMed  CAS  Google Scholar 

  • N. Hamilton, S. Vayro, F. Kirchhoff, A. Verkhratsky, J. Robbins, D.C. Gorecki, A.M. Butt, Mechanisms of ATP- and glutamate-mediated calcium signaling in white matter astrocytes. Glia 56, 734–749 (2008)

    Article  PubMed  Google Scholar 

  • L. Heja, P. Barabas, G. Nyitrai, K.A. Kekesi, B. Lasztoczi, O. Toke, G. Tarkanyi, K. Madsen, A. Schousboe, A. Dobolyi, M. Palkovits, J. Kardos, Glutamate uptake triggers transporter-mediated GABA release from astrocytes. PLoS One 4, e7153 (2009)

    Article  PubMed  CAS  Google Scholar 

  • M.T. Heneka, J.J. Rodriguez, A. Verkhratsky, Neuroglia in neurodegeneration. Brain Res. Rev. 63, 189–211 (2010)

    Article  PubMed  CAS  Google Scholar 

  • L. Hertz, H.R. Zielke, Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci. 27, 735–743 (2004)

    Article  PubMed  CAS  Google Scholar 

  • P. Illes, A. Verkhratsky, G. Burnstock, H. Franke, P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist (2011 in press; doi 1073858411418524)

    Google Scholar 

  • T. Isa, S. Itazawa, M. Iino, K. Tsuzuki, S. Ozawa, Distribution of neurones expressing inwardly rectifying and Ca2+-permeable AMPA receptors in rat hippocampal slices. J. Physiol. (Lond.) 491, 719–733 (1996)

    CAS  Google Scholar 

  • S.I. Itazawa, T. Isa, S. Ozawa, Inwardly rectifying and Ca2+-permeable AMPA-type glutamate receptor channels in rat neocortical neurons. J. Neurophysiol. 78, 2592–2601 (1997)

    PubMed  CAS  Google Scholar 

  • R. Jabs, E. Guenther, K. Marquordt, T.H. Wheeler-Schilling, Evidence for P2X3, P2X4, P2X5 but not for P2X7 containing purinergic receptors in Muller cells of the rat retina. Brain Res. Mol. Brain Res. 76, 205–210 (2000)

    Article  PubMed  CAS  Google Scholar 

  • G. James, A.M. Butt, P2X and P2Y purinoreceptors mediate ATP-evoked calcium signalling in optic nerve glia in situ. Cell Calcium 30, 251–259 (2001)

    Article  PubMed  CAS  Google Scholar 

  • M. Juhaszova, M.P. Blaustein, Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. Proc. Natl. Acad. Sci. U. S. A. 94, 1800–1805 (1997)

    Article  PubMed  CAS  Google Scholar 

  • R. Kanjhan, G.D. Housley, P.R. Thorne, D.L. Christie, D.J. Palmer, L. Luo, A.F. Ryan, Localization of ATP-gated ion channels in cerebellum using P2x2R subunit-specific antisera. Neuroreport 7, 2665–2669 (1996)

    Article  PubMed  CAS  Google Scholar 

  • R. Karadottir, P. Cavelier, L.H. Bergersen, D. Attwell, NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 438, 1162–1166 (2005)

    Article  PubMed  CAS  Google Scholar 

  • H. Kettenmann, B.R. Ransom (eds.), Neuroglia (OUP, Oxford, 2005)

    Google Scholar 

  • L. Kiedrowski, J.T. Wroblewski, E. Costa, Intracellular sodium concentration in cultured cerebellar granule cells challenged with glutamate. Mol. Pharmacol. 45, 1050–1054 (1994)

    PubMed  CAS  Google Scholar 

  • H.K. Kimelberg, M. Nedergaard, Functions of astrocytes and their potential as therapeutic targets. Neurotherapeutics 7, 338–353 (2010)

    Article  PubMed  CAS  Google Scholar 

  • H.K. Kimelberg, S. Pang, D.H. Treble, Excitatory amino acid-stimulated uptake of 22Na+ in primary astrocyte cultures. J. Neurosci. 9, 1141–1149 (1989)

    PubMed  CAS  Google Scholar 

  • S. Kirischuk, H. Kettenmann, A. Verkhratsky, Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ. FASEB J. 11, 566–572 (1997)

    PubMed  CAS  Google Scholar 

  • S. Kirischuk, H. Kettenmann, A. Verkhratsky, Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflugers Arch. 454, 245–252 (2007)

    Article  PubMed  CAS  Google Scholar 

  • T. Knopfel, E. Guatteo, G. Bernardi, N.B. Mercuri, Hyperpolarization induces a rise in intracellular sodium concentration in dopamine cells of the substantia nigra pars compacta. Eur. J. Neurosci. 10, 1926–1929 (1998)

    Article  PubMed  CAS  Google Scholar 

  • T. Kondoh, T. Nishizaki, H. Aihara, N. Tamaki, NMDA-responsible, APV-insensitive receptor in cultured human astrocytes. Life Sci. 68, 1761–1767 (2001)

    Article  PubMed  CAS  Google Scholar 

  • M. Kukley, J.A. Barden, C. Steinhauser, R. Jabs, Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36, 11–21 (2001)

    Article  PubMed  CAS  Google Scholar 

  • U. Lalo, Y. Pankratov, F. Kirchhoff, R.A. North, A. Verkhratsky, NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J. Neurosci. 26, 2673–2683 (2006)

    Article  PubMed  CAS  Google Scholar 

  • U. Lalo, Y. Pankratov, S.P. Wichert, M.J. Rossner, R.A. North, F. Kirchhoff, A. Verkhratsky, P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J. Neurosci. 28, 5473–5480 (2008)

    Article  PubMed  CAS  Google Scholar 

  • U. Lalo, O. Palygin, R.A. North, A. Verkhratsky, Y. Pankratov, Age-dependent remodelling of ionotropic signalling in cortical astroglia. Aging Cell 10, 392–402 (2011a)

    Article  PubMed  CAS  Google Scholar 

  • U. Lalo, Y. Pankratov, V. Parpura, A. Verkhratsky, Ionotropic receptors in neuronal-astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim. Biophys. Acta 1813, 992–1002 (2011b)

    Article  PubMed  CAS  Google Scholar 

  • U. Lalo, A. Verkhratsky, Y. Pankratov, Ionotropic ATP receptors in neuronal-glial communication. Semin. Cell Dev. Biol. 22, 220–228 (2011c)

    Article  PubMed  CAS  Google Scholar 

  • A. Loesch, G. Burnstock, Electron-immunocytochemical localization of P2X1 receptors in the rat cerebellum. Cell Tissue Res. 294, 253–260 (1998)

    Article  PubMed  CAS  Google Scholar 

  • T. Lopez, A.M. Lopez-Colome, A. Ortega, NMDA receptors in cultured radial glia. FEBS Lett. 405, 245–248 (1997)

    Article  PubMed  CAS  Google Scholar 

  • P.J. Magistretti, Neuron-glia metabolic coupling and plasticity. J. Exp. Biol. 209, 2304–2311 (2006)

    Article  PubMed  CAS  Google Scholar 

  • P.J. Magistretti, Role of glutamate in neuron-glia metabolic coupling. Am. J. Clin. Nutr. 90, 875S–880S (2009)

    Article  PubMed  CAS  Google Scholar 

  • E.B. Malarkey, Y. Ni, V. Parpura, Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56, 821–835 (2008)

    Article  PubMed  Google Scholar 

  • T. Matsuda, K. Takuma, E. Nishiguchi, H. Hashimoto, J. Azuma, A. Baba, Involvement of Na+-Ca2+ exchanger in reperfusion-induced delayed cell death of cultured rat astrocytes. Eur. J. Neurosci. 8, 951–958 (1996)

    Article  PubMed  CAS  Google Scholar 

  • V. Matyash, H. Kettenmann, Heterogeneity in astrocyte morphology and physiology. Brain Res. Rev. 63, 2–10 (2010)

    Article  PubMed  CAS  Google Scholar 

  • I. Micu, Q. Jiang, E. Coderre, A. Ridsdale, L. Zhang, J. Woulfe, X. Yin, B.D. Trapp, J.E. McRory, R. Rehak, G.W. Zamponi, W. Wang, P.K. Stys, NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia. Nature 439, 988–992 (2006)

    PubMed  CAS  Google Scholar 

  • A. Minelli, P. Castaldo, P. Gobbi, S. Salucci, S. Magi, S. Amoroso, Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41, 221–234 (2007)

    Article  PubMed  CAS  Google Scholar 

  • T. Muller, T. Moller, T. Berger, J. Schnitzer, H. Kettenmann, Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256, 1563–1566 (1992)

    Article  PubMed  CAS  Google Scholar 

  • M. Nedergaard, J.J. Rodriguez, A. Verkhratsky, Glial calcium and diseases of the nervous system. Cell Calcium 47, 140–149 (2010)

    Article  PubMed  CAS  Google Scholar 

  • T. Nishizaki, T. Matsuoka, T. Nomura, T. Kondoh, N. Tamaki, Y. Okada, Store Ca2+ depletion enhances NMDA responses in cultured human astrocytes. Biochem. Biophys. Res. Commun. 259, 661–664 (1999)

    Article  PubMed  CAS  Google Scholar 

  • N.A. Oberheim, X. Wang, S. Goldman, M. Nedergaard, Astrocytic complexity distinguishes the human brain. Trends Neurosci. 29, 547–553 (2006)

    Article  PubMed  CAS  Google Scholar 

  • J.F. Oliveira, T. Riedel, A. Leichsenring, C. Heine, H. Franke, U. Krugel, W. Norenberg, P. Illes, Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations. Cereb. Cortex 21, 806–820 (2011)

    Article  PubMed  Google Scholar 

  • S.G. Owe, P. Marcaggi, D. Attwell, The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J. Physiol. (Lond.) 577, 591–599 (2006)

    Article  CAS  Google Scholar 

  • S. Paluzzi, S. Alloisio, S. Zappettini, M. Milanese, L. Raiteri, M. Nobile, G. Bonanno, Adult astroglia is competent for Na+/Ca2+ exchanger-operated exocytotic glutamate release triggered by mild depolarization. J. Neurochem. 103, 1196–1207 (2007)

    Article  PubMed  CAS  Google Scholar 

  • O. Palygin, U. Lalo, A. Verkhratsky, Y. Pankratov, Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48, 225–231 (2010)

    Article  PubMed  CAS  Google Scholar 

  • O. Palygin, U. Lalo, Y. Pankratov, Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br. J. Pharmacol. 163, 1755–1766 (2011)

    Article  PubMed  CAS  Google Scholar 

  • Y. Pankratov, U. Lalo, O.A. Krishtal, A. Verkhratsky, P2X receptors and synaptic plasticity. Neuroscience 158, 137–148 (2009)

    Article  PubMed  CAS  Google Scholar 

  • V. Parpura, V. Grubisic, A. Verkhratsky, Ca2+ sources for the exocytotic release of glutamate from astrocytes. Biochim. Biophys. Acta 1813, 984–991 (2011)

    Article  PubMed  CAS  Google Scholar 

  • O. Peters, S.L. Palay, H. deF Webster, The Fine Structure of the Nervous System (Oxford University Press, Oxford, 1991)

    Google Scholar 

  • A. Pisani, P. Calabresi, A. Tozzi, G. Bernardi, T. Knopfel, Early sodium elevations induced by combined oxygen and glucose deprivation in pyramidal cortical neurons. Eur. J. Neurosci. 10, 3572–3574 (1998)

    Article  PubMed  CAS  Google Scholar 

  • P. Pizzo, A. Burgo, T. Pozzan, C. Fasolato, Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J. Neurochem. 79, 98–109 (2001)

    Article  PubMed  CAS  Google Scholar 

  • D.G. Puro, J.P. Yuan, N.J. Sucher, Activation of NMDA receptor-channels in human retinal Muller glial cells inhibits inward-rectifying potassium currents. Vis. Neurosci. 13, 319–326 (1996)

    Article  PubMed  CAS  Google Scholar 

  • R.C. Reyes, A. Verkhratsky, V. Parpura, Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes ASN Neuro 4(1). pii: e00075. doi: 10.1042/AN20110059 (2012)

    Google Scholar 

  • J.J. Rodriguez, M. Olabarria, A. Chvatal, A. Verkhratsky, Astroglia in dementia and Alzheimer’s disease. Cell Death Differ. 16, 378–385 (2009)

    Article  PubMed  CAS  Google Scholar 

  • H. Rojas, C. Colina, M. Ramos, G. Benaim, E.H. Jaffe, C. Caputo, R. DiPolo, Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Ca 2+i -induced Ca2+ release in rat cerebellar Type-1 astrocytes. J. Neurochem. 100, 1188–1202 (2007)

    Article  PubMed  CAS  Google Scholar 

  • C.R. Rose, B.R. Ransom, Intracellular sodium homeostasis in rat hippocampal astrocytes. J. Physiol. (Lond.) 491(Pt 2), 291–305 (1996a)

    CAS  Google Scholar 

  • C.R. Rose, B.R. Ransom, Mechanisms of H+ and Na+ changes induced by glutamate, kainate, and D-aspartate in rat hippocampal astrocytes. J. Neurosci. 16, 5393–5404 (1996b)

    PubMed  CAS  Google Scholar 

  • C.R. Rose, B.R. Ransom, Gap junctions equalize intracellular Na+ concentration in astrocytes. Glia 20, 299–307 (1997)

    Article  PubMed  CAS  Google Scholar 

  • M.G. Salter, R. Fern, NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 438, 1167–1171 (2005)

    Article  PubMed  CAS  Google Scholar 

  • C.G. Schipke, C. Ohlemeyer, M. Matyash, C. Nolte, H. Kettenmann, F. Kirchhoff, Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J. 15, 1270–1272 (2001)

    PubMed  CAS  Google Scholar 

  • G. Seifert, C. Steinhauser, Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability. Eur. J. Neurosci. 7, 1872–1881 (1995)

    Article  PubMed  CAS  Google Scholar 

  • G. Seifert, C. Steinhauser, Ionotropic glutamate receptors in astrocytes. Prog. Brain Res. 132, 287–299 (2001)

    Article  PubMed  CAS  Google Scholar 

  • C. Steinhäuser, V. Gallo, News on glutamate receptors in glial cells. Trends Neurosci. 19, 339–345 (1996)

    Article  PubMed  Google Scholar 

  • C. Strubing, G. Krapivinsky, L. Krapivinsky, D.E. Clapham, TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29, 645–655 (2001)

    Article  PubMed  CAS  Google Scholar 

  • C. Strubing, G. Krapivinsky, L. Krapivinsky, D.E. Clapham, Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J. Biol. Chem. 278, 39014–39019 (2003)

    Article  PubMed  Google Scholar 

  • K. Takuma, T. Matsuda, H. Hashimoto, S. Asano, A. Baba, Cultured rat astrocytes possess Na+-Ca2+ exchanger. Glia 12, 336–342 (1994)

    Article  PubMed  CAS  Google Scholar 

  • A. Verkhratsky, Calcium ions and integration in neural circuits. Acta Physiol (Oxf.) 187, 357–369 (2006)

    Article  CAS  Google Scholar 

  • A. Verkhratsky, Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf.) 195, 111–122 (2009)

    Article  CAS  Google Scholar 

  • A. Verkhratsky, Physiology of neuronal-glial networking. Neurochem. Int. 57, 332–343 (2011)

    Article  CAS  Google Scholar 

  • A. Verkhratsky, A. Butt, Glial Neurobiology. A textbook (Wiley, Chichester, 2007)

    Book  Google Scholar 

  • A. Verkhratsky, F. Kirchhoff, Glutamate-mediated neuronal-glial transmission. J. Anat. 210, 651–660 (2007a)

    Article  PubMed  CAS  Google Scholar 

  • A. Verkhratsky, F. Kirchhoff, NMDA receptors in Glia. Neuroscientist 13, 28–37 (2007b)

    Article  PubMed  CAS  Google Scholar 

  • A. Verkhratsky, C. Steinhauser, Ion channels in glial cells. Brain Res. Brain Res. Rev. 32, 380–412 (2000)

    Article  PubMed  CAS  Google Scholar 

  • A. Verkhratsky, R.K. Orkand, H. Kettenmann, Glial calcium: homeostasis and signaling function. Physiol. Rev. 78, 99–141 (1998)

    PubMed  CAS  Google Scholar 

  • A. Verkhratsky, O.A. Krishtal, G. Burnstock, Purinoceptors on neuroglia. Mol. Neurobiol. 39, 190–208 (2009)

    Article  PubMed  CAS  Google Scholar 

  • A. Verkhratsky, V. Parpura, J.J. Rodriguez, Where the thoughts dwell: the physiology of neuronal-glial “diffuse neural net”. Brain Res. Rev. 66, 133–151 (2011)

    Article  PubMed  Google Scholar 

  • B. Voutsinos-Porche, G. Bonvento, K. Tanaka, P. Steiner, E. Welker, J.Y. Chatton, P.J. Magistretti, L. Pellerin, Glial glutamate transporters mediate a functional metabolic crosstalk between neurons and astrocytes in the mouse developing cortex. Neuron 37, 275–286 (2003)

    Article  PubMed  CAS  Google Scholar 

  • Y. Wu, W. Wang, A. Diez-Sampedro, G.B. Richerson, Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1. Neuron 56, 851–865 (2007)

    Article  PubMed  CAS  Google Scholar 

  • N. Zerangue, M.P. Kavanaugh, Flux coupling in a neuronal glutamate transporter. Nature 383, 634–637 (1996)

    Article  PubMed  CAS  Google Scholar 

  • D. Ziak, A. Chvatal, E. Sykova, Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol. Res. 47, 365–375 (1998)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Verkhratsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Verkhratsky, A., Noda, M., Parpura, V., Kirischuk, S. (2013). Sodium Fluxes and Astroglial Function. In: Annunziato, L. (eds) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications. Advances in Experimental Medicine and Biology, vol 961. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4756-6_25

Download citation

Publish with us

Policies and ethics