Calcium Influx Through Reversed NCX Controls Migration of Microglia

  • Mami NodaEmail author
  • Masataka Ifuku
  • Yuki Mori
  • Alexei Verkhratsky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)


Microglia, the immune cells of the central nervous system (CNS), are busy and vigilant guards of the adult brain, which scan brain parenchyma for damage and activate in response to lesions. Release of danger signals/chemoattractants at the site of damage initiates microglial activation and stimulates migration. The main candidate for a chemoattractant sensed by microglia is adenosine triphosphate (ATP); however, many other substances can have similar effects. Some neuropeptides such as angiotensin II, bradykinin, endothelin, galanin and neurotensin are also chemoattractants for microglia. Among them, bradykinin increases microglial migration using mechanism distinct from that of ATP. Bradykinin-induced migration is controlled by a Gi/o-protein-independent pathway, while ATP-induced migration involves Gi/o proteins as well as mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)-dependent pathway. Galanin was reported to share certain signalling cascades with bradykinin; however, this overlap is only partial. Bradykinin, for example, stimulates Ca2+ influx through the reversed Na+/Ca2+ exchange (NCX), whereas galanin induces intracellular Ca2+ mobilization by inositol-3,4,5-trisphosphate (InsP3)-dependent Ca2+ release from the intracellular store. These differences in signal cascades indicate that different chemoattractants such as ATP, bradykinin and galanin control distinct microglial functions in pathological conditions such as lesion and inflammation and NCX contributes to a special case of microglial migration.


ATP Bradykinin Calcium influx Galanin Neuropeptides Reverse mode Sodium-calcium exchanger 


  1. F. Boscia, R. Gala, A. Pannaccione, A. Secondo, A. Scorziello, G. Di Renzo, L. Annunziato, NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 40, 3608–3617 (2009)PubMedCrossRefGoogle Scholar
  2. C. Boucsein, H. Kettenmann, C. Nolte, Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur. J. Neurosci. 12, 2049–2058 (2000)PubMedCrossRefGoogle Scholar
  3. L. Cartier, O. Hartley, M. Dubois-Dauphin, K.H. Krause, Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res. Rev. 48, 16–42 (2005)PubMedCrossRefGoogle Scholar
  4. D. Davalos, J. Grutzendler, G. Yang, J.V. Kim, Y. Zuo, S. Jung, D.R. Littman, M.L. Dustin, W.B. Gan, ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005)PubMedCrossRefGoogle Scholar
  5. K. Farber, U. Pannasch, H. Kettenmann, Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol. Cell. Neurosci. 29, 128–138 (2005)PubMedCrossRefGoogle Scholar
  6. R. Ferreira, T. Santos, L. Cortes, S. Cochaud, F. Agasse, A.P. Silva, S. Xapelli, J.O. Malva, Neuropeptide Y inhibits interleukin-1 beta (IL-1beta)-induced microglia motility. J. Neurochem. 120, 93–105 (2011)PubMedCrossRefGoogle Scholar
  7. S. Honda, Y. Sasaki, K. Ohsawa, Imai, Y. Nakamura, K. Inoue, S. Kohsaka, Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J. Neurosci. 21, 1975–1982 (2001)PubMedGoogle Scholar
  8. M. Ifuku, K. Farber, Y. Okuno, Y. Yamakawa, T. Miyamoto, C. Nolte, V.F. Merrino, S. Kita, T. Iwamoto, I. Komuro, B. Wang, G. Cheung, E. Ishikawa, H. Ooboshi, M. Bader, K. Wada, H. Kettenmann, M. Noda, Bradykinin-induced microglial migration mediated by B1-bradykinin receptors depends on Ca2+ influx via reverse-mode activity of the Na+/Ca2+ exchanger. J. Neurosci. 27, 13065–13073 (2007)PubMedCrossRefGoogle Scholar
  9. M. Ifuku, Y. Okuno, Y. Yamakawa, K. Izumi, H.S. Seifert, Kettenmann, M. Noda, Functional importance of inositol-1,4,5-triphosphate-induced intracellular Ca2+ mobilization in galanin-induced microglial migration. J. Neurochem. 117, 61–70 (2011)PubMedCrossRefGoogle Scholar
  10. Y. Irino, Y. Nakamura, K. Inoue, S. Kohsaka, K. Ohsawa, Akt activation is involved in P2Y12 receptor-mediated chemotaxis of microglia. J. Neurosci. Res. 86, 1511–1519 (2008)PubMedCrossRefGoogle Scholar
  11. H. Kettenmann, U.K. Hanisch, M. Noda, A. Verkhratsky, Physiology of microglia. Physiol. Rev. 91, 461–553 (2011)PubMedCrossRefGoogle Scholar
  12. S.U. Kim, J. de Vellis, Microglia in health and disease. J. Neurosci. Res. 81, 302–313 (2005)PubMedCrossRefGoogle Scholar
  13. J. Kimura, A. Noma, H. Irisawa, Na-Ca exchange current in mammalian heart cells. Nature 319, 596–597 (1986)PubMedCrossRefGoogle Scholar
  14. G.W. Kreutzberg, Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318 (1996)PubMedCrossRefGoogle Scholar
  15. A.R. Light, Y. Wu, R.W. Hughen, P.B. Guthrie, Purinergic receptors activating rapid intracellular Ca increases in microglia. Neuron Glia Biol. 2, 125–138 (2006)PubMedCrossRefGoogle Scholar
  16. G.J. Liu, R. Nagarajah, R.B. Banati, M.R. Bennett, Glutamate induces directed chemotaxis of microglia. Eur. J. Neurosci. 29, 1108–1118 (2009)PubMedCrossRefGoogle Scholar
  17. S. Martin, E. Dicou, J.P. Vincent, J. Mazella, Neurotensin and the neurotensin receptor-3 in microglial cells. J. Neurosci. Res. 81, 322–326 (2005)PubMedCrossRefGoogle Scholar
  18. T. Matsuda, N. Arakawa, K. Takuma, Y. Kishida, Y. Kawasaki, M. Sakaue, K. Takahashi, T. Takahashi, T. Suzuki, T. Ota, A. Hamano-Takahashi, M. Onishi, Y. Tanaka, K. Kameo, A. Baba, SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J. Pharmacol. Exp. Ther. 298, 249–256 (2001)PubMedGoogle Scholar
  19. T. Matsuda, T. Nagano, M. Takemura, A. Baba, Topics on the Na+/Ca2+ exchanger: responses of Na+/Ca2+ exchanger to interferon-gamma and nitric oxide in cultured microglia. J. Pharm. Sci. 102, 22–26 (2006)CrossRefGoogle Scholar
  20. S. Mechmann, L. Pott, Identification of Na-Ca exchange current in single cardiac myocytes. Nature 319, 597–599 (1986)PubMedCrossRefGoogle Scholar
  21. T. Moller, O. Kann, A. Verkhratsky, H. Kettenmann, Activation of mouse microglial cells affects P2 receptor signaling. Brain Res. 853, 49–59 (2000)PubMedCrossRefGoogle Scholar
  22. T. Nagano, Y. Kawasaki, A. Baba, M. Takemura, T. Matsuda, Up-regulation of Na+-Ca2+ exchange activity by interferon-gamma in cultured rat microglia. J. Neurochem. 90, 784–791 (2004)PubMedCrossRefGoogle Scholar
  23. T. Nagano, M. Osakada, Y. Ago, Y. Koyama, A. Baba, S. Maeda, M. Takemura, T. Matsuda, SEA0400, a specific inhibitor of the Na+-Ca2+ exchanger, attenuates sodium nitroprusside-induced apoptosis in cultured rat microglia. Br. J. Pharmacol. 144, 669–679 (2005)PubMedCrossRefGoogle Scholar
  24. M. Noda, Y. Kariura, T. Amano, Y. Manago, K. Nishikawa, S. Aoki, K. Wada, Expression and function of bradykinin receptors in microglia. Life Sci. 72, 1573–1581 (2003)PubMedCrossRefGoogle Scholar
  25. M. Noda, K. Sasaki, M. Ifuku, K. Wada, Multifunctional effects of bradykinin on glial cells in relation to potential anti-inflammatory effects. Neurochem. Int. 51, 185–191 (2007)PubMedCrossRefGoogle Scholar
  26. M. Noda, M. Ifuku, Y. Okuno, K. Beppu, Y. Mori, S. Naoe. Neuropeptides as attractants of immune cells in the brain and their distinct signaling. Adv. Neuron. Biol. 1, 53–62 (2011)PubMedCrossRefGoogle Scholar
  27. K. Ohsawa, S. Kohsaka, Dynamic motility of microglia: Purinergic modulation of microglial movement in the normal and pathological brain. Glia 59, 1793–1799 (2011)PubMedCrossRefGoogle Scholar
  28. K. Ohsawa, Y. Irino, Y. Nakamura, C. Akazawa, K. Inoue, S. Kohsaka, Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55, 604–616 (2007)PubMedCrossRefGoogle Scholar
  29. K. Ohsawa, Y. Irino, T. Sanagi, Y. Nakamura, E. Suzuki, K. Inoue, S. Kohsaka, P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP. Glia 58, 790–801 (2010)PubMedGoogle Scholar
  30. V.H. Perry, P.B. Andersson, S. Gordon, Macrophages and inflammation in the central nervous system. Trends Neurosci. 16, 268–273 (1993)PubMedCrossRefGoogle Scholar
  31. A. Rappert, K. Biber, C. Nolte, M. Lipp, A. Schubel, B. Lu, N.P. Gerard, C. Gerard, H.W. Boddeke, H. Kettenmann, Secondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. J. Immunol. 168, 3221–3226 (2002)PubMedGoogle Scholar
  32. T. Schilling, C. Stock, A. Schwab, C. Eder, Functional importance of Ca2+-activated K+ channels for lysophosphatidic acid-induced microglial migration. Eur. J. Neurosci. 19, 1469–1474 (2004)PubMedCrossRefGoogle Scholar
  33. A. Schwab, Function and spatial distribution of ion channels and transporters in cell migration. Am. J. Physiol. Renal Physiol. 280, F739–F747 (2001a)PubMedGoogle Scholar
  34. A. Schwab, Ion channels and transporters on the move. News Physiol. Sci. 16, 29–33 (2001b)PubMedGoogle Scholar
  35. N. Takayama, H. Ueda, Morphine-induced chemotaxis and brain-derived neurotrophic factor expression in microglia. J. Neurosci. 25, 430–435 (2005)PubMedCrossRefGoogle Scholar
  36. L. Walter, A. Franklin, A. Witting, C. Wade, Y. Xie, G. Kunos, K. Mackie, N. Stella, Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci. 23, 1398–1405 (2003)PubMedGoogle Scholar
  37. W. Walz, S. Ilschner, C. Ohlemeyer, R. Banati, H. Kettenmann, Extracellular ATP activates a cation conductance and a K+ conductance in cultured microglial cells from mouse brain. J. Neurosci. 13, 4403–4411 (1993)PubMedGoogle Scholar
  38. Y. Watanabe, Y. Koide, J. Kimura, Topics on the Na+/Ca2+ exchanger: pharmacological characterization of Na+/Ca2+ exchanger inhibitors. J. Pharm. Sci. 102, 7–16 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mami Noda
    • 1
    Email author
  • Masataka Ifuku
    • 2
  • Yuki Mori
    • 1
  • Alexei Verkhratsky
    • 3
    • 4
    • 5
  1. 1.Laboratory of Pathophysiology, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
  2. 2.Department of Integrative Physiology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
  3. 3.Faculty of Life SciencesThe University of ManchesterManchesterUK
  4. 4.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  5. 5.Department of NeurosciencesUniversity of the Basque Country UPV/EHULeioaSpain

Personalised recommendations