Genetically Modified Mice as a Strategy to Unravel the Role Played by the Na+/Ca2+ Exchanger in Brain Ischemia and in Spatial Learning and Memory Deficits

  • Pasquale Molinaro
  • Mauro Cataldi
  • Ornella Cuomo
  • Davide Viggiano
  • Giuseppe Pignataro
  • Rossana Sirabella
  • Agnese Secondo
  • Francesca Boscia
  • Anna Pannaccione
  • Antonella Scorziello
  • Sophie Sokolow
  • André Herchuelz
  • Gianfranco Di Renzo
  • Lucio Annunziato
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)

Abstract

Because no isoform-specific blocker of NCX has ever been synthesized, a more selective strategy to identify the role of each antiporter isoform in the brain was represented by the generation of knockout and knockin mice for the different isoforms of the antiporter.

Experiments performed in NCX2 and NCX3 knockout mice provided evidence that these two isoforms participate in spatial learning and memory consolidation, although in an opposite manner. These new data from ncx2−/− and ncx3−/− mice may open new experimental avenues for the development of effective therapeutic compounds that, by selectively inhibiting or activating these molecular targets, could treat patients affected by cognitive impairment including Alzheimer’s, Parkinson’s, Huntington’s diseases, and infarct dementia.

More importantly, knockout and knockin mice also provided new relevant information on the role played by NCX in maintaining the intracellular Na+ and Ca2+ homeostasis and in protecting neurons during brain ischemia. In particular, both ncx2−/− and ncx3−/− mice showed an increased neuronal vulnerability after the ischemic insult induced by transient middle cerebral artery occlusion.

As the ubiquitous deletion of NCX1 brings about to an early death of embryos because of a lack of heartbeat, this strategy could not be successfully pursued. However, information on the role of NCX1 in normal and ischemic brain could be obtained by developing conditional knockout mice lacking NCX1 in the brain. Preliminarily results obtained in these conditional mice suggest that also NCX1 protects neurons from ischemic cell death.

Overall, the use of genetic-modified mice for NCX1, NCX2, and NCX3 represents a fruitful strategy to characterize the physiological role exerted by NCX in CNS and to identify the isoforms of the antiporter as potential molecular targets for therapeutic intervention in cerebral ischemia.

Keywords

NCX1, NCX2, NCX3 Brain ischemia Learning and memory Knockout mice 

Notes

Acknowledgments

This work was supported by COFIN2008; Ricerca-Sanitaria RF-FSL352059 Ricerca finalizzata 2006; Ricerca-Oncologica 2006; Progetto-Strategico2007; Progetto Ordinario 2007; Ricerca finalizzata 2009; Ricerca-Sanitaria progetto Ordinario by Ministero della Salute 2008 all to LA

References

  1. L. Annunziato, G. Pignataro, G.F. Di Renzo, Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev. 56, 633–654 (2004)PubMedCrossRefGoogle Scholar
  2. L. Annunziato, G. Pignataro, F. Boscia, R. Sirabella, L. Formisano, M. Saggese, O. Cuomo, R. Gala, A. Secondo, D. Viggiano, P. Molinaro, V. Valsecchi, A. Tortiglione, A. Adornetto, A. Scorziello, M. Cataldi, GF. Di Renzo ncx1, ncx2, and ncx3 gene product expression and function in neuronal anoxia and brain ischemia. Ann. N. Y. Acad. Sci. 1099, 413-426 (2007)PubMedCrossRefGoogle Scholar
  3. F. Boscia, R. Gala, A. Pannaccione, A. Secondo, A. Scorziello, G. Di Renzo, L. Annunziato, NCX1 expression and functional activity increase in microglia invading the infarct core. Stroke 40, 3608–3617 (2009)PubMedCrossRefGoogle Scholar
  4. F. Boscia, C. D’Avanzo, A. Pannaccione, A. Secondo, A. Casamassa, L. Formisano, N. Guida, L. Annunziato, Silencing or knocking out the Na+/Ca2+ exchanger-3 (NCX3) impairs oligodendrocyte differentiation. Cell. Death. Differ. 19, 562–572 (2011)PubMedCrossRefGoogle Scholar
  5. A. Canitano, M. Papa, F. Boscia, P. Castaldo, S. Sellitti, M. Taglialatela, L. Annunziato, Brain distribution of the Na+/Ca2+ exchanger-encoding genes NCX1, NCX2, and NCX3 and their related proteins in the central nervous system. Ann. N. Y. Acad. Sci. 976, 394–404 (2002)PubMedCrossRefGoogle Scholar
  6. C.H. Cho, S.S. Kim, M.J. Jeong, C.O. Lee, H.S. Shin, The Na+ -Ca2+ exchanger is essential for embryonic heart development in mice. Mol. Cells 10, 712–722 (2000)PubMedGoogle Scholar
  7. O. Cuomo, R. Gala, G. Pignataro, F. Boscia, A. Secondo, A. Scorziello, A. Pannaccione, D. Viggiano, A. Adornetto, P. Molinaro, X.F. Li, J. Lytton, G. Di Renzo, L. Annunziato, A critical role for the potassium-dependent sodium-calcium exchanger NCKX2 in protection against focal ischemic brain damage. J. Neurosci. 28, 2053–2063 (2008)PubMedCrossRefGoogle Scholar
  8. S.M. Finkbeiner, Glial calcium. Glia 9, 83–104 (1993)PubMedCrossRefGoogle Scholar
  9. A. Fontan-Lozano, R. Romero-Granados, Y. del-Pozo-Martin, I. Suarez-Pereira, J.M. Delgado-Garcia, J.M. Penninger, A.M. Carrion, Lack of DREAM protein enhances learning and memory and slows brain aging. Curr. Biol. 19, 54–60 (2009)PubMedCrossRefGoogle Scholar
  10. W.F. Goldman, P.J. Yarowsky, M. Juhaszova, B.K. Krueger, M.P. Blaustein, Sodium/calcium exchange in rat cortical astrocytes. J. Neurosci. 14, 5834–5843 (1994)PubMedGoogle Scholar
  11. R. Gomez-Villafuertes, B. Torres, J. Barrio, M. Savignac, N. Gabellini, F. Rizzato, B. Pintado, A. Gutierrez-Adan, B. Mellstrom, E. Carafoli, J.R. Naranjo, Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J. Neurosci. 25, 10822–10830 (2005)PubMedCrossRefGoogle Scholar
  12. H. Hasegawa, M. Muraoka, K. Matsui, A. Kojima, Discovery of a novel potent Na+/Ca2+ exchanger inhibitor: design, synthesis and structure-activity relationships of 3,4-dihydro-2(1H)-quinazolinone derivatives. Bioorg. Med. Chem. Lett. 13, 3471–3475 (2003)PubMedCrossRefGoogle Scholar
  13. S.A. Henderson, J.I. Goldhaber, J.M. So, T. Han, C. Motter, A. Ngo, C. Chantawansri, M.R. Ritter, M. Friedlander, D.A. Nicoll, J.S. Frank, M.C. Jordan, K.P. Roos, R.S. Ross, K.D. Philipson, Functional adult myocardium in the absence of Na+-Ca2+ exchange: cardiac-specific knockout of NCX1. Circ. Res. 95, 604–611 (2004)PubMedCrossRefGoogle Scholar
  14. A. Holgado, L. Beauge, Effects of external monovalent cations on Na+-Ca2+ exchange in cultured rat glial cells. Ann. N. Y. Acad. Sci. 779, 279–281 (1996)PubMedCrossRefGoogle Scholar
  15. T. Iwamoto, S. Kita, YM-244769, a novel Na+/Ca2+ exchange inhibitor that preferentially inhibits NCX3, efficiently protects against hypoxia/reoxygenation-induced SH-SY5Y neuronal cell damage. Mol. Pharmacol. 70, 2075–2083 (2006)PubMedCrossRefGoogle Scholar
  16. T. Iwamoto, Y. Inoue, K. Ito, T. Sakaue, S. Kita, T. Katsuragi, The exchanger inhibitory peptide region-dependent inhibition of Na+/Ca2+ exchange by SN-6 [2-[4-(4-nitrobenzyloxy)benzyl]thiazolidine-4-carboxylic acid ethyl ester], a novel benzyloxyphenyl derivative. Mol. Pharmacol. 66, 45–55 (2004)PubMedCrossRefGoogle Scholar
  17. D. Jeon, Y.M. Yang, M.J. Jeong, K.D. Philipson, H. Rhim, H.S. Shin, Enhanced learning and memory in mice lacking Na+/Ca2+ exchanger 2. Neuron 38, 965–976 (2003)PubMedCrossRefGoogle Scholar
  18. D. Jeon, K. Chu, K.H. Jung, M. Kim, B.W. Yoon, C.J. Lee, U. Oh, H.S. Shin, Na+/Ca2+ exchanger 2 is neuroprotective by exporting Ca2+ during a transient focal cerebral ischemia in the mouse. Cell Calcium 43, 482–491 (2008)PubMedCrossRefGoogle Scholar
  19. M. Juhaszova, H. Shimizu, M.L. Borin, R.K. Yip, E.M. Santiago, G.E. Lindenmayer, M.P. Blaustein, Localization of the Na+-Ca2+ exchanger in vascular smooth muscle, and in neurons and astrocytes. Ann. N. Y. Acad. Sci. 779, 318–335 (1996)PubMedCrossRefGoogle Scholar
  20. S.V. Koushik, J. Wang, R. Rogers, D. Moskophidis, N.A. Lambert, T.L. Creazzo, S.J. Conway, Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J. 15, 1209–1211 (2001)PubMedGoogle Scholar
  21. Z. Li, S. Matsuoka, L.V. Hryshko, D.A. Nicoll, M.M. Bersohn, E.P. Burke, R.P. Lifton, K.D. Philipson, Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J. Biol. Chem. 269, 17434–17439 (1994)PubMedGoogle Scholar
  22. X.F. Li, L. Kiedrowski, F. Tremblay, F.R. Fernandez, M. Perizzolo, R.J. Winkfein, R.W. Turner, J.S. Bains, D.E. Rancourt, J. Lytton, Importance of K+-dependent Na+/Ca2+-exchanger 2, NCKX2, in motor learning and memory. J. Biol. Chem. 281, 6273–6282 (2006)PubMedCrossRefGoogle Scholar
  23. B. Linck, Z. Qiu, Z. He, Q. Tong, D.W. Hilgemann, K.D. Philipson, Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am. J. Physiol. 274, C415–C423 (1998)PubMedGoogle Scholar
  24. J. Luo, Y. Wang, X. Chen, H. Chen, D.B. Kintner, G.E. Shull, K.D. Philipson, D. Sun, Increased tolerance to ischemic neuronal damage by knockdown of Na+-Ca2+ exchanger isoform 1. Ann. N. Y. Acad. Sci. 1099, 292–305 (2007)PubMedCrossRefGoogle Scholar
  25. T. Matsuda, N. Arakawa, K. Takuma, Y. Kishida, Y. Kawasaki, M. Sakaue, K. Takahashi, T. Takahashi, T. Suzuki, T. Ota, A. Hamano-Takahashi, M. Onishi, Y. Tanaka, K. Kameo, A. Baba, SEA0400, a novel and selective inhibitor of the Na+-Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J. Pharmacol. Exp. Ther. 298, 249–256 (2001)PubMedGoogle Scholar
  26. P. Molinaro, O. Cuomo, G. Pignataro, F. Boscia, R. Sirabella, A. Pannaccione, A. Secondo, A. Scorziello, A. Adornetto, R. Gala, D. Viggiano, S. Sokolow, A. Herchuelz, S. Schurmans, G. Di Renzo, L. Annunziato, Targeted disruption of Na+/Ca2+ exchanger 3 (NCX3) gene leads to a worsening of ischemic brain damage. J. Neurosci. 28, 1179–1184 (2008)PubMedCrossRefGoogle Scholar
  27. P. Molinaro, D. Viggiano, R. Nistico, R. Sirabella, A. Secondo, F. Boscia, A. Pannaccione, A. Scorziello, B. Mehdawy, S. Sokolow, A. Herchuelz, G.F. Di Renzo, L. Annunziato, Na+-Ca2+ exchanger (NCX3) knock-out mice display an impairment in hippocampal long-term potentiation and spatial learning and memory. J. Neurosci. 31, 7312–7321 (2011)PubMedCrossRefGoogle Scholar
  28. P. Molinaro, M. Cantile, O. Cuomo, A. Secondo, A. Pannaccione, P. Ambrosino, G. Pignataro, F. Fiorino, B. Severino, E. Gatta, M.J. Sisalli, M. Milanese, A. Scorziello, G. Bonanno, M. Robello, V. Santagada, G. Caliendo, G. Di Renzo, L. Annunziato, Neurounina-1, a Novel Compound that Increases Na+/Ca2+ Exchanger Activity, Effectively Protects Against Stroke Damage. Mol Pharmacol. doi:10.1124/mol.112.080986 (2012)PubMedCrossRefGoogle Scholar
  29. D.A. Nicoll, S. Longoni, K.D. Philipson, Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250, 562–565 (1990)PubMedCrossRefGoogle Scholar
  30. D.A. Nicoll, B.D. Quednau, Z. Qui, Y.R. Xia, A.J. Lusis, K.D. Philipson, Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J. Biol. Chem. 271, 24914–24921 (1996)PubMedCrossRefGoogle Scholar
  31. M. Papa, A. Canitano, F. Boscia, P. Castaldo, S. Sellitti, H. Porzig, M. Taglialatela, L. Annunziato, Differential expression of the Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J. Comp. Neurol. 461, 31–48 (2003)PubMedCrossRefGoogle Scholar
  32. G. Pignataro, R. Gala, O. Cuomo, A. Tortiglione, L. Giaccio, P. Castaldo, R. Sirabella, C. Matrone, A. Canitano, S. Amoroso, G. Di Renzo, L. Annunziato, Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35, 2566–2570 (2004)PubMedCrossRefGoogle Scholar
  33. A.J. Pintado, C.J. Herrero, A.G. Garcia, C. Montiel, The novel Na+/Ca2+ exchange inhibitor KB-R7943 also blocks native and expressed neuronal nicotinic receptors. Br. J. Pharmacol. 130, 1893–1902 (2000)PubMedCrossRefGoogle Scholar
  34. H. Reuter, S.A. Henderson, T. Han, T. Matsuda, A. Baba, R.S. Ross, J.I. Goldhaber, K.D. Philipson, Knockout mice for pharmacological screening: testing the specificity of Na+-Ca2+ exchange inhibitors. Circ. Res. 91, 90–92 (2002a)PubMedCrossRefGoogle Scholar
  35. H. Reuter, S.A. Henderson, T. Han, R.S. Ross, J.I. Goldhaber, K.D. Philipson, The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ. Res. 90, 305–308 (2002b)PubMedCrossRefGoogle Scholar
  36. A. Secondo, R.I. Staiano, A. Scorziello, R. Sirabella, F. Boscia, A. Adornetto, V. Valsecchi, P. Molinaro, L.M. Canzoniero, G. Di Renzo, L. Annunziato, BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: Possible relationship with mitochondrial membrane potential. Cell Calcium 42, 521–535 (2007)PubMedCrossRefGoogle Scholar
  37. A. Secondo, A. Pannaccione, P. Molinaro, P. Ambrosino, P. Lippiello, A. Esposito, M. Cantile, P.R. Khatri, D. Melisi, G. Di Renzo, L. Annunziato, Molecular pharmacology of the amiloride analog 3-amino-6-chloro-5-[(4-chloro-benzyl)amino]-n-[[(2,4-dimethylbenzyl)-amino] iminomethyl]-pyrazinecarboxamide (CB-DMB) as a pan inhibitor of the Na+-Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in stably transfected cells. J. Pharmacol. Exp. Ther. 331, 212–221 (2009)PubMedCrossRefGoogle Scholar
  38. A.J. Silva, R. Paylor, J.M. Wehner, S. Tonegawa, Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 206–211 (1992a)PubMedCrossRefGoogle Scholar
  39. A.J. Silva, C.F. Stevens, S. Tonegawa, Y. Wang, Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257, 201–206 (1992b)PubMedCrossRefGoogle Scholar
  40. S. Sokolow, M. Manto, P. Gailly, J. Molgo, C. Vandebrouck, J.M. Vanderwinden, A. Herchuelz, S. Schurmans, Impaired neuromuscular transmission and skeletal muscle fiber necrosis in mice lacking Na/Ca exchanger 3. J. Clin. Invest. 113, 265–273 (2004)PubMedGoogle Scholar
  41. K. Takuma, T. Matsuda, H. Hashimoto, S. Asano, A. Baba, Cultured rat astrocytes possess Na+-Ca2+ exchanger. Glia 12, 336–342 (1994)PubMedCrossRefGoogle Scholar
  42. M. Tsoi, K.H. Rhee, D. Bungard, X.F. Li, S.L. Lee, R.N. Auer, J. Lytton, Molecular cloning of a novel potassium-dependent sodium-calcium exchanger from rat brain. J. Biol. Chem. 273, 4155–4162 (1998)PubMedCrossRefGoogle Scholar
  43. K. Wakimoto, K. Kobayashi, O.M. Kuro, A. Yao, T. Iwamoto, N. Yanaka, S. Kita, A. Nishida, S. Azuma, Y. Toyoda, K. Omori, H. Imahie, T. Oka, S. Kudoh, O. Kohmoto, Y. Yazaki, M. Shigekawa, Y. Imai, Y. Nabeshima, I. Komuro, Targeted disruption of Na+/Ca2+ exchanger gene leads to cardiomyocyte apoptosis and defects in heartbeat. J. Biol. Chem. 275, 36991–36998 (2000)PubMedCrossRefGoogle Scholar
  44. T. Watano, Y. Harada, K. Harada, N. Nishimura, Effect of Na+/Ca2+ exchange inhibitor, KB-R7943 on ouabain-induced arrhythmias in guinea-pigs. Br. J. Pharmacol. 127, 1846–1850 (1999)PubMedCrossRefGoogle Scholar
  45. L.J. Wu, B. Mellstrom, H. Wang, M. Ren, S. Domingo, S.S. Kim, X.Y. Li, T. Chen, J.R. Naranjo, M. Zhuo, DREAM (downstream regulatory element antagonist modulator) contributes to synaptic depression and contextual fear memory. Mol. Brain 3, 3 (2010)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Pasquale Molinaro
    • 1
  • Mauro Cataldi
    • 1
  • Ornella Cuomo
    • 1
  • Davide Viggiano
    • 1
  • Giuseppe Pignataro
    • 1
  • Rossana Sirabella
    • 2
  • Agnese Secondo
    • 1
  • Francesca Boscia
    • 1
  • Anna Pannaccione
    • 1
  • Antonella Scorziello
    • 1
  • Sophie Sokolow
    • 3
  • André Herchuelz
    • 3
  • Gianfranco Di Renzo
    • 1
  • Lucio Annunziato
    • 1
  1. 1.Division of Pharmacology, Department of Neuroscience, School of Medicine“Federico II” University of NaplesNaplesItaly
  2. 2.Fondazione IRCCS SDNNaplesItaly
  3. 3.Laboratory of Pharmacology and TherapeuticsUniversitè Libre de BruxellesBrusselsBelgium

Personalised recommendations