20 Years from NCX Purification and Cloning: Milestones

  • Debora A. Nicoll
  • Michela Ottolia
  • Joshua I. Goldhaber
  • Kenneth D. PhilipsonEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)


The Na+/Ca2+ exchanger protein was first isolated from cardiac sarcolemma in 1988 and cloned in 1990. This allowed study of Na+/Ca2+ exchange at the molecular level to begin. I will review the story leading to the cloning of NCX and the research that resulted from this event. This will include structure-function studies such as determination of the numbers of transmembrane segments and topological arrangement. Information on ion transport sites has been gathered from site-directed mutagenesis. The regions involved in Ca2+ regulation have been identified, analyzed, and crystallized.

We have also generated genetically altered mice to study the role of NCX in the myocardium. Of special interest are mice with atrial- or ventricular-specific KO of NCX that reveal new information on the role of NCX in excitation-contraction coupling and in cardiac pacemaker activity.


Na+/Ca2+ exchange Ca2+ transport Excitation-contraction coupling Ca2+ regulation Na+ transport Cardiac pacemaking 



We have had many talented colleagues over the years. Some of those who participated in the experiments presented here include Drs. Xiaoyan Ren, Satoshi Matsuoka, Larry Hryshko, Dmitri Levitski, Don Hilgemann, Jeff Abramson, Christian Pott, Robert Larbig, and Sabine Groenke.


  1. P.F. Baker, M.P. Blaustein, A.L. Hodgkin, R.A. Steinhardt, The influence of calcium on sodium efflux in squid axons. J. Physiol. 200, 431–458 (1969)PubMedGoogle Scholar
  2. G.M. Besserer, M. Ottolia, D.A. Nicoll, V. Chaptal, D. Cascio, K.D. Philipson, J. Abramson, The second Ca2+-binding domain of the Na+-Ca2+ exchanger is essential for regulation: Crystal structures and mutational analysis. Proc. Natl. Acad. Sci. U. S. A. 104, 18467–18472 (2007)PubMedCrossRefGoogle Scholar
  3. X. Cai, J. Lytton, The cation/Ca2+ exchanger superfamily: phylogenetic analysis and structural implications. Mol. Biol. Evol. 21, 1692–1703 (2004)PubMedCrossRefGoogle Scholar
  4. R. DiPolo, Calcium influx in internally dialyzed squid giant axons. J. Gen. Physiol. 73, 91–113 (1979)PubMedCrossRefGoogle Scholar
  5. R. DiPolo, L. Beauge, Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86, 155–203 (2006)PubMedCrossRefGoogle Scholar
  6. S.A. Henderson, J.I. Goldhaber, J.M. So, T. Han, C. Motter, A. Ngo, C. Chantawansri, M.R. Ritter, M. Friedlander, D.A. Nicoll, J.S. Frank, M.C. Jordan, K.P. Roos, R.S. Ross, K.D. Philipson, Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1. Circ. Res. 95, 604–611 (2004)PubMedCrossRefGoogle Scholar
  7. M. Hilge, J. Aelen, G.W. Vuister, Ca2+ regulation in the Na+/Ca2+ exchanger involves two markedly different Ca2+ sensors. Mol. Cell 22, 15–25 (2006)PubMedCrossRefGoogle Scholar
  8. D.W. Hilgemann, Regulation and deregulation of cardiac Na+-Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature 344, 242–245 (1990)PubMedCrossRefGoogle Scholar
  9. D.W. Hilgemann, R. Ball, Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273, 956–959 (1996)PubMedCrossRefGoogle Scholar
  10. T. Iwamoto, A. Uehara, I. Imanaga, M. Shigekawa, The Na+/Ca2+ exchanger NCX1 has oppositely oriented reentrant loop domains that contain conserved aspartic acids whose mutation alters its apparent Ca2+ affinity. J. Biol. Chem. 275, 38571–38580 (2000)PubMedCrossRefGoogle Scholar
  11. S.A. John, B. Ribalet, J.N. Weiss, K.D. Philipson, M. Ottolia, Ca2+-dependent structural rearrangements within Na+-Ca2+ exchanger dimers. Proc. Natl. Acad. Sci. U. S. A. 108, 1699–1704 (2011)PubMedCrossRefGoogle Scholar
  12. E.G. Lakatta, V.A. Maltsev, T.M. Vinogradova, A coupled SYSTEM of intracellular Ca2+ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ. Res. 106, 659–673 (2010)PubMedCrossRefGoogle Scholar
  13. R. Larbig, N. Torres, J.H. Bridge, J.I. Goldhaber, K.D. Philipson, Anno activation of reverse Na+-Ca2+ exchange by the Na+ current augments the cardiac Ca2+ transient: evidence from NCX knockout mice. J. Physiol. 588, 3267–3276 (2010)PubMedCrossRefGoogle Scholar
  14. N. Leblanc, J.R. Hume, Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 248, 372–376 (1990)PubMedCrossRefGoogle Scholar
  15. D.O. Levitsky, D.A. Nicoll, K.D. Philipson, Identification of the high affinity Ca2+-binding domain of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 269, 22847–22852 (1994)PubMedGoogle Scholar
  16. Z. Li, D.A. Nicoll, A. Collins, D.W. Hilgemann, A.G. Filoteo, J.T. Penniston, J.N. Weiss, J.M. Tomich, K.D. Philipson, Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 266, 1014–1020 (1991)PubMedGoogle Scholar
  17. Z. Li, S. Matsuoka, L.V. Hryshko, D.A. Nicoll, M.M. Bersohn, E.P. Burke, R.P. Lifton, K.D. Philipson, Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J. Biol. Chem. 269, 17434–17439 (1994)PubMedGoogle Scholar
  18. S. Matsuoka, D.A. Nicoll, R.F. Reilly, D.W. Hilgemann, K.D. Philipson, Initial localization of regulatory regions of the cardiac sarcolemmal Na+-Ca2+ exchanger. Proc. Natl. Acad. Sci. U. S. A. 90, 3870–3874 (1993)PubMedCrossRefGoogle Scholar
  19. S. Matsuoka, D.A. Nicoll, L.V. Hryshko, D.O. Levitsky, J.N. Weiss, K.D. Philipson, Regulation of the cardiac Na+-Ca2+ exchanger by Ca2+. Mutational analysis of the Ca2+-binding domain. J. Gen. Physiol. 105, 403–420 (1995)PubMedCrossRefGoogle Scholar
  20. S. Matsuoka, D.A. Nicoll, Z. He, K.D. Philipson, Regulation of cardiac Na+-Ca2+ exchanger by the endogenous XIP region. J. Gen. Physiol. 109, 273–286 (1997)PubMedCrossRefGoogle Scholar
  21. D.A. Nicoll, S. Longoni, K.D. Philipson, Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250, 562–565 (1990)PubMedCrossRefGoogle Scholar
  22. D.A. Nicoll, L.V. Hryshko, S. Matsuoka, J.S. Frank, K.D. Philipson, Mutation of amino acid residues in the putative transmembrane segments of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 271, 13385–13391 (1996a)PubMedCrossRefGoogle Scholar
  23. D.A. Nicoll, B.D. Quednau, Z. Qui, Y.R. Xia, A.J. Lusis, K.D. Philipson, Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J. Biol. Chem. 271, 24914–24921 (1996b)PubMedCrossRefGoogle Scholar
  24. D.A. Nicoll, M. Ottolia, L. Lu, Y. Lu, K.D. Philipson, A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 274, 910–917 (1999)PubMedCrossRefGoogle Scholar
  25. D.A. Nicoll, M. Sawaya, S. Kwon, D. Cascio, K.D. Philipson, J. Abramson, The crystal structure of the primary Ca2+ sensor of the Na+/Ca2+ exchanger reveals a novel Ca2+ binding motif. J. Biol. Chem. 281, 21577–21581 (2006)PubMedCrossRefGoogle Scholar
  26. M. Ottolia, D.A. Nicoll, K.D. Philipson, Mutational analysis of the alpha-1 repeat of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 280, 1061–1069 (2005)PubMedCrossRefGoogle Scholar
  27. M. Ottolia, K.D. Philipson, S. John, Xenopus oocyte plasma membrane sheets for FRET analysis. Am. J. Physiol. Cell Physiol. 292, C1519–C1522 (2007)PubMedCrossRefGoogle Scholar
  28. M. Ottolia, D.A. Nicoll, K.D. Philipson, Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 284, 32735–32741 (2009)PubMedCrossRefGoogle Scholar
  29. K.D. Philipson, S. Longoni, R. Ward, Purification of the cardiac Na+-Ca2+ exchange protein. Biochim. Biophys. Acta 945, 298–306 (1988)PubMedCrossRefGoogle Scholar
  30. C. Pott, K.D. Philipson, J.I. Goldhaber, Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ. Res. 97, 1288–1295 (2005)PubMedCrossRefGoogle Scholar
  31. C. Pott, M. Yip, J.I. Goldhaber, K.D. Philipson, Regulation of cardiac L-type Ca2+ current in Na+-Ca2+ exchanger knockout mice: functional coupling of the Ca2+ channel and the Na+-Ca2+ exchanger. Biophys. J. 92, 1431–1437 (2007)PubMedCrossRefGoogle Scholar
  32. J.P. Reeves, J.L. Sutko, Sodium-calcium ion exchange in cardiac membrane vesicles. Proc. Natl. Acad. Sci. U. S. A. 76, 590–594 (1979)PubMedCrossRefGoogle Scholar
  33. X. Ren, D.A. Nicoll, L. Xu, Z. Qu, K.D. Philipson, Transmembrane segment packing of the Na+/Ca2+ exchanger investigated with chemical cross-linkers. Biochemistry 49, 8585–8591 (2010)PubMedCrossRefGoogle Scholar
  34. H. Reuter, N. Seitz, The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. 195, 451–470 (1968)PubMedGoogle Scholar
  35. A. Saaf, L. Baars, G. von Heijne, The internal repeats in the Na+/Ca2+ exchanger-related Escherichia coli protein YrbG have opposite membrane topologies. J. Biol. Chem. 276, 18905–18907 (2001)PubMedCrossRefGoogle Scholar
  36. E.M. Schwarz, S. Benzer, Calx, a Na-Ca exchanger gene of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 94, 10249–10254 (1997)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Debora A. Nicoll
    • 1
  • Michela Ottolia
    • 1
  • Joshua I. Goldhaber
    • 2
  • Kenneth D. Philipson
    • 1
    Email author
  1. 1.Departments of Physiology and Medicine and the Cardiovascular Research Laboratories MRL 3-645David Geffen School of Medicine at UCLALos AngelesUSA
  2. 2.Cedars-Sinai Heart InstituteLos AngelesUSA

Personalised recommendations