The Contribution of the Sodium-Calcium Exchanger (NCX) and Plasma Membrane Ca2+ ATPase (PMCA) to Cerebellar Synapse Function

  • Chris J. Roome
  • Ruth M. EmpsonEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)


The cerebellum, a part of the brain critically involved in motor learning and sensory adaptation, expresses high levels of the sodium-calcium exchanger (NCX) and the plasma membrane calcium ATPase (PMCA). Both these transporters control calcium dynamics at a variety of synapses, and here, we draw upon the available literature to discuss how NCX and PMCA work together to shape pre-synaptic calcium dynamics at cerebellar synapses.


Cerebellum Parallel fibre PMCA NCX Synapse 


  1. H.F. Altimimi, P.P. Schnetkamp, Na+/Ca2+-K+ exchangers (NCKX): functional properties and physiological roles. Channels (Austin) 1, 62–69 (2007)Google Scholar
  2. P. Andersen, J.C. Eccles, P.E. Voorhoeve, Postsynaptic inhibition of cerebellar Purkinje cells. J. Neurophysiol. 27, 1138–1153 (1964)PubMedGoogle Scholar
  3. P.P. Atluri, W.G. Regehr, Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661–5671 (1996)PubMedGoogle Scholar
  4. H.L. Atwood, S. Karunanithi, Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3, 497–516 (2002)PubMedCrossRefGoogle Scholar
  5. G.J. Augustine, How does calcium trigger neurotransmitter release? Curr. Opin. Neurobiol. 11, 320–326 (2001)PubMedCrossRefGoogle Scholar
  6. P.F. Baker, M.P. Blaustein, A.L. Hodgkin, R.A. Steinhardt, The influence of calcium on sodium efflux in squid axons. J. Physiol. 200, 431–458 (1969)PubMedGoogle Scholar
  7. J. Bao, K. Reim, T. Sakaba, Target-dependent feed forward inhibition mediated by short-term synaptic plasticity in the cerebellum. J. Neurosci. 30, 8171–8179 (2010)PubMedCrossRefGoogle Scholar
  8. B. Barbour, Synaptic currents evoked in Purkinje cells by stimulating individual granule cells. Neuron 11, 759–769 (1993)PubMedCrossRefGoogle Scholar
  9. M.P. Blaustein, The interrelationship between sodium and calcium fluxes across cell membranes. Rev. Physiol. Biochem. Pharmacol. 70, 33–82 (1974)PubMedCrossRefGoogle Scholar
  10. M.P. Blaustein, A.L. Hodgkin, The effect of cyanide on the efflux of calcium from squid axons. J. Physiol. 200, 497–527 (1969)PubMedGoogle Scholar
  11. M.P. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol. Rev. 79, 763–854 (1999)PubMedGoogle Scholar
  12. M.P. Blaustein, M. Juhaszova, V.A. Golovina, P.J. Church, E.F. Stanley, Na+/Ca2+ exchanger and PMCA localization in neurons and astrocytes: functional implications. Ann. N. Y. Acad. Sci. 976, 356–366 (2002)PubMedCrossRefGoogle Scholar
  13. J.H. Bollmann, B. Sakmann, Control of synaptic strength and timing by the release-site Ca2+ signal. Nat. Neurosci. 8, 426–434 (2005)PubMedGoogle Scholar
  14. E.S. Boyden, A. Katoh, J.L. Raymond, Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu. Rev. Neurosci. 27, 581–609 (2004)PubMedCrossRefGoogle Scholar
  15. S.D. Brenowitz, W.G. Regehr, Reliability and heterogeneity of calcium signaling at single presynaptic boutons of cerebellar granule cells. J. Neurosci. 27, 7888–7898 (2007)PubMedCrossRefGoogle Scholar
  16. M. Brini, L. Coletto, N. Pierobon, N. Kraev, D. Guerini, E. Carafoli, A comparative functional analysis of plasma membrane Ca2+ pump isoforms in intact cells. J. Biol. Chem. 278, 24500–24508 (2003)PubMedCrossRefGoogle Scholar
  17. A. Burette, R.J. Weinberg, Perisynaptic organization of plasma membrane calcium pumps in cerebellar cortex. J. Comp. Neurol. 500, 1127–1135 (2007)PubMedCrossRefGoogle Scholar
  18. A. Burette, J.M. Rockwood, E.E. Strehler, R.J. Weinberg, Isoform-specific distribution of the plasma membrane Ca2+ ATPase in the rat brain. J. Comp. Neurol. 467, 464–476 (2003)PubMedCrossRefGoogle Scholar
  19. R.D. Burgoyne, Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat. Rev. Neurosci. 8, 182–193 (2007)PubMedCrossRefGoogle Scholar
  20. R.D. Burgoyne, J.L. Weiss, The neuronal calcium sensor family of Ca2+-binding proteins. Biochem. J. 353, 1–12 (2001)PubMedCrossRefGoogle Scholar
  21. A. Canitano, M. Papa, F. Boscia, P. Castaldo, S. Sellitti, M. Taglialatela, L. Annunziato, Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann. N. Y. Acad. Sci. 976, 394–404 (2002)PubMedCrossRefGoogle Scholar
  22. A.J. Caride, A.G. Filoteo, A.R. Penheiter, K. Pászty, A. Enyedi, J.T. Penniston, Delayed activation of the plasma membrane calcium pump by a sudden increase in Ca2+: fast pumps reside in fast cells. Cell Calcium 30, 49–57 (2001)PubMedCrossRefGoogle Scholar
  23. P. Chadderton, T.W. Margrie, M. Häusser, Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004)PubMedCrossRefGoogle Scholar
  24. E. De Schutter, J.M. Bower, An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J. Neurophysiol. 71, 401–419 (1994)PubMedGoogle Scholar
  25. E. De Schutter, V. Steuber, Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience 162, 816–826 (2009)PubMedCrossRefGoogle Scholar
  26. R. DiPolo, L. Beauge, The calcium pump and sodium-calcium exchange in squid axons. Annu. Rev. Physiol. 45, 313–324 (1983)PubMedCrossRefGoogle Scholar
  27. J.S. Dittman, A.C. Kreitzer, W.G. Regehr, Interplay between facilitation, depression, and residual calcium at three presynaptic terminals. J. Neurosci. 20, 1374–1385 (2000)PubMedGoogle Scholar
  28. F.A. Dodge Jr., R. Rahamimoff, Co-operative action a calcium ions in transmitter release at the neuromuscular junction. J. Physiol. 193, 419–432 (1967a)PubMedGoogle Scholar
  29. F.A. Dodge Jr., R. Rahamimoff, On the relationship between calcium concentration and the amplitude of the end-plate potential. J. Physiol. 189, 90P–92P (1967b)PubMedGoogle Scholar
  30. A. Doi, Y. Kakazu, N. Akaike, Na+/Ca2+ exchanger in GABAergic presynaptic boutons of rat central neurons. J. Neurophysiol. 87, 1694–1702 (2002)PubMedGoogle Scholar
  31. J.C. Eccles, Circuits in the cerebellar control of movement. Proc. Natl. Acad. Sci. U. S. A. 58, 336–343 (1967)PubMedCrossRefGoogle Scholar
  32. J. Eccles, R. Llinas, K. Sasaki, Golgi cell inhibition in the cerebellar cortex. Nature 204, 1265–1266 (1964)PubMedCrossRefGoogle Scholar
  33. J.C. Eccles, R. Llinas, K. Sasaki, The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J. Physiol. 182, 268–296 (1966a)PubMedGoogle Scholar
  34. J.C. Eccles, R. Llinas, K. Sasaki, Parallel fibre stimulation and the responses induced thereby in the Purkinje cells of the cerebellum. Exp. Brain Res. 1, 17–39 (1966b)PubMedGoogle Scholar
  35. R.M. Empson, M.L. Garside, T. Knöpfel, Plasma membrane Ca2+ ATPase 2 contributes to short-term synapse plasticity at the parallel fiber to Purkinje neuron synapse. J. Neurosci. 27, 3753–3758 (2007)PubMedCrossRefGoogle Scholar
  36. R.M. Empson, P.R. Turner, R.Y. Nagaraja, P.W. Beesley, T. Knöpfel, Reduced expression of the Ca2+ transporter protein PMCA2 slows Ca2+ dynamics in mouse cerebellar Purkinje neurones and alters the precision of motor coordination. J. Physiol. 588(Pt 6), 907–922 (2010)PubMedCrossRefGoogle Scholar
  37. L. Fierro, R. DiPolo, I. Llano, Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices. J. Physiol. 510(Pt 2), 499–512 (1998)PubMedCrossRefGoogle Scholar
  38. A.G. Filoteo, N.L. Elwess, A. Enyedi, A. Caride, H.H. Aung, J.T. Penniston, Plasma membrane Ca2+ pump in rat brain. Patterns of alternative splices seen by isoform-specific antibodies. J. Biol. Chem. 272, 23741–23747 (1997)PubMedCrossRefGoogle Scholar
  39. G. Fontana, R.S. Rogowski, M.P. Blaustein, Kinetic properties of the sodium-calcium exchanger in rat brain synaptosomes. J. Physiol. 485(Pt 2), 349–364 (1995)PubMedGoogle Scholar
  40. M.L. Garside, P.R. Turner, B. Austen, E.E. Strehler, P.W. Beesley, R.M. Empson, Molecular interactions of the plasma membrane calcium ATPase 2 at pre- and post-synaptic sites in rat cerebellum. Neuroscience 162, 383–395 (2009)PubMedCrossRefGoogle Scholar
  41. F. Helmchen, J.G. Borst, B. Sakmann, Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997)PubMedCrossRefGoogle Scholar
  42. M. Hilge, J. Aelen, A. Foarce, A. Perrakis, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger features a dual electrostatic switch mechanism. Proc. Natl. Acad. Sci. U. S. A. 106, 14333–14338 (2009)PubMedCrossRefGoogle Scholar
  43. D.E. Hillman, S. Chen, R. Bing, J.T. Penniston, R. Llinas, Ultrastructural localization of the plasmalemmal calcium pump in cerebellar neurons. Neuroscience 72, 315–324 (1996)PubMedCrossRefGoogle Scholar
  44. M. Ito, Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78, 272–303 (2006)PubMedCrossRefGoogle Scholar
  45. M.V. Ivannikov, M. Sugimori, R.R. Llinás, Calcium clearance and its energy requirements in cerebellar neurons. Cell Calcium 47, 507–513 (2010)PubMedCrossRefGoogle Scholar
  46. T.P. Jensen, A.G. Filoteo, T. Knopfel, R.M. Empson, Presynaptic plasma membrane Ca2+ ATPase isoform 2a regulates excitatory synaptic transmission in rat hippocampal CA3. J. Physiol. 579(Pt 1), 85–99 (2007)PubMedCrossRefGoogle Scholar
  47. T.P. Jensen, L.E. Buckby, R.M. Empson, Reduced expression of the “fast” calcium transporter PMCA2a during homeostatic plasticity. Mol. Cell. Neurosci. 41, 364–372 (2009)PubMedCrossRefGoogle Scholar
  48. D. Jeon, Y.M. Yang, M.J. Jeong, K.D. Philipson, H. Rhim, H.S. Shin, Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron 38, 965–976 (2003)PubMedCrossRefGoogle Scholar
  49. H. Jorntell, C. Hansel, Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52, 227–238 (2006)PubMedCrossRefGoogle Scholar
  50. M. Juhaszova, P. Church, M.P. Blaustein, E.F. Stanley, Location of calcium transporters at presynaptic terminals. Eur. J. Neurosci. 12, 839–846 (2000)PubMedCrossRefGoogle Scholar
  51. B. Katz, R. Miledi, The effect of calcium on acetylcholine release from motor nerve terminals. Proc. R. Soc. Lond. B Biol. Sci. 161, 496–503 (1965)PubMedCrossRefGoogle Scholar
  52. M.H. Kim, N. Korogod, R. Schneggenburger, W.K. Ho, S.H. Lee, Interplay between Na+/Ca2+ exchangers and mitochondria in Ca2+ clearance at the calyx of Held. J. Neurosci. 25, 6057–6065 (2005)PubMedCrossRefGoogle Scholar
  53. Y.T. Kim, Y.L. Namkung, J. Kwak, C.K. Suh, Involvement of Na+-Ca2+ exchanger on metabotropic glutamate receptor 1-mediated [Ca2+]i transients in rat cerebellar Purkinje neurons. Neuroscience 146, 170–177 (2007)PubMedCrossRefGoogle Scholar
  54. H.J. Koester, B. Sakmann, Calcium dynamics associated with action potentials in single nerve terminals of pyramidal cells in layer 2/3 of the young rat neocortex. J. Physiol. 529(Pt 3), 625–646 (2000)PubMedCrossRefGoogle Scholar
  55. A. Konnerth, I. Llano, C.M. Armstrong, Synaptic currents in cerebellar Purkinje cells. Proc. Natl. Acad. Sci. U. S. A 87, 2662–2665 (1990)PubMedCrossRefGoogle Scholar
  56. P.J. Kozel, R.A. Friedman, L.C. Erway, E.N. Yamoah, L.H. Liu, T. Riddle, J.J. Duffy, T. Doetschman, M.L. Miller, E.L. Cardell, G.E. Shull, Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J. Biol. Chem. 273, 18693–18696 (1998)PubMedCrossRefGoogle Scholar
  57. R. Larbig, N. Torres, J.H. Bridge, J.I. Goldhaber, K.D. Philipson, Activation of reverse Na+-Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice. J. Physiol. 588(Pt 17), 3267–3276 (2010)PubMedCrossRefGoogle Scholar
  58. S.H. Lee, M.H. Kim, K.H. Park, Y.E. Earm, W.K. Ho, K+-dependent Na+/Ca2+ exchange is a major Ca2+ clearance mechanism in axon terminals of rat neurohypophysis. J. Neurosci. 22, 6891–6899 (2002)PubMedGoogle Scholar
  59. X.F. Li, L. Kiedrowski, F. Tremblay, F.R. Fernandez, M. Perizzolo, R.J. Winkfein, R.W. Turner, J.S. Bains, D.E. Rancourt, J. Lytton, Importance of K+-dependent Na+/Ca2+-exchanger 2, NCKX2, in motor learning and memory. J. Biol. Chem. 281, 6273–6282 (2006)PubMedCrossRefGoogle Scholar
  60. B. Linck, Z. Qiu, Z. He, Q. Tong, D.W. Hilgemann, K.D. Philipson, Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am. J. Physiol. 274(2 Pt 1), C415–C423 (1998)PubMedGoogle Scholar
  61. R. Llinas, M. Sugimori, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. 305, 171–195 (1980)PubMedGoogle Scholar
  62. R. Llinas, I.Z. Steinberg, K. Walton, Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse. Biophys. J. 33, 323–351 (1981)PubMedCrossRefGoogle Scholar
  63. R. Llinas, M. Sugimori, R.B. Silver, Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992)PubMedCrossRefGoogle Scholar
  64. A. Lörincz, B. Rózsa, G. Katona, E.S. Vizi, G. Tamás, Differential distribution of NCX1 contributes to ­spine-dendrite compartmentalization in CA1 pyramidal cells. Proc. Natl. Acad. Sci. U. S. A. 104, 1033–1038 (2007)PubMedCrossRefGoogle Scholar
  65. D. Marr, A theory of cerebellar cortex. J. Physiol. 202, 437–470 (1969)PubMedGoogle Scholar
  66. H. Matsukawa, A.M. Wolf, S. Matsushita, R.H. Joho, T. Knöpfel, Motor dysfunction and altered synaptic transmission at the parallel fiber-Purkinje cell synapse in mice lacking potassium channels Kv3.1 and Kv3.3. J. Neurosci. 23, 7677–7684 (2003)PubMedGoogle Scholar
  67. H. Miyakawa, V. Lev-Ram, N. Lasser-Ross, W.N. Ross, Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. J. Neurophysiol. 68, 1178–1189 (1992)PubMedGoogle Scholar
  68. M.H. Myoga, W.G. Regehr, Calcium microdomains near R-type calcium channels control the induction of presynaptic long-term potentiation at parallel fiber to purkinje cell synapses. J. Neurosci. 31, 5235–5243 (2011)PubMedCrossRefGoogle Scholar
  69. E. Neher, Usefulness and limitations of linear approximations to the understanding of Ca2+ signals. Cell Calcium 24, 345–357 (1998)PubMedCrossRefGoogle Scholar
  70. E. Neher, T. Sakaba, Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron 59, 861–872 (2008)PubMedCrossRefGoogle Scholar
  71. M. Ottolia, D.A. Nicoll, K.D. Philipson, Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 284, 32735–32741 (2009)PubMedCrossRefGoogle Scholar
  72. S.L. Palay, V. Chan-Palay, Cerebellar cortex: cytology and organization (Springer, New York/Heidelberg, 1974)CrossRefGoogle Scholar
  73. M. Papa, A. Canitano, F. Boscia, P. Castaldo, S. Sellitti, H. Porzig, M. Taglialatela, L. Annunziato, Differential expression of the Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J. Comp. Neurol. 461, 31–48 (2003)PubMedCrossRefGoogle Scholar
  74. H. Parnas, L.A. Segel, A theoretical explanation for some effects of calcium on the facilitation of neurotransmitter release. J. Theor. Biol. 84, 3–29 (1980)PubMedCrossRefGoogle Scholar
  75. H. Parnas, L.A. Segel, Facilitation as a tool to study the entry of calcium and the mechanism of neurotransmitter release. Prog. Neurobiol. 32, 1–9 (1989)PubMedCrossRefGoogle Scholar
  76. H. Porzig, Z. Li, D.A. Nicoll, K.D. Philipson, Mapping of the cardiac sodium-calcium exchanger with monoclonal antibodies. Am. J. Physiol. 265, C748–C756 (1993)PubMedGoogle Scholar
  77. C. Pott, K.D. Philipson, J.I. Goldhaber, Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ. Res. 97, 1288–1295 (2005)PubMedCrossRefGoogle Scholar
  78. D.L. Qiu, T. Knopfel, Presynaptically expressed long-term depression at cerebellar parallel fiber synapses. Pflugers Arch. 457, 865–875 (2009)PubMedCrossRefGoogle Scholar
  79. H. Reuter, H. Porzig, Localization and functional significance of the Na+/Ca2+ exchanger in presynaptic boutons of hippocampal cells in culture. Neuron 15, 1077–1084 (1995)PubMedCrossRefGoogle Scholar
  80. B.L. Sabatini, W.G. Regehr, Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384, 170–172 (1996)PubMedCrossRefGoogle Scholar
  81. T. Sakaba, Two Ca2+-dependent steps controlling synaptic vesicle fusion and replenishment at the cerebellar basket cell terminal. Neuron 57, 406–419 (2008)PubMedCrossRefGoogle Scholar
  82. H. Schmidt, K.M. Stiefel, P. Racay, B. Schwaller, J. Eilers, Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k. J. Physiol. 551, 13–32 (2003)PubMedCrossRefGoogle Scholar
  83. R. Schneggenburger, E. Neher, Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000)PubMedCrossRefGoogle Scholar
  84. J.Z. Sheng, C.F. Prinsen, R.B. Clark, W.R. Giles, P.P. Schnetkamp, Na+-Ca2+-K+ currents measured in insect cells transfected with the retinal cone or rod Na+-Ca2+-K+ exchanger cDNA. Biophys. J. 79, 1945–1953 (2000)PubMedCrossRefGoogle Scholar
  85. S.B. Simons, Y. Escobedo, R. Yasuda, S.M. Dudek, Regional differences in hippocampal calcium handling provide a cellular mechanism for limiting plasticity. Proc. Natl. Acad. Sci. U. S. A. 106, 14080–14084 (2009)PubMedCrossRefGoogle Scholar
  86. S. Sokolow, M. Manto, P. Gailly, J. Molgó, C. Vandebrouck, J.M. Vanderwinden, A. Herchuelz, S. Schurmans, Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. J. Clin. Invest. 113, 265–273 (2004)PubMedGoogle Scholar
  87. E.F. Stanley, The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci. 20, 404–409 (1997)PubMedCrossRefGoogle Scholar
  88. C.F. Stevens, J.M. Sullivan, The synaptotagmin C2A domain is part of the calcium sensor controlling fast synaptic transmission. Neuron 39, 299–308 (2003)PubMedCrossRefGoogle Scholar
  89. E.E. Strehler, D.A. Zacharias, Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol. Rev. 81, 21–50 (2001)PubMedGoogle Scholar
  90. E.E. Strehler, A.G. Filoteo, J.T. Penniston, A.J. Caride, Plasma-membrane Ca2+ pumps: structural diversity as the basis for functional versatility. Biochem. Soc. Trans. 35, 919–922 (2007)PubMedCrossRefGoogle Scholar
  91. T.C. Sudhof, Synaptic vesicles: an organelle comes of age. Cell 127, 671–673 (2006)PubMedCrossRefGoogle Scholar
  92. T. Thurneysen, D.A. Nicoll, K.D. Philipson, H. Porzig, Sodium/calcium exchanger subtypes NCX1, NCX2 and NCX3 show cell-specific expression in rat hippocampus cultures. Brain Res. Mol. Brain Res. 107, 145–156 (2002)PubMedCrossRefGoogle Scholar
  93. E.A. Woodcock, J.F. Arthur, S.N. Harrison, X.M. Gao, X.J. Du, Reperfusion-induced Ins(1,4,5)P(3) generation and arrhythmogenesis require activation of the Na+/Ca2+ exchanger. J. Mol. Cell. Cardiol. 33, 1861–1869 (2001)PubMedCrossRefGoogle Scholar
  94. M. Wu, M. Wang, J. Nix, L.V. Hryshko, L. Zheng, Crystal structure of CBD2 from the Drosophila Na+/Ca2+ exchanger: diversity of Ca2+ regulation and its alternative splicing modification. J. Mol. Biol. 387, 104–112 (2009)PubMedCrossRefGoogle Scholar
  95. D.A. Zacharias, C. Kappen, Developmental expression of the four plasma membrane calcium ATPase (PMCA) genes in the mouse. Biochim. Biophys. Acta 1428, 397–405 (1999)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Physiology, Brain Health Research CentreUniversity of OtagoDunedinNew Zealand

Personalised recommendations