Immunosuppressive Drugs, Immunophilins, and Functional Expression of NCX Isoforms

  • Hannah RahamimoffEmail author
  • Benayahu Elbaz
  • Michael Valitsky
  • Mahdi Khatib
  • Marina Eskin-Schwartz
  • Daniela Elmaz
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)


Although the three mammalian Na+–Ca2+ exchangers share considerable amino acid sequence homology, they exhibit substantial immunosuppressive drug specificity. We have shown that cyclosporin A (CsA) treatment of NCX1-, NCX2-, or NCX3-transfected HEK 293 cells and non-transfected H9c2, L6, and aortic smooth muscle cells, which express NCX1 protein naturally, reduces NCX surface expression and transport activity but has no impact on total cell NCX protein. Similar effect on functional expression of NCX1 protein can be obtained also without CsA treatment by knockdown of cell cyclophilin A (CypA), one of the cellular receptor of CsA. This suggests that CypA has a role in acquisition of function competence of NCX1 protein.

Unlike CsA treatment, which affects the functional expression of all three mammalian NCX proteins similarly, FK506 and rapamycin treatment modulates only the functional expression of NCX2 and NCX3 proteins. FK506 reduces NCX2 and NCX3 surface expression and transport activity without affecting cell NCX protein. Rapamycin reduces NCX2 and NCX3 transport activity but has no effect on their surface expression or total cell NCX protein expression suggesting that, although it shares a common receptor FKBP with FK506, its mode of action follows a different pathway.

We are showing now that the large cytosolic loop of NCX1, NCX2, and NCX3 is involved in acquisition of immunosuppressive drug specificity: truncation of the large cytosolic loop of NCX1 renders the protein sensitive to FK506. Exchange of the large cytosolic loop of NCX3 with that of NCX1 renders the mutant protein insensitive to FK506.


Na+–Ca2+ exchanger Immunosuppressive drugs Cyclosporin A FK506 (Tacrolimus) Rapamycin (Sirolimus) PSC833 (Valspodar) Cyclophilin A Cyclophilin B 



This research was supported in part by the Israel Science Foundation and the Israel Ministry of Health.


  1. S.S. Ahmed, H.W. Strobel, K.L. Napoli, J. Grevel, Adrenochrome reaction implicates oxygen radicals in metabolism of cyclosporine A and FK-506 in rat and human liver microsomes. J. Pharmacol. Exp. Ther. 265, 1047–1054 (1993)PubMedGoogle Scholar
  2. S.S. Ahmed, K.L. Napoli, H.W. Strobel, Oxygen radical formation due to the effect of varying hydrogen ion concentrations on cytochrome P450-catalyzed cyclosporine metabolism in rat and human liver microsomes. Adv. Exp. Med. Biol. 387, 135–139 (1996)PubMedCrossRefGoogle Scholar
  3. L. Annunziato, G. Pignataro, G.F. Di Renzo, Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev. 56, 633–654 (2004)PubMedCrossRefGoogle Scholar
  4. S. Barik, Immunophilins: for the love of proteins. Cell. Mol. Life Sci. 31, 1–12 (2006)Google Scholar
  5. W.O. Bechstein, Neurotoxicity of calcineurin inhibitors: impact and clinical management. Transpl. Int. 13, 313–326 (2000)PubMedCrossRefGoogle Scholar
  6. D. Boesch, C. Gaveriaux, B. Jachez, A. Pourtier-Manzanedo, P. Bollinger, F. Loor, In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res. 51, 4226–4233 (1991)PubMedGoogle Scholar
  7. F. Boscia, R. Gala, A. Pannaccione, A. Secondo, A. Scorziello, G. Di Renzo, L. Annunziato, NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 40, 3608–3617 (2009)PubMedCrossRefGoogle Scholar
  8. F. Boscia, C. D’Avanzo, A. Pannaccione, A. Second, A. Casamassa, L. Formisano, N. Guida, L. Annunziato, Silencing or knocking out the Na+/Ca2+ exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell Death Differ. (2011). doi: 10.1038/cdd.2011.125. Epub ahead of print
  9. X. Cai, J. Lytton, The cation/Ca2+ exchanger superfamily: phylogenetic analysis and structural implications. Mol. Biol. Evol. 21, 1692–1703 (2004)PubMedCrossRefGoogle Scholar
  10. E. Carafoli, Intracellular calcium homeostasis. Ann. Rev. Biochem. 56, 395–433 (1987)PubMedCrossRefGoogle Scholar
  11. H. Chen, Y. Kubo, T. Hoshi, S.H. Heinemann, Cyclosporin A selectively reduces the functional expression of Kir2.1 potassium channels in Xenopus oocytes. FEBS Lett. 422, 307–310 (1998)PubMedCrossRefGoogle Scholar
  12. M. Condrescu, J.P. Reeves, Actin-dependent regulation of the cardiac Na+/Ca2+ exchanger. Am. J. Physiol. 290, C691–C701 (2006)CrossRefGoogle Scholar
  13. O. Cook, W. Low, H. Rahamimoff, Membrane topology of the rat brain sodium-calcium exchanger. Biochim. Biophys. Acta 1371, 40–52 (1998)PubMedCrossRefGoogle Scholar
  14. M. Crespo, M. Mir, M. Marin, S. Hurtado, C. Estadella, X. Guri, O. Rap, R. Moral, J.M. Puig, J. Lloveras, De novo kidney transplant recipients need higher doses of Advagraf compared with Prograf to get therapeutic levels. Transplant. Proc. 41, 2115–2117 (2009)PubMedCrossRefGoogle Scholar
  15. B. Elbaz, A. Alperovitch, M.M. Gottesman, C. Kimchi-Sarfaty, H. Rahamimoff, Modulation of Na+-Ca2+ exchanger expression by immunosuppressive drugs is isoform-specific. Mol. Pharmacol. 73, 1254–1263 (2008)PubMedCrossRefGoogle Scholar
  16. B. Elbaz, M. Valitsky, G. Davidov, H. Rahamimoff, Cyclophilin A is involved in functional expression of the Na+-Ca2+ exchanger NCX1. Biochemistry 49, 7634–7642 (2010)PubMedCrossRefGoogle Scholar
  17. D. Elmaz, The involvement of the large cytoplasmic loop of the Na+-Ca2+ exchanger in functional expression of the protein. thesis, Submitted and approved by the Hebrew University -Hadassah Medical School, Jerusalem, 2011Google Scholar
  18. M. Eskin-Schwartz, H. Rahamimoff, Expression of a mutant of the Na/Ca exchanger RBE-1 lacking 442 amino acids in the large cytoplasmic loop of the protein in HEK 293 cells. Neurosci. Lett. 54, S36 (1999)Google Scholar
  19. M.R. First, Tacrolimus based immunosuppression. J. Nephrol. 17(Suppl 8), S25–S31 (2004)PubMedGoogle Scholar
  20. G. Fischer, B. Wittmann-Liebold, K. Lang, T. Kiefhaber, F.X. Schmid, Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337, 476–478 (1989)PubMedCrossRefGoogle Scholar
  21. A. Galat, Peptidylprolyl cis/trans isomerases (immunophilins): biological diversity–targets–functions. Curr. Top. Med. Chem. 3, 1315–1347 (2003)PubMedCrossRefGoogle Scholar
  22. M.D. Galigniana, J.M. Harrell, H.M. O’Hagen, M. Ljungman, W.B. Pratt, Hsp90-binding immunophilins link p53 to dynein during p53 transport to the nucleus. J. Biol. Chem. 279, 22483–22489 (2004a)PubMedCrossRefGoogle Scholar
  23. M.D. Galigniana, Y. Morishima, P.A. Gallay, W.B. Pratt, Cyclophilin-A is bound through its peptidylprolyl isomerase domain to the cytoplasmic dynein motor protein complex. J. Biol. Chem. 279, 55754–55759 (2004b)PubMedCrossRefGoogle Scholar
  24. P.F. Halloran, Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med. 351, 2715–2729 (2004)PubMedCrossRefGoogle Scholar
  25. S. Hariharan, C.P. Johnson, B.A. Bresnahan, S.E. Taranto, M.J. McIntosh, D. Stablein, Improved graft survival after renal transplantation in the United States, 1988 to 1996. N. Engl. J. Med. 342, 605–612 (2000)PubMedCrossRefGoogle Scholar
  26. S.A. Helekar, J. Patrick, Peptidyl prolyl cis-trans isomerase activity of cyclophilin A in functional homo-oligomeric receptor expression. Proc. Natl. Acad. Sci. U. S. A. 94, 5432–5437 (1997)PubMedCrossRefGoogle Scholar
  27. S.A. Helekar, D. Char, S. Neff, J. Patrick, Prolyl isomerase requirement for the expression of functional homo-oligomeric ligand-gated ion channels. Neuron 12, 179–189 (1994)PubMedCrossRefGoogle Scholar
  28. M. Hilge, J. Aelen, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell 22, 15–25 (2006)PubMedCrossRefGoogle Scholar
  29. D.W. Holt, A. Johnston, B.D. Kahan, R.G. Morris, M. Oellerich, L.M. Shaw, New approaches to cyclosporine monitoring raise further concerns about analytical techniques. Clin. Chem. 46, 872–874 (2000)PubMedGoogle Scholar
  30. P. Hsiao, L. Sasongko, J.M. Link, D.A. Mankoff, M. Muzi, A.C. Collier, J.D. Unadkat, Verapamil P-glycoprotein transport across the rat blood–brain barrier: cyclosporine, a concentration inhibition analysis, and comparison with human data. J. Pharmacol. Exp. Ther. 317, 704–710 (2006)PubMedCrossRefGoogle Scholar
  31. J. Huschenbett, A. Zaidi, M.L. Michaelis, Sensitivity of the synaptic membrane Na+/Ca2+ exchanger and the expressed NCX1 isoform to reactive oxygen species. Biochim. Biophys. Acta 1374, 34–46 (1998)PubMedCrossRefGoogle Scholar
  32. M.T. Ivery, Immunophilins: switched on protein binding domains? Med. Res. Rev. 20, 452–484 (2000)PubMedCrossRefGoogle Scholar
  33. T. Iwamoto, S. Kita, YM-244769, a novel Na+/Ca2+ exchange inhibitor that preferentially inhibits NCX3, efficiently protects against hypoxia/reoxygenation-induced SH-SY5Y neuronal cell damage. Mol. Pharmacol. 70, 2075–2083 (2006)PubMedCrossRefGoogle Scholar
  34. T. Iwamoto, T.Y. Nakamura, Y. Pan, A. Uehara, I. Imanaga, M. Shigekawa, Unique topology of the internal repeats in the cardiac Na+/Ca2+ exchanger. FEBS Lett. 446, 264–268 (1999a)PubMedCrossRefGoogle Scholar
  35. T. Iwamoto, A. Uehara, T.Y. Nakamura, I. Imanaga, M. Shigekawa, Chimeric analysis of Na+/Ca2+ exchangers NCX1 and NCX3 reveals structural domains important for differential sensitivity to external Ni2+ or Li+. J. Biol. Chem. 274, 23094–23102 (1999b)PubMedCrossRefGoogle Scholar
  36. J. Kasir, X. Ren, I. Furman, H. Rahamimoff, Truncation of the C-terminal of the rat brain Na+-Ca2+ exchanger RBE-1 (NCX1.4) impairs surface expression of the protein. J. Biol. Chem. 274, 24873–24880 (1999)PubMedCrossRefGoogle Scholar
  37. C. Kimchi-Sarfaty, J. Kasir, S. Ambudkar, H. Rahamimoff, Transport activity and surface expression of the Na+-Ca2+ exchanger NCX1 is inhibited by the immunosuppressive agent cyclosporin A and the non-­immunosuppressive agent PSC833. J. Biol. Chem. 277, 2505–2510 (2002)PubMedCrossRefGoogle Scholar
  38. C.B. Klee, H. Ren, X. Wang, Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J. Biol. Chem. 273, 13367–13370 (1998)PubMedCrossRefGoogle Scholar
  39. S. Kochi, H. Takanaga, H. Matsuo, M. Naito, T. Tsuruo, Y. Sawada, Effect of cyclosporin A or tacrolimus on the function of blood–brain barrier cells. Eur. J. Pharmacol. 372, 287–295 (1999)PubMedCrossRefGoogle Scholar
  40. R.R. Kopito, ER quality control: the cytoplasmic connection. Cell 88, 427–430 (1997)PubMedCrossRefGoogle Scholar
  41. B.K. Kramer, C. Boger, B. Kruger, J. Marienhagen, M. Pietrzyk, A. Obed, L. Paczek, M. Mack, B. Banas, Cardiovascular risk estimates and risk factors in renal transplant recipients. Transplant. Proc. 37, 1868–1870 (2005)PubMedCrossRefGoogle Scholar
  42. B.K. Kramer, B. Charpentier, L. Backman, H.T. Silva Jr., G. Mondragon-Ramirez, E. Cassuto-Viguier, G. Mourad, R. Sola, P. Rigotti, J.O. Mirete, Tacrolimus once daily (ADVAGRAF) versus twice daily (PROGRAF) in de novo renal transplantation: a randomized phase III study. Am. J. Transplant. 10, 2632–2643 (2010)PubMedCrossRefGoogle Scholar
  43. K. Lang, F.X. Schmid, G. Fischer, Catalysis of protein folding by prolyl isomerase. Nature 329, 268–270 (1987)PubMedCrossRefGoogle Scholar
  44. M. Lemaire, A. Bruelisauer, P. Guntz, H. Sato, Dose-dependent brain penetration of SDZ PSC 833, a novel multidrug resistance-reversing cyclosporin, in rats. Cancer Chemother. Pharmacol. 38, 481–486 (1996)PubMedCrossRefGoogle Scholar
  45. D.O. Levitsky, D.A. Nicoll, K.D. Philipson, Identification of the high affinity Ca2+−binding domain of the cardiac Na+−Ca2+ exchanger. J. Biol. Chem. 269, 22847–22852 (1994)PubMedGoogle Scholar
  46. G.A. Levy, Neoral use in the liver transplant recipient. Transplant. Proc. 32(3A Suppl), 2S–9S (2000)PubMedCrossRefGoogle Scholar
  47. J. Liu, M.W. Albers, T.J. Wandless, S. Luan, D.G. Alberg, P.J. Belshaw, P. Cohen, C. MacKintosh, C.B. Klee, S.L. Schreiber, Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. Biochemistry 31, 3896–3901 (1992)PubMedCrossRefGoogle Scholar
  48. S. Matsuoka, D.A. Nicoll, R.F. Reilly, D.W. Hilgemann, K.D. Philipson, Initial localization of regulatory regions of the cardiac sarcolemmal Na+-Ca2+ exchanger. Proc. Natl. Acad. Sci. U. S. A. 90, 3870–3874 (1993)PubMedCrossRefGoogle Scholar
  49. H.U. Meier-Kriesche, B.J. Steffen, A.H. Chu, J.J. Loveland, R.D. Gordon, J.A. Morris, B. Kaplan, Sirolimus with neoral versus mycophenolate mofetil with neoral is associated with decreased renal allograft survival. Am. J. Transplant. 4, 2058–2066 (2004)PubMedCrossRefGoogle Scholar
  50. H.U. Meier-Kriesche, A.H. Chu, K.M. David, K. Chi-Burris, B.J. Steffen, Switching immunosuppression medications after renal transplantation–a common practice. Nephrol. Dial. Transplant. 21, 2256–2262 (2006)PubMedCrossRefGoogle Scholar
  51. D. Mok, R.K. Allan, A. Carrello, K. Wangoo, M.D. Walkinshaw, T. Ratajczak, The chaperone function of cyclophilin 40 maps to a cleft between the prolyl isomerase and tetratricopeptide repeat domains. FEBS Lett. 580, 2761–2768 (2006)PubMedCrossRefGoogle Scholar
  52. D.A. Nicoll, S. Longoni, K.D. Philipson, Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250, 562–565 (1990)PubMedCrossRefGoogle Scholar
  53. D.A. Nicoll, B.D. Quednau, Z. Qui, Y.-R. Xia, A.J. Lusis, K.D. Philipson, Cloning of a third mammalian Na+ -Ca2+ exchanger, NCX3. J. Biol. Chem. 271, 24914–24921 (1996)PubMedCrossRefGoogle Scholar
  54. D.A. Nicoll, M. Ottolia, L. Lu, Y. Lu, K.D. Philipson, A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 274, 910–917 (1999)PubMedCrossRefGoogle Scholar
  55. D.A. Nicoll, M. Sawaya, S. Kwon, D. Cascio, K.D. Philipson, J. Abramson, The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J. Biol. Chem. 281, 21577–25181 (2006)PubMedCrossRefGoogle Scholar
  56. M. Oellerich, V.W. Armstrong, B. Kahan, L. Shaw, D.W. Holt, R. Yatscoff, A. Lindholm, P. Halloran, K. Gallicano, K. Wonigeit et al., Lake louise consensus conference on cyclosporin monitoring in organ transplantation: report of the consensus panel. Ther. Drug Monit. 17, 642–654 (1995)PubMedCrossRefGoogle Scholar
  57. A. Omelchenko, C. Dyck, M. Hnatowich, J. Buchko, D. Nicol, K. Philipson, L. Hryshko, Functional differences in ionic regulation between alternatively spliced isoforms of the Na+-Ca2+ exchanger from Drosophila Melanogaster. J. Gen. Physiol. 111, 691–702 (1998)PubMedCrossRefGoogle Scholar
  58. C. On, C.R. Marshall, S.F. Perry, H.D. Le, V. Yurkov, A. Omelchenko, M. Hnatowich, L.V. Hryshko, G.F. Tibbits, Characterization of zebrafish (Danio rerio) NCX4: a novel NCX with distinct electrophysiological properties. Am. J. Physiol. 296, C173–C181 (2009)CrossRefGoogle Scholar
  59. Y. Pan, T. Iwamoto, A. Uehara, T.Y. Nakamura, I. Imanaga, M. Shigekawa, Physiological functions of the regulatory domains of the cardiac Na+/Ca2+ exchanger NCX1. Am. J. Physiol. 279, C393–C402 (2000)Google Scholar
  60. G. Pignataro, E. Esposito, O. Cuomo, R. Sirabella, F. Boscia, N. Guida, G. Di Renzo, L. Annunziato, The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning. J. Cereb. Blood Flow Metab. 31, 362–370 (2011)PubMedCrossRefGoogle Scholar
  61. F. Pirkl, E. Fischer, S. Modrow, J. Buchner, Localization of the chaperone domain of FKBP52. J. Biol. Chem. 276, 37034–37041 (2001)PubMedCrossRefGoogle Scholar
  62. K. Pong, M.M. Zaleska, Therapeutic implications for immunophilin ligands in the treatment of neurodegenerative diseases. Curr. Drug Targets CNS Neurol. Disord. 2, 349–356 (2003)PubMedCrossRefGoogle Scholar
  63. E.R. Price, M. Jin, D. Lim, S. Pati, C.T. Walsh, F.D. McKeon, Cyclophilin B trafficking through the secretory pathway is altered by binding of cyclosporin A. Proc. Natl. Acad. Sci. U. S. A. 91, 3931–3935 (1994)PubMedCrossRefGoogle Scholar
  64. C.G. Proud, Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem. J. 403, 217–234 (2007)PubMedCrossRefGoogle Scholar
  65. B.D. Quednau, D.A. Nicoll, K.D. Philipson, The sodium/calcium exchanger family-SLC8. Pflugers Arch. 447, 543–548 (2004) Epub 2003 May 7PubMedCrossRefGoogle Scholar
  66. H. Rahamimoff, B. Elbaz, A. Alperovich, C. Kimchi-Sarfaty, M.M. Gottesman, Y. Lichtenstein, M. Eskin-Schwartz, J. Kasir, Cyclosporin A-dependent downregulation of the Na+/Ca2+ exchanger expression. Ann. N. Y. Acad. Sci. 1099, 204–214 (2007)PubMedCrossRefGoogle Scholar
  67. S.L. Schreiber, Chemistry and biology of the immunophilins and their immunosuppressive ligands. Science 251, 283–287 (1991)PubMedCrossRefGoogle Scholar
  68. E.M. Schwarz, S. Benzer, Calx, a Na-Ca exchanger gene of Drosophila Melanogaster. Proc. Natl. Acad. Sci. U. S. A. 94, 10249–10254 (1997)PubMedCrossRefGoogle Scholar
  69. A. Shirai, M. Naito, T. Tatsuta, J. Dong, K. Hanaoka, K. Mikami, T. Oh-hara, T. Tsuruo, Transport of cyclosporin A across the brain capillary endothelial cell monolayer by P-glycoprotein. Biochim. Biophys. Acta 1222, 400–404 (1994)PubMedCrossRefGoogle Scholar
  70. H.L. Tai, Technology evaluation: Valspodar, Novartis AG. Curr. Opin. Mol. Ther. 2, 459–467 (2000)PubMedGoogle Scholar
  71. T.T. Tran, W. Dai, H.K. Sarkar, Cyclosporin A inhibits creatine uptake by altering surface expression of the creatine transporter. J. Biol. Chem. 275, 35708–35714 (2000)PubMedCrossRefGoogle Scholar
  72. P. Trunecka, O. Boillot, D. Seehofer, A.D. Pinna, L. Fischer, B.G. Ericzon, R.I. Troisi, U. Baccarani, J. Ortizde Urbina, W. Wall, Once-daily prolonged-release tacrolimus (ADVAGRAF) versus twice-daily tacrolimus (PROGRAF) in liver transplantation. Am. J. Transplant. 10, 2313–2323 (2010)PubMedCrossRefGoogle Scholar
  73. C.K. Tsang, H. Qi, L.F. Liu, X.F. Zheng, Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov. Today 12, 112–124 (2007)PubMedCrossRefGoogle Scholar
  74. A. von Harpe, H. Petersen, Y. Li, T. Kissel, Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release 69, 309–322 (2000)CrossRefGoogle Scholar
  75. X. Wang, C.G. Proud, The mTOR pathway in the control of protein synthesis. Physiology (Bethesda, Md.) 21, 362–369 (2006)CrossRefGoogle Scholar
  76. L.D. Zydowsky, F.A. Etzkorn, H.Y. Chang, S.B. Ferguson, L.A. Stolz, S.I. Ho, C.T. Walsh, Active site mutants of human cyclophilin A separate peptidyl-prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition. Protein Sci. 1, 1092–1099 (1992)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hannah Rahamimoff
    • 1
    Email author
  • Benayahu Elbaz
    • 1
  • Michael Valitsky
    • 1
  • Mahdi Khatib
    • 1
  • Marina Eskin-Schwartz
    • 1
  • Daniela Elmaz
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyHebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations