Advertisement

NCX as a Key Player in the Neuroprotection Exerted by Ischemic Preconditioning and Postconditioning

  • Giuseppe Pignataro
  • Ornella Cuomo
  • Antonio Vinciguerra
  • Rossana Sirabella
  • Elga Esposito
  • Francesca Boscia
  • Gianfranco Di Renzo
  • Lucio AnnunziatoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)

Abstract

Ischemic preconditioning is a neuroprotective mechanism in which a brief non-injurious episode of ischemia protects the brain from a subsequent lethal insult. Recently, it has been reported that modified reperfusion subsequent to a prolonged ischemic episode may also confer neuroprotection, a phenomenon termed postconditioning. Mitogen-activated protein kinases (MAPK) play a key role in these two neuroprotective mechanisms. The aim of this study was to evaluate whether Na+/Ca2+ exchangers (NCXs), a family of ionic transporters that contribute to the maintenance of intracellular ionic homeostasis, contribute to the neuroprotection elicited by ischemic preconditioning and postconditioning.

Results of this study indicated that (1) NCX1 and NCX3 are upregulated in those brain regions protected by preconditioning, while (2) postconditioning treatment induces an upregulation only in NCX3 expression. (3) NCX1 upregulation and NCX3 upregulation are mediated by p-AKT since its inhibition reverted the neuroprotective effect of preconditioning and postconditioning and prevented NCXs overexpression. (4) The involvement of NCX in preconditioning and postconditioning neuroprotection is further supported by the results of experiments showing that a partial reversion of the protective effect induced by preconditioning was obtained by silencing NCX1 or NCX3, while the silencing of NCX3 was able to mitigate the protection induced by ischemic postconditioning.

Altogether, the data presented here suggest that NCX1 and NCX3 ­represent two promising druggable targets for setting on new strategies in stroke therapy.

Keywords

Preconditioning Postconditioning NCX1 NCX3 p-AKT 

Notes

Acknowledgments

This work was supported by COFIN 2008; Ricerca-Sanitaria RF-FSL352059 Ricerca finalizzata 2006; Ricerca-Oncologica 2006; Progetto-Strategico 2007; Progetto Ordinario 2007; Ricerca finalizzata 2009; Ricerca-Sanitaria Progetto Ordinario by Ministero della Salute 2008 all to LA.

The authors thank:

1.Elsevier for permission of using Figs. 19.1 and 19.2, license number 2821360173915, and three excerpts, license number 2821360363363, from the article that appeared in Neurobiology of Disease, 2012, by Pignataro G. et al.

2.John Wiley and Sons for permission of using text extracts from the article that appeared in FEBS Journal, 2009, by Pignataro G. et al.

3.Nature Publishing Group for permission of using text extracts and Figs. 19.3 and 19.4 from the article that appeared in Journal of Cerebral Blood Flow and Metabolism, 2011, by Pignataro G. et al.

References

  1. B.S. Allen, A.O. Halldorsson, M.J. Barth, M.N. Ilbawi, Modification of the subclavian patch aortoplasty for repair of aortic coarctation in neonates and infants. Ann. Thorac. Surg. 69, 877–880 (2000). discussion 881PubMedCrossRefGoogle Scholar
  2. L. Annunziato, G. Pignataro, G.F. Di Renzo, Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev. 56, 633–654 (2004)PubMedCrossRefGoogle Scholar
  3. J.W. Arthur, M.R. Wilkins, Using proteomics to mine genome sequences. J. Proteome Res. 3, 393–402 (2004)PubMedCrossRefGoogle Scholar
  4. D. Bano, K.W. Young, C.J. Guerin, R. Lefeuvre, N.J. Rothwell, L. Naldini, R. Rizzuto, E. Carafoli, P. Nicotera, Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275–285 (2005)PubMedCrossRefGoogle Scholar
  5. F.C. Barone, R.F. White, P.A. Spera, J. Ellison, R.W. Currie, X. Wang, G.Z. Feuerstein, Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke 29, 1937–1950 (1998). discussion 1950–1931PubMedCrossRefGoogle Scholar
  6. F. Boscia, R. Gala, G. Pignataro, A. de Bartolomeis, M. Cicale, A. Ambesi-Impiombato, G. Di Renzo, L. Annunziato, Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J. Cereb. Blood Flow Metab. 26, 502–517 (2006)PubMedCrossRefGoogle Scholar
  7. A.M. Brambrink, A. Schneider, H. Noga, A. Astheimer, B. Gotz, I. Korner, A. Heimann, M. Welschof, O. Kempski, Tolerance-Inducing dose of 3-nitropropionic acid modulates bcl-2 and bax balance in the rat brain: a potential mechanism of chemical preconditioning. J. Cereb. Blood Flow Metab. 20, 1425–1436 (2000)PubMedCrossRefGoogle Scholar
  8. G. Brooks, D.J. Hearse, Role of protein kinase C in ischemic preconditioning: player or spectator? Circ. Res. 79, 627–630 (1996)PubMedCrossRefGoogle Scholar
  9. J. Burda, M. Marsala, J. Radonak, J. Marsala, Graded postischemic reoxygenation ameliorates inhibition of cerebral cortical protein synthesis in dogs. J. Cereb. Blood Flow Metab. 11, 1001–1005 (1991)PubMedCrossRefGoogle Scholar
  10. J. Burda, M. Gottlieb, I. Vanicky, M. Chavko, J. Marsala, Short-term postischemic hypoperfusion improves recovery of protein synthesis in the rat brain cortex. Mol. Chem. Neuropathol. 25, 189–198 (1995)PubMedCrossRefGoogle Scholar
  11. J. Burda, V. Danielisova, M. Nemethova, M. Gottlieb, M. Matiasova, I. Domorakova, E. Mechirova, M. Ferikova, M. Salinas, R. Burda, Delayed postconditionig initiates additive mechanism necessary for survival of selectively vulnerable neurons after transient ischemia in rat brain. Cell. Mol. Neurobiol. 26, 1141–1151 (2006)PubMedCrossRefGoogle Scholar
  12. P.H. Chan, Future targets and cascades for neuroprotective strategies. Stroke 35, 2748–2750 (2004a)PubMedCrossRefGoogle Scholar
  13. P.H. Chan, Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res. 29, 1943–1949 (2004b)PubMedCrossRefGoogle Scholar
  14. Y.Y. Chen, Q. Xia, Evaluation of G(i/o) protein signal transduction pathway in cardioprotection of hypoxic preconditioning. Sheng Li Xue Bao 52, 93–97 (2000)PubMedGoogle Scholar
  15. V. Danielisova, M. Nemethova, M. Gottlieb, J. Burda, The changes in endogenous antioxidant enzyme activity after postconditioning. Cell. Mol. Neurobiol. 26, 1181–1191 (2006)PubMedCrossRefGoogle Scholar
  16. V.L. Dawson, T.M. Dawson, Neuronal ischaemic preconditioning. Trends Pharmacol. Sci. 21, 423–424 (2000)PubMedCrossRefGoogle Scholar
  17. A.T. de Souza Wyse, E.L. Streck, P. Worm, A. Wajner, F. Ritter, C.A. Netto, Preconditioning prevents the inhibition of Na+, K+-ATPase activity after brain ischemia. Neurochem. Res. 25, 971–975 (2000)PubMedCrossRefGoogle Scholar
  18. M. Digicaylioglu, S.A. Lipton, Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 412, 641–647 (2001)PubMedCrossRefGoogle Scholar
  19. U. Dirnagl, R.P. Simon, J.M. Hallenbeck, Ischemic tolerance and endogenous neuroprotection. Trends Neurosci. 26, 248–254 (2003)PubMedCrossRefGoogle Scholar
  20. H. Endo, C. Nito, H. Kamada, T. Nishi, P.H. Chan, Activation of the Akt/GSK3beta signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J. Cereb. Blood Flow Metab. 26, 1479–1489 (2006)PubMedCrossRefGoogle Scholar
  21. L. Formisano, M. Saggese, A. Secondo, R. Sirabella, P. Vito, V. Valsecchi, P. Molinaro, G. Di Renzo, L. Annunziato, The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol. Pharmacol. 73, 727–737 (2008)PubMedCrossRefGoogle Scholar
  22. N. Gabellini, S. Bortoluzzi, G.A. Danieli, E. Carafoli, Control of the Na+/Ca2+ exchanger 3 promoter by cyclic adenosine monophosphate and Ca2+ in differentiating neurons. J. Neurochem. 84, 282–293 (2003)PubMedCrossRefGoogle Scholar
  23. X. Gao, H. Zhang, T. Takahashi, J. Hsieh, J. Liao, G.K. Steinberg, H. Zhao, The Akt signaling pathway contributes to postconditioning’s protection against stroke; the protection is associated with the MAPK and PKC pathways. J. Neurochem. 105, 943–955 (2008)PubMedCrossRefGoogle Scholar
  24. J.M. Gidday, Cerebral preconditioning and ischaemic tolerance. Nat. Rev. Neurosci. 7, 437–448 (2006)PubMedCrossRefGoogle Scholar
  25. J.M. Gidday, J.C. Fitzgibbons, A.R. Shah, T.S. Park, Neuroprotection from ischemic brain injury by hypoxic preconditioning in the neonatal rat. Neurosci. Lett. 168, 221–224 (1994)PubMedCrossRefGoogle Scholar
  26. I. Ginis, R. Jaiswal, D. Klimanis, J. Liu, J. Greenspon, J.M. Hallenbeck, TNF-alpha-induced tolerance to ischemic injury involves differential control of NF-kappaB transactivation: the role of NF-kappaB association with p300 adaptor. J. Cereb. Blood Flow Metab. 22, 142–152 (2002)PubMedCrossRefGoogle Scholar
  27. D.J. Gladstone, S.E. Black, A.M. Hakim, Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke 33, 2123–2136 (2002)PubMedCrossRefGoogle Scholar
  28. S.S. Glazier, D.M. O’Rourke, D.I. Graham, F.A. Welsh, Induction of ischemic tolerance following brief focal ischemia in rat brain. J. Cereb. Blood Flow Metab. 14, 545–553 (1994)PubMedCrossRefGoogle Scholar
  29. M. Gonzalez-Zulueta, A.B. Feldman, L.J. Klesse, R.G. Kalb, J.F. Dillman, L.F. Parada, T.M. Dawson, V.L. Dawson, Requirement for nitric oxide activation of p21(ras)/extracellular regulated kinase in neuronal ischemic preconditioning. Proc. Natl. Acad. Sci. U. S. A. 97, 436–441 (2000)PubMedCrossRefGoogle Scholar
  30. D.J. Hausenloy, A. Tsang, M.M. Mocanu, D.M. Yellon, Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am. J. Physiol. Heart Circ. Physiol. 288, H971–H976 (2005a)PubMedCrossRefGoogle Scholar
  31. D.J. Hausenloy, A. Tsang, D.M. Yellon, The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc. Med. 15, 69–75 (2005b)PubMedCrossRefGoogle Scholar
  32. P.L. Huang, Nitric oxide and cerebral ischemic preconditioning. Cell Calcium 36, 323–329 (2004)PubMedCrossRefGoogle Scholar
  33. X. Jiang, E. Shi, Y. Nakajima, S. Sato, Postconditioning, a series of brief interruptions of early reperfusion, prevents neurologic injury after spinal cord ischemia. Ann. Surg. 244, 148–153 (2006)PubMedCrossRefGoogle Scholar
  34. N.M. Jones, M. Bergeron, Hypoxic preconditioning induces changes in HIF-1 target genes in neonatal rat brain. J. Cereb. Blood Flow Metab. 21, 1105–1114 (2001)PubMedCrossRefGoogle Scholar
  35. K. Kato, K. Shimazaki, T. Kamiya, S. Amemiya, T. Inaba, K. Oguro, Y. Katayama, Differential effects of sublethal ischemia and chemical preconditioning with 3-nitropropionic acid on protein expression in gerbil hippocampus. Life Sci. 77, 2867–2878 (2005)PubMedCrossRefGoogle Scholar
  36. H. Kin, A.J. Zatta, M.T. Lofye, B.S. Amerson, M.E. Halkos, F. Kerendi, Z.Q. Zhao, R.A. Guyton, J.P. Headrick, J. Vinten-Johansen, Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc. Res. 67, ­124–133 (2005)PubMedCrossRefGoogle Scholar
  37. S.N. Kip, E.E. Strehler, Rapid downregulation of NCX and PMCA in hippocampal neurons following H2O2 oxidative stress. Ann. N. Y. Acad. Sci. 1099, 436–439 (2007)PubMedCrossRefGoogle Scholar
  38. T. Kirino, Ischemic tolerance. J. Cereb. Blood Flow Metab. 22, 1283–1296 (2002)PubMedCrossRefGoogle Scholar
  39. T. Kirino, Y. Tsujita, A. Tamura, Induced tolerance to ischemia in gerbil hippocampal neurons. J. Cereb. Blood Flow Metab. 11, 299–307 (1991)PubMedCrossRefGoogle Scholar
  40. K. Kitagawa, M. Matsumoto, M. Tagaya, R. Hata, H. Ueda, M. Niinobe, N. Handa, R. Fukunaga, K. Kimura, K. Mikoshiba et al., ‘Ischemic tolerance’ phenomenon found in the brain. Brain Res. 528, 21–24 (1990)PubMedCrossRefGoogle Scholar
  41. K. Kitagawa, M. Matsumoto, K. Kuwabara, M. Tagaya, T. Ohtsuki, R. Hata, H. Ueda, N. Handa, K. Kimura, T. Kamada, ‘Ischemic tolerance’ phenomenon detected in various brain regions. Brain Res. 561, 203–211 (1991)PubMedCrossRefGoogle Scholar
  42. S. Kobayashi, V.A. Harris, F.A. Welsh, Spreading depression induces tolerance of cortical neurons to ischemia in rat brain. J. Cereb. Blood Flow Metab. 15, 721–727 (1995)PubMedCrossRefGoogle Scholar
  43. S. Kuroda, B.K. Siesjo, Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin. Neurosci. 4, 199–212 (1997)PubMedGoogle Scholar
  44. C. Lange-Asschenfeldt, A.P. Raval, K.R. Dave, D. Mochly-Rosen, T.J. Sick, M.A. Perez-Pinzon, Epsilon protein kinase C mediated ischemic tolerance requires activation of the extracellular regulated kinase pathway in the organotypic hippocampal slice. J. Cereb. Blood Flow Metab. 24, 636–645 (2004)PubMedCrossRefGoogle Scholar
  45. B. Linck, Z. Qiu, Z. He, Q. Tong, D.W. Hilgemann, K.D. Philipson, Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am. J. Physiol. 274, C415–C423 (1998)PubMedGoogle Scholar
  46. S.M. Massa, R.A. Swanson, F.R. Sharp, The stress gene response in brain. Cerebrovasc. Brain Metab. Rev. 8, 95–158 (1996)PubMedGoogle Scholar
  47. N. Maulik, M. Watanabe, Y.L. Zu, C.K. Huang, G.A. Cordis, J.A. Schley, D.K. Das, Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett. 396, 233–237 (1996)PubMedCrossRefGoogle Scholar
  48. D.R. Meldrum, J.C. Cleveland Jr., R.T. Rowland, A. Banerjee, A.H. Harken, X. Meng, Early and delayed preconditioning: differential mechanisms and additive protection. Am. J. Physiol. 273, H725–H733 (1997)PubMedGoogle Scholar
  49. R. Meller, M. Minami, J.A. Cameron, S. Impey, D. Chen, J.Q. Lan, D.C. Henshall, R.P. Simon, CREB-mediated Bcl-2 protein expression after ischemic preconditioning. J. Cereb. Blood Flow Metab. 25, 234–246 (2005)PubMedCrossRefGoogle Scholar
  50. K. Miyashita, H. Abe, T. Nakajima, A. Ishikawa, M. Nishiura, T. Sawada, H. Naritomi, Induction of ischaemic tolerance in gerbil hippocampus by pretreatment with focal ischaemia. Neuroreport 6, 46–48 (1994)PubMedCrossRefGoogle Scholar
  51. P. Molinaro, O. Cuomo, G. Pignataro, F. Boscia, R. Sirabella, A. Pannaccione, A. Secondo, A. Scorziello, A. Adornetto, R. Gala, D. Viggiano, S. Sokolow, A. Herchuelz, S. Schurmans, G. Di Renzo, L. Annunziato, Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J. Neurosci. 28, 1179–1184 (2008)PubMedCrossRefGoogle Scholar
  52. C.E. Murry, R.B. Jennings, K.A. Reimer, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74, 1124–1136 (1986)PubMedCrossRefGoogle Scholar
  53. M. Nemethova, V. Danielisova, M. Gottlieb, J. Burda, Post-conditioning exacerbates the MnSOD immune-reactivity after experimental cerebral global ischemia and reperfusion in the rat brain hippocampus. Cell Biol. Int. 32, 128–135 (2008)PubMedCrossRefGoogle Scholar
  54. N. Noshita, T. Sugawara, M. Fujimura, Y. Morita-Fujimura, P.H. Chan, Manganese superoxide dismutase affects cytochrome c release and caspase-9 activation after transient focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 21, 557–567 (2001)PubMedCrossRefGoogle Scholar
  55. S. Ohta, S. Furuta, I. Matsubara, K. Kohno, Y. Kumon, S. Sakaki, Calcium movement in ischemia-tolerant hippocampal CA1 neurons after transient forebrain ischemia in gerbils. J. Cereb. Blood Flow Metab. 16, 915–922 (1996)PubMedCrossRefGoogle Scholar
  56. A. Patel, M.C. van de Poll, J.W. Greve, W.A. Buurman, K.C. Fearon, S.J. McNally, E.M. Harrison, J.A. Ross, O.J. Garden, C.H. Dejong, S.J. Wigmore, Early stress protein gene expression in a human model of ischemic preconditioning. Transplantation 78, 1479–1487 (2004)PubMedCrossRefGoogle Scholar
  57. M.A. Perez-Pinzon, K.R. Dave, A.P. Raval, Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid. Redox Signal. 7, 1150–1157 (2005)PubMedCrossRefGoogle Scholar
  58. G. Pignataro, R. Gala, O. Cuomo, A. Tortiglione, L. Giaccio, P. Castaldo, R. Sirabella, C. Matrone, A. Canitano, S. Amoroso, G. Di Renzo, L. Annunziato, Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35, ­2566–2570 (2004)PubMedCrossRefGoogle Scholar
  59. G. Pignataro, Z. Xiong, R.P. Simon, Ischemic post-conditioning: a new neuroprotective strategy (Society for Neuroscience, Atlanta, 2006)Google Scholar
  60. G. Pignataro, R. Meller, K. Inoue, A.N. Ordonez, M.D. Ashley, Z. Xiong, R. Gala, R.P. Simon, In vivo and in vitro characterization of a novel neuroprotective strategy for stroke: ischemic postconditioning. J. Cereb. Blood Flow Metab. 28, 232–241 (2008)PubMedCrossRefGoogle Scholar
  61. G. Pignataro, A. Scorziello, G. Di Renzo, L. Annunziato, Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J. 276, 46–57 (2009)PubMedCrossRefGoogle Scholar
  62. G. Pignataro, E. Esposito, O. Cuomo, R. Sirabella, F. Boscia, N. Guida, G. Di Renzo, L. Annunziato, The NCX3 isoform of the Na+/Ca2+ exchanger contributes to neuroprotection elicited by ischemic postconditioning. J. Cereb. Blood Flow Metab. 31, 362–370 (2011)PubMedCrossRefGoogle Scholar
  63. G. Pignataro, F. Boscia, E. Esposito, R. Sirabella, O. Cuomo, A. Vinciguerra, G. Di Renzo, L. Annunziato, NCX1 and NCX3: Two new effectors of delayed preconditioning in brain ischemia. Neurobiol. Dis. 45, 616–623 (2012)PubMedCrossRefGoogle Scholar
  64. H. Plamondon, N. Blondeau, C. Heurteaux, M. Lazdunski, Mutually protective actions of kainic acid epileptic preconditioning and sublethal global ischemia on hippocampal neuronal death: involvement of adenosine A1 receptors and K(ATP) channels. J. Cereb. Blood Flow Metab. 19, 1296–1308 (1999)PubMedCrossRefGoogle Scholar
  65. A. Ravati, B. Ahlemeyer, A. Becker, J. Krieglstein, Preconditioning-induced neuroprotection is mediated by reactive oxygen species. Brain Res. 866, 23–32 (2000)PubMedCrossRefGoogle Scholar
  66. A.K. Rehni, N. Singh, Role of phosphoinositide 3-kinase in ischemic postconditioning-induced attenuation of cerebral ischemia-evoked behavioral deficits in mice. Pharmacol. Rep. 59, 192–198 (2007)PubMedGoogle Scholar
  67. R. Rejdak, K. Rejdak, M. Sieklucka-Dziuba, Z. Stelmasiak, P. Grieb, Brain tolerance and preconditioning. Pol. J. Pharmacol. 53, 73–79 (2001)PubMedCrossRefGoogle Scholar
  68. E. Rybnikova, L. Vataeva, E. Tyulkova, T. Gluschenko, V. Otellin, M. Pelto-Huikko, M.O. Samoilov, Mild hypoxia preconditioning prevents impairment of passive avoidance learning and suppression of brain NGFI-A expression induced by severe hypoxia. Behav. Brain Res. 160, 107–114 (2005)PubMedCrossRefGoogle Scholar
  69. T. Scartabelli, E. Gerace, E. Landucci, F. Moroni, D.E. Pellegrini-Giampietro, Neuroprotection by group I mGlu receptors in a rat hippocampal slice model of cerebral ischemia is associated with the PI3K-Akt signaling pathway: a novel postconditioning strategy? Neuropharmacology 55, 509–516 (2008)PubMedCrossRefGoogle Scholar
  70. B. Schaller, R. Graf, Cerebral ischemic preconditioning. An experimental phenomenon or a clinical important entity of stroke prevention? J. Neurol. 249, 1503–1511 (2002)PubMedCrossRefGoogle Scholar
  71. A. Scorziello, M. Santillo, A. Adornetto, C. Dell’Aversano, R. Sirabella, S. Damiano, L.M. Canzoniero, G.F. Renzo, L. Annunziato, NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J. Neurochem. 103, 1472–80 (2007)PubMedCrossRefGoogle Scholar
  72. A. Secondo, R.I. Staiano, A. Scorziello, R. Sirabella, F. Boscia, A. Adornetto, V. Valsecchi, P. Molinaro, L.M. Canzoniero, G. Di Renzo, L. Annunziato, BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: Possible relationship with mitochondrial membrane potential. Cell Calcium 42, 521–535 (2007)PubMedCrossRefGoogle Scholar
  73. M. Shamloo, T. Wieloch, Changes in protein tyrosine phosphorylation in the rat brain after cerebral ischemia in a model of ischemic tolerance. J. Cereb. Blood Flow Metab. 19, 173–183 (1999)PubMedCrossRefGoogle Scholar
  74. K. Shimazaki, T. Nakamura, K. Nakamura, K. Oguro, T. Masuzawa, Y. Kudo, N. Kawai, Reduced calcium elevation in hippocampal CA1 neurons of ischemia-tolerant gerbils. Neuroreport 9, 1875–1878 (1998)PubMedCrossRefGoogle Scholar
  75. R.P. Simon, M. Niiro, R. Gwinn, Prior ischemic stress protects against experimental stroke. Neurosci. Lett. 163, 135–137 (1993)PubMedCrossRefGoogle Scholar
  76. M.E. Speechly-Dick, M.M. Mocanu, D.M. Yellon, Protein kinase C. Its role in ischemic preconditioning in the rat. Circ. Res. 75, 586–590 (1994)PubMedCrossRefGoogle Scholar
  77. P. Staat, G. Rioufol, C. Piot, Y. Cottin, T.T. Cung, I. L’Huillier, J.F. Aupetit, E. Bonnefoy, G. Finet, X. Andre-Fouet, M. Ovize, Postconditioning the human heart. Circulation 112, 2143–2148 (2005)PubMedCrossRefGoogle Scholar
  78. M.P. Stenzel-Poore, S.L. Stevens, Z. Xiong, N.S. Lessov, C.A. Harrington, M. Mori, R. Meller, H.L. Rosenzweig, E. Tobar, T.E. Shaw, X. Chu, R.P. Simon, Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet 362, 1028–1037 (2003)PubMedCrossRefGoogle Scholar
  79. T. Toyoda, N.F. Kassell, K.S. Lee, Induction of ischemic tolerance and antioxidant activity by brief focal ischemia. Neuroreport 8, 847–851 (1997)PubMedCrossRefGoogle Scholar
  80. V. Valsecchi, G. Pignataro, A. Del Prete, R. Sirabella, C. Matrone, F. Boscia, A. Scorziello, M.J. Sisalli, E. Esposito, N. Zambrano, G. Di Renzo, L. Annunziato, NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke 42, 754–763 (2011)PubMedCrossRefGoogle Scholar
  81. J.Y. Wang, J. Shen, Q. Gao, Z.G. Ye, S.Y. Yang, H.W. Liang, I.C. Bruce, B.Y. Luo, Q. Xia, Ischemic postconditioning protects against global cerebral ischemia/reperfusion-induced injury in rats. Stroke 39, 983–990 (2008)PubMedCrossRefGoogle Scholar
  82. S. Willaime-Morawek, N. Arbez, J. Mariani, B. Brugg, IGF-I protects cortical neurons against ceramide-induced apoptosis via activation of the PI-3K/Akt and ERK pathways; is this protection independent of CREB and Bcl-2? Brain Res. Mol. Brain Res. 142, 97–106 (2005)PubMedCrossRefGoogle Scholar
  83. S. Yano, M. Morioka, K. Fukunaga, T. Kawano, T. Hara, Y. Kai, J. Hamada, E. Miyamoto, Y. Ushio, Activation of Akt/protein kinase B contributes to induction of ischemic tolerance in the CA1 subfield of gerbil hippocampus. J. Cereb. Blood Flow Metab. 21, 351–360 (2001)PubMedCrossRefGoogle Scholar
  84. D.M. Yellon, D.J. Hausenloy, Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat. Clin. Pract. Cardiovasc. Med. 2, ­568–575 (2005)PubMedCrossRefGoogle Scholar
  85. H. Zhao, The protective effect of ischemic postconditioning against ischemic injury: from the heart to the brain. J. Neuroimmune Pharmacol. 2, 313–318 (2007)PubMedCrossRefGoogle Scholar
  86. H. Zhao, Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J. Cereb. Blood Flow Metab. 29, 873–885 (2009)PubMedCrossRefGoogle Scholar
  87. Z.Q. Zhao, J.S. Corvera, M.E. Halkos, F. Kerendi, N.P. Wang, R.A. Guyton, J. Vinten-Johansen, Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am. J. Physiol. Heart Circ. Physiol. 285, H579–H588 (2003)PubMedGoogle Scholar
  88. H. Zhao, R.M. Sapolsky, G.K. Steinberg, Interrupting reperfusion as a stroke therapy: ischemic postconditioning reduces infarct size after focal ischemia in rats. J. Cereb. Blood Flow Metab. 26, 1114–1121 (2006a)PubMedCrossRefGoogle Scholar
  89. H. Zhao, R.M. Sapolsky, G.K. Steinberg, Phospho­inositide-3-kinase/akt survival signal pathways are implicated in neuronal survival after stroke. Mol. Neurobiol. 34, 249–270 (2006b)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Giuseppe Pignataro
    • 1
  • Ornella Cuomo
    • 1
  • Antonio Vinciguerra
    • 1
  • Rossana Sirabella
    • 2
  • Elga Esposito
    • 1
  • Francesca Boscia
    • 1
  • Gianfranco Di Renzo
    • 1
  • Lucio Annunziato
    • 1
    Email author
  1. 1.Division Pharmacology, Department Neuroscience, School of MedicineFederico II University of NaplesNaplesItaly
  2. 2.Fondazione IRCCS SDNNaplesItaly

Personalised recommendations