Advertisement

New Insights in Mitochondrial Calcium Handling by Sodium/Calcium Exchanger

  • Antonella Scorziello
  • Claudia Savoia
  • Agnese Secondo
  • Francesca Boscia
  • Maria Josè Sisalli
  • Alba Esposito
  • Annalisa Carlucci
  • Pasquale Molinaro
  • Luca Lignitto
  • Gianfranco Di Renzo
  • Antonio Feliciello
  • Lucio AnnunziatoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)

Abstract

Mitochondria are now recognized as one of the main intracellular calcium-storing organelles which play a key role in the intracellular calcium signalling. Indeed, besides performing oxidative phosphorylation, mitochondria are able to sense and shape calcium (Ca2+) transients, thus controlling cytosolic Ca2+ signals and Ca2+-dependent protein activity. It has been well established for many years that mitochondria have a huge capacity to accumulate calcium. While the physiological significance of this pathway was hotly debated until relatively recently, it is now clear that the ability of mitochondria in calcium handling is a ubiquitous phenomenon described in every cell system in which the issue has been addressed.

In this chapter, we will review the molecular mechanisms involved in the regulation of mitochondrial calcium cycling in physiological conditions with particular regard to the role played by the mitochondrial Na+/Ca2+ exchanger.

Keywords

Mitochondria Calcium NCX3 AKAP MCU 

Notes

Acknowledgments

This work was supported by COFIN2008; Ricerca-Sanitaria RF-FSL352059 Ricerca finalizzata 2006; Ricerca-Oncologica 2006; Progetto-Strategico 2007; Progetto Ordinario 2007; Ricerca finalizzata 2009; Ricerca-Sanitaria progetto Ordinario by Ministero della Salute 2008 all to LA

References

  1. L. Annunziato, G. Pignataro, G.F. Di Renzo, Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev. 56, 633–654 (2004)PubMedCrossRefGoogle Scholar
  2. A. Atlante, A. Bobba, P. Calissano, S. Passarella, E. Marra, The apoptosis/necrosis transition in cerebellar granule cells depends on the mutual relationship of the antioxidant and the proteolytic systems which regulate ROS production and cytochrome c release en route to death. J. Neurochem. 84, 960–971 (2003)PubMedCrossRefGoogle Scholar
  3. D.F. Babcock, J. Herrington, P.C. Goodwin, Y.B. Park, B. Hille, Mitochondrial participation in the intracellular Ca2+ network. J. Cell Biol. 136, 833–844 (1997)PubMedCrossRefGoogle Scholar
  4. J.M. Baughman, F. Perocchi, H.S. Girgis, M. Plovanich, C.A. Belcher-Timme, Y. Sancak, X.R. Bao, L. Strittmatter, O. Goldberger, R.L. Bogorad, V. Koteliansky, V.K. Mootha, Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011)PubMedCrossRefGoogle Scholar
  5. P. Bernardi, Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79, 1127–1155 (1999)PubMedCrossRefGoogle Scholar
  6. C.H. Berthold, C. Fabricius, M. Rydmark, B. Andersen, Axoplasmic organelles at nodes of Ranvier. I. Occurrence and distribution in large myelinated spinal root axons of the adult cat. J. Neurocytol. 22, 925–940 (1993)PubMedCrossRefGoogle Scholar
  7. E.A. Bristow, P.G. Griffiths, R.M. Andrews, M.A. Johnson, D.M. Turnbull, The distribution of mitochondrial activity in relation to optic nerve structure. Arch. Ophthalmol. 120, 791–796 (2002)PubMedCrossRefGoogle Scholar
  8. L. Buntinas, K.K. Gunter, G.C. Sparagna, T.E. Gunter, The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. Biochim. Biophys. Acta 1504, 248–261 (2001)PubMedCrossRefGoogle Scholar
  9. E. Carafoli, Historical review: mitochondria and calcium: ups and downs of an unusual relationship. Trends Biochem. Sci. 28, 175–181 (2003)PubMedCrossRefGoogle Scholar
  10. E. Carafoli, R. Tiozzo, G. Lugli, F. Crovetti, C. Kratzing, The release of calcium from heart mitochondria by sodium. J. Mol. Cell. Cardiol. 6, 361–371 (1974)PubMedCrossRefGoogle Scholar
  11. M. Chiesi, R. Schwaller, K. Eichenberger, Structural dependency of the inhibitory action of benzodiazepines and related compounds on the mitochondrial Na+-Ca2+ exchanger. Biochem. Pharmacol. 22, 4399–4403 (1988)CrossRefGoogle Scholar
  12. M. Crompton, E. Barksby, N. Johnson, M. Capano, Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84, 143–152 (2002)PubMedCrossRefGoogle Scholar
  13. D.A. Cox, L. Conforti, N. Sperelakis, M.A. Matlib. Selectivity of inhibition of Na(+)-Ca2+ exchange of heart mitochondria by benzothiazepine CGP-37157. J. Cardiovasc. Pharmacol. 21, 595–599 (1993)PubMedCrossRefGoogle Scholar
  14. D. De Stefani, A. Raffaello, E. Teardo, I. Szabo, R. Rizzuto, A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476, 336–340 (2011)PubMedCrossRefGoogle Scholar
  15. C. Du, M. Fang, Y. Li, L. Li, X. Wang, Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000)PubMedCrossRefGoogle Scholar
  16. L.L. Dugan, D.W. Choi, Excitotoxicity, free radicals, and cell membrane changes. Ann. Neurol. 35, S17–S21 (1994)PubMedCrossRefGoogle Scholar
  17. M. Erecinska, I.A. Silver, Ions and energy in mammalian brain. Prog. Neurobiol. 43, 37–71 (1994)PubMedCrossRefGoogle Scholar
  18. E.J. Harris, Modulation of Ca2+ efflux from heart mitochondria. Biochem. J. 178, 673–680 (1979)PubMedGoogle Scholar
  19. L.S. Jouaville, F. Ichas, E.L. Holmuhamedov, P. Camacho, J.D. Lechleiter, Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438–441 (1995)PubMedCrossRefGoogle Scholar
  20. G.H. Kageyama, M.T. Wong-Riley, Histochemical localization of cytochrome oxidase in the hippocampus: correlation with specific neuronal types and afferent pathways. Neuroscience 7, 2337–2361 (1982)PubMedCrossRefGoogle Scholar
  21. A.L. Lehninger, A. Vercesi, E.A. Bababunmi, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides. Proc. Natl. Acad. Sci. U. S. A. 75, 1690–1694 (1978)PubMedCrossRefGoogle Scholar
  22. P. Li, D. Nijhawan, I. Budihardjo, S.M. Srinivasula, M. Ahmad, E.S. Alnemri, X. Wang, Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 (1997)PubMedCrossRefGoogle Scholar
  23. A. Livigni, A. Scorziello, S.Agnese, A. Adornetto, A. Carlucci, C. Garbi, I. Castaldo, L. Annunziato, E.V. Avvedimento, A. Feliciello, Mitochondrial AKAP121 links cAMP and src signaling to oxidative metabolism. Mol. Biol. Cell 17, 263–271 (2006)PubMedCrossRefGoogle Scholar
  24. C. Murgia, P. Giorgi, P. Pinton, R. Rizzuto, Controlling metabolism and cell death: at the heart of mitochondrial calcium signaling. J. Mol. Cell. Cardiol. 46, 781–788 (2009)PubMedCrossRefGoogle Scholar
  25. D.G. Nicholls, The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem. J. 176, 463–474 (1978)PubMedGoogle Scholar
  26. D.G. Nicholls, Mitochondrial membrane potential and aging. Aging Cell 3, 35–40 (2004)PubMedCrossRefGoogle Scholar
  27. D.G. Nicholls, M. Crompton, Mitochondrial calcium transport. FEBS Lett. 111, 261–268 (1980)PubMedCrossRefGoogle Scholar
  28. S.M. Nicolau, Mitochondrial Na+/Ca2+-exchanger blocker CGP37157 protects against chromaffin cell death elicited by veratridine. J. Pharmacol. Exp. Ther. 330(3), 844–854 (2009)PubMedCrossRefGoogle Scholar
  29. R. Palty, W.F. Silverman, M. Hershfinkel, T. Caporale, S.L. Sensi, J. Parnis, C. Nolte, D. Fishman, V. Shoshan-Barmatz, S. Herrmann, D. Khananshvili, I. Sekler, NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc. Natl. Acad. Sci. U. S. A. 107, 436–441 (2010)PubMedCrossRefGoogle Scholar
  30. G. Petrosillo, F.M. Ruggiero, M. Pistolese, G. Paradies, Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J. Biol. Chem. 279, 53103–53108 (2004)PubMedCrossRefGoogle Scholar
  31. C. Ramachandran, F.L. Bygrave, Calcium ion cycling in rat liver mitochondria. Biochem. J. 174, 613–620 (1978)PubMedGoogle Scholar
  32. R. Rizzuto, P. Bernardi, T. Pozzan, Mitochondria as all-round players of the calcium game. J. Physiol. 1, 37–47 (2000)CrossRefGoogle Scholar
  33. K.C. Rowland, N.K. Irby, G.A. Spirou, Specialized synapse-associated structures within the calyx of Held. J. Neurosci. 20, 9135–9144 (2000)PubMedGoogle Scholar
  34. N.E. Saris, E. Carafoli, A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc.) 70, 187–194 (2005)CrossRefGoogle Scholar
  35. A. Scorziello, M. Santillo, A. Adornetto, C. Dell’Aversano, R. Sirabella, S. Damiano, L.M. Canzoniero, G.F. Renzo, L. Annunziato, NO-induced neuroprotection in ischemic preconditioning stimulates mitochondrial Mn-SOD activity and expression via Ras/ERK1/2 pathway. J. Neurochem. 103, 1472–80 (2007)CrossRefGoogle Scholar
  36. G.C. Sparagna, K.K. Gunter, S.S. Sheu, T.E. Gunter, Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J. Biol. Chem. 270, 27510–27515 (1995)PubMedCrossRefGoogle Scholar
  37. S.A. Susin, H.K. Lorenzo, N. Zamzami, I. Marzo, B.E. Snow, G.M. Brothers, J. Mangion, E. Jacotot, P. Costantini, M. Loeffler, N. Larochette, D.R. Goodlett, R. Aebersold, D.P. Siderovski, J.M. Penninger, G. Kroemer, Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999)PubMedCrossRefGoogle Scholar
  38. G. Szabadkai, M.R. Duchen, Mitochondria: the hub of cellular Ca2+ signaling. Physiology (Bethesda) 23, 84–94 (2008)CrossRefGoogle Scholar
  39. A.M. Verhagen, P.G. Ekert, M. Pakusch, J. Silke, L.M. Connolly, G.E. Reid, R.L. Moritz, R.J. Simpson, D.L. Vaux, Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000)PubMedCrossRefGoogle Scholar
  40. J.L. Werth, S.A. Thayer, Mitochondria buffer physiological calcium loads in cultured rat dorsal root ganglion neurons. J. Neurosci. 14, 348–356 (1994)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Antonella Scorziello
    • 1
  • Claudia Savoia
    • 1
  • Agnese Secondo
    • 1
  • Francesca Boscia
    • 1
  • Maria Josè Sisalli
    • 1
  • Alba Esposito
    • 1
  • Annalisa Carlucci
    • 2
  • Pasquale Molinaro
    • 1
  • Luca Lignitto
    • 2
  • Gianfranco Di Renzo
    • 1
  • Antonio Feliciello
    • 2
  • Lucio Annunziato
    • 1
    Email author
  1. 1.Division of Pharmacology, Department of Neuroscience, School of MedicineFederico II University of Naples-National Institute of NeuroscienceNaplesItaly
  2. 2.Department of Molecular and Cellular Biology and Pathology “L. Califano”Federico II University of NaplesNaplesItaly

Personalised recommendations