Advertisement

Metabolic Regulation of the Squid Nerve Na+/Ca2+ Exchanger: Recent Developments

  • Luis BeaugéEmail author
  • Reinaldo DiPolo
  • Mariana Bollo
  • Alexandra Cousido
  • Graciela Berberián
  • Alberto Podjarny
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)

Abstract

In squid nerves, MgATP modulation of the Na+/Ca2+ exchanger requires the presence of a cytosolic protein which becomes phosphorylated during the process. This factor has been recently identified. Mass spectroscopy and Western blot analysis established that it is a member of the lipocalin superfamily of lipid-binding proteins (LBP or FABP) of 132 amino acids. We called it regulatory protein of squid nerve sodium/calcium exchanger (ReP1-NCXSQ, access to GenBank EU981897).

ReP1-NCXSQ was cloned, expressed, and purified. Circular dichroism, far-UV, and infrared spectroscopy suggest a secondary structure, predominantly of beta-sheets. The tertiary structure prediction provides ten beta-sheets and two alpha-helices, characteristic of most of LPB. Functional experiments showed that, to be active, ReP1-NCXSQ must be phosphorylated by MgATP, through the action of a kinase present in the plasma membrane. Moreover, PO4-ReP1-NCXSQ can stimulate the exchanger in the absence of ATP. An additional crucial observation was that, in proteoliposomes containing only the purified Na+/Ca2+ exchanger, PO4-ReP1-NCXSQ promotes activation; therefore, this upregulation has no other requirement than a lipid membrane and the incorporated exchanger protein.

Recently, we solved the crystal structure of ReP1-NCXSQ which was as predicted: a “barrel” consisting of ten beta-sheets and two alpha-helices. Inside the barrel is the fatty acid coordinated by hydrogen bonds with Arg126 and Tyr128. Point mutations showed that neither Tyr20Ala, Arg58Val, Ser99Ala, nor Arg126Val is necessary for protein phosphorylation or activity. On the other hand, Tyr128 is essential for activity but not for phosphorylation. We can conclude that (1) for the first time, a role of an LBP is demonstrated in the metabolic regulation of an ion exchanger; (2) phosphorylation of this LBP can be separated from the activation capacity; and (3) Tyr128, a candidate to coordinate lipid binding inside the barrel, is essential for activity.

Keywords

Na+/Ca2+ exchanger Metabolic regulation Regulatory proteins Lipid-binding protein Structure-function Squid nerve Membrane transport 

Notes

Acknowledgments

The work was supported by grants from the US National Science Foundation (MCB 0444598); Fondo Nacional para Investigaciones Científicas y Tecnológicas (PICT-05-38073) and Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 2010–2012: GI11220090100063), Argentina; Fondo Nacional para Ciencia y Técnica (S1-9900009046 and G-2001000637 FONACIT) and Fundación Polar, Venezuela; and CNRS and INSERM, Strasbourg, France.

References

  1. C. Asteggiano, G. Berberián, L. Beaugé, Phosphatidyl inositol-4,5-bisphosphate bound to bovine cardiac Na+/Ca2+ exchanger displays a MgATP regulation similar to that of the exchange fluxes. Eur. J. Biochem. 268, 437–442 (2001)PubMedCrossRefGoogle Scholar
  2. P.F. Baker, H.G. Glitsch, Does metabolic energy participate directly in the Na+-dependent extrusion of Ca2+ ions from squid giant axons? J. Physiol. 233, 44–46 (1973)Google Scholar
  3. P.F. Baker, P.A. McNaughton, Selective inhibition of the Ca-dependent Na efflux from intact squid axons by a fall in intracellular pH. J. Physiol. 269, 78–79 (1977)Google Scholar
  4. P.F. Baker, M.P. Blaustein, A.L. Hodgkin, R.A. Steinhardt, The influence of calcium ions on sodium efflux in squid axons. J. Physiol. 200, 431–458 (1969)PubMedGoogle Scholar
  5. R. Bass, D.E. Raghupathy, J.A. Rhoads, R. Manning, R. Ockner, Partial purification of molecular weight 12.000 fatty acid binding proteins from rat brain and their effect on synaptosomal Na+-dependent amino acid uptake. Biochemistry 23, 6539–6544 (1984)PubMedCrossRefGoogle Scholar
  6. L. Beaugé, D. Girardi, H. Rojas, G. Berberian, R. Di Polo, A nerve cytosolic factor is required for MgATP stimulation ofNa+ gradient- dependent Ca+ uptake in plasma membrane vesicles from squid optic nerve. Ann. N.Y. Acad. Sci. 779, 208–216 (1996)PubMedCrossRefGoogle Scholar
  7. G. Berberián, C. Hidalgo, R. DiPolo, L. Beaugé, ATP stimulation of Na+/Ca2+ exchange in cardiac sarcolemmal vesicles. Am. J. Physiol. 274, C724–C733 (1998)PubMedCrossRefGoogle Scholar
  8. G. Berberián, M. Bollo, G. Montich, G. Roberts, J. De Giorgis, R. DiPolo, L. Beaugé, A novel lipid binding protein is a factor required for MgATP stimulation of the squid Na/Ca exchanger. Biochim. Biophys. Acta Biomembr. 1788, 1255–1262 (2009a)CrossRefGoogle Scholar
  9. G. Berberián, D. Forcato, L. Beaugé, Key role of PTDIns-4,5P2 micro domain in ionic regulation of the mammalian heart Na/Ca exchanger. Cell Calcium 45, 546–553 (2009b)PubMedCrossRefGoogle Scholar
  10. D. Bers, S. Despa, Na+/K+-ATPase, an integral player in the adrenergic fight-or-flight response. Trends Cardiovasc. Med. 19, 111–118 (2009)PubMedCrossRefGoogle Scholar
  11. M.P. Blaustein, Effects of internal and external cations and ATP on sodium-calcium exchange and calcium-calcium exchange in squid axons. Biophys. J. 20, 79–111 (1977)PubMedCrossRefGoogle Scholar
  12. M.P. Blaustein, A.L. Hodgkin, The effect of cyanide on the efflux of calcium from squid axons. J. Physiol. 200, 497–527 (1969)PubMedGoogle Scholar
  13. M. Blaustein, W.J. Lederer, Sodium/calcium exchange: its physiological implication. Physiol. Rev. 79, 763–854 (1999)PubMedGoogle Scholar
  14. E.M. Clérico, M.R. Ermácora, Tryptophan mutants of intestinal fatty acid-binding protein: ultraviolet absorption and circular dichroism studies. Arch. Biochem. Biophys. 395, 215–224 (2001)PubMedCrossRefGoogle Scholar
  15. M. Condrescu, J.P. Gardner, G. Chernaya, J.F. Aceto, C. Kroupis, J.P. Reeves, ATP-dependent regulation of sodium-calcium exchange in Chinese hamster ovary cells transfected with the bovine cardiac sodium-calcium exchanger. J. Biol. Chem. 270, 9137–9146 (1995)PubMedCrossRefGoogle Scholar
  16. R. DiPolo, Calcium efflux from internally dialyzed squid giant axons. J. Gen. Physiol. 62, 575–589 (1973)PubMedCrossRefGoogle Scholar
  17. R. DiPolo, The effect of ATP on the calcium efflux in dialyzed squid axons. J. Gen. Physiol. 64, 503–517 (1974)PubMedCrossRefGoogle Scholar
  18. R. DiPolo, The influence of nucleotides on calcium fluxes. Fed. Proc. 35, 2579–2582 (1976)PubMedGoogle Scholar
  19. R. DiPolo, Calcium influx in internally dialyzed squid giant axons. J. Gen. Physiol. 73, 91–113 (1979)PubMedCrossRefGoogle Scholar
  20. R. DiPolo, L. Beaugé, Physiological role of ATP-driven calcium pump in squid axons. Nature 278, 271–273 (1979)PubMedCrossRefGoogle Scholar
  21. R. DiPolo, L. Beaugé, The effect of pH on Ca extrusion mechanisms in dialyzed squid axons. Biochim. Biophys. Acta 688, 237–245 (1982)PubMedCrossRefGoogle Scholar
  22. R. DiPolo, L. Beaugé, Interactions of ligands with the Ca pump and Na/Ca exchange. J. Gen. Phys. 84, 895–914 (1984)CrossRefGoogle Scholar
  23. R. DiPolo, L. Beaugé, In squid axons, ATP modulates Na-Ca exchange by Ca(i)-dependent phosphorylation. Biochim. Biophys. Acta 897, 347–354 (1987)PubMedCrossRefGoogle Scholar
  24. R. DiPolo, L. Beaugé, Metabolic pathways in the regulation of invertebrate and vertebrate Na+/Ca2+ exchange. Biochim. Biophys. Acta 1422, 57–71 (1999)PubMedCrossRefGoogle Scholar
  25. R. DiPolo, L. Beaugé, MgATP counteracts intracellular proton inhibition of the sodium-calcium exchanger in dialyzed squid axons. J. Physiol. 539, 791–803 (2002)PubMedCrossRefGoogle Scholar
  26. R. DiPolo, L. Beaugé, Sodium/calcium exchanger: influence of metabolic regulation on ion carrier interactions. Physiol. Rev. 86, 155–203 (2006)PubMedCrossRefGoogle Scholar
  27. R. DiPolo, G. Berberián, L. Beaugé, In squid nerves intracellular Mg promotes deactivation of the ATP-upregulated Na/Ca exchanger. Am. J. Physiol. 279, C1631–C1639 (2000)Google Scholar
  28. A.E. Doering, W.J. Lederer, The mechanism by which cytoplasmic protons inhibit the sodium-calcium exchanger in guinea pig heart cells. J. Physiol. 466, 481–499 (1993)PubMedGoogle Scholar
  29. A.E. Doering, W.J. Lederer, The action of Na+ as a cofactor in the inhibition by cytoplasmic protons of the cardiac Na+-Ca2+ exchanger in the guinea pig. J. Physiol. 480, 9–20 (1994)PubMedGoogle Scholar
  30. D. Forcato, V. Posada, L. Beaugé, G. Berberián, Optimal metabolic regulation of the mammalian heart Na/Ca exchanger requires a special arrangement with a PtdIns(4)-5 kinase. Biochem. Biophys. Res. Comm. 402, 147–152 (2010)PubMedCrossRefGoogle Scholar
  31. A. Furuhashi, G.S. Hotamisligil, Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7, 489–503 (2008)PubMedCrossRefGoogle Scholar
  32. E.R. Gericke, D.J. Smith, R. Moore, J. Mendelsohn, J. Storch, Adipocyte fatty acid-binding protein: interaction with phospholipid membranes and thermal stability studied by FT-IR spectroscopy. Biochemistry 36, 8311–8317 (1997)PubMedCrossRefGoogle Scholar
  33. Z. He, S. Feng, Q. Tong, D.W. Hilgemann, K.D. Phipipson, Interaction of PIP2 with the XIP region of the cardiac Na/Ca exchanger. Am. J. Physiol. 278, C661–C666 (2000)Google Scholar
  34. M. Hilge, J. Aelen, A. Perrakis, G.W. Vuister, Structural basis for Ca2+ regulation in the Na+/Ca2+ exchanger. Ann. N. Y. Acad. Sci. 1099, 7–15 (2007)PubMedCrossRefGoogle Scholar
  35. D. Hilgeman, The cardiac Na+/Ca2+ exchanger in giant membrane patches. Ann. N. Y. Acad. Sci. 779, 136–158 (1996)PubMedCrossRefGoogle Scholar
  36. D.W. Hilgemann, Cytoplasmic ATP-dependent regulation of ion transporters and channels: mechanisms and messengers. Annu. Rev. Physiol. 59, 193–220 (1997)PubMedCrossRefGoogle Scholar
  37. D.W. Hilgemann, On the physiological roles of PIP2 at cardiac Na+/Ca2+ exchangers and K(ATP) channels: a long journey from membrane biophysics into cell biology. J. Physiol. 582, 903–909 (2007)PubMedCrossRefGoogle Scholar
  38. D.W. Hilgemann, R. Ball, Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273, 956–959 (1996)PubMedCrossRefGoogle Scholar
  39. D.W. Hilgemann, A. Collins, S. Matsuoka, Steady-state and dynamic properties of cardiac sodium-calcium exchange. Secondary modulation by cytoplasmic calcium and ATP. J. Gen. Physiol. 100, 933–961 (1992a)PubMedCrossRefGoogle Scholar
  40. D.W. Hilgemann, S. Matsuoka, G.A. Nagel, A. Collins, Steady-state and dynamic properties of cardiac sodium-calcium exchanger. Sodium-dependent inactivation. J. Gen. Physiol. 100, 905–932 (1992b)PubMedCrossRefGoogle Scholar
  41. D. Holowka, D. Sil, C. Torigoe, B. Baird, Insights into immunoglobulin E receptor signaling from structurally defined ligands. Immunol. Rev. 217, 269–279 (2007)PubMedCrossRefGoogle Scholar
  42. L.V. Hryshko, S. Matsuoka, D.A. Nicoll, J.N. Weiss, E.M. Schwarz, S. Benzer, K.D. Philipson, Anomalous regulation of the Drosophila Na+/Ca2+ exchanger by Ca2+. J. Gen. Physiol. 108, 67–74 (1996)PubMedCrossRefGoogle Scholar
  43. F. Janiak-Spens, J.M. Sparling, M. Gurfinkel, A.H. West, Differential stabilities of phosphorylated response regulator domains reflect functional roles of the yeast osmoregulatory SLN1 and SSK1 proteins. J. Bacteriol. 181, 411–417 (1999)PubMedGoogle Scholar
  44. D. Khananshvili, E. Weil-Maslansky, D. Baazou, Kinetics and mechanism; Modulation of ion transport in the cardiac sarcolemma sodium-calcium exchanger by protons, monovalent ions and temperature. Ann. N. Y. Acad. Sci. 779, 217–235 (1996)PubMedCrossRefGoogle Scholar
  45. U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)PubMedCrossRefGoogle Scholar
  46. Z. Li, D.A. Nicoll, A. Collins, D.W. Hilgemann, A.G. Filoteo, J.T. Penniston, Identification of a peptide inhibitor of the cardiac sarcolemmal Na+-Ca2+ exchanger. J. Biol. Chem. 266, 1014–1020 (1991)PubMedCrossRefGoogle Scholar
  47. S. Luciani, S. Bova, G. Cargnelli, F. Cusinato, P. Debetto, Modulation of sodium-calcium exchange by lipids. Ann. N. Y. Acad. Sci. 639, 156–165 (1991)PubMedCrossRefGoogle Scholar
  48. S. Luciani, M. Antonini, S. Bova, G. Cargnelli, F. Cusinato, P. Debetto, L. Trevisi, R. Varotto, Inhibition of cardiac sarcolemmal sodium-calcium exchanger by glycerophosphoinositol 4-phosphate and glycerophosphoinositol 4-5-bisphosphate. Biochem. Biophys. Res. Commun. 206, 674–680 (1995)PubMedCrossRefGoogle Scholar
  49. S. Matsuoka, D.A. Nicoll, Z. He, K.D. Philipson, Regulation of cardiac Na+-Ca2+ exchanger by the endogenous XIP region. J. Gen. Physiol. 109, 273–286 (1997)PubMedCrossRefGoogle Scholar
  50. S. McLaughlin, J. Wang, A. Gambhir, D. Murray, PIP(2) and proteins: interactions, organization, and information flow. Annu. Rev. Biophys. Biomol. Struct. 31, 151–175 (2002)PubMedCrossRefGoogle Scholar
  51. V. Nolan, M. Parduca, H.L. Monaco, B. Maggio, G.G. Montich, Interactions of chicken liver basic fatty acid-binding protein with lipid membranes. Biochim. Biophys. Acta. 1611, 98–106 (2003)PubMedCrossRefGoogle Scholar
  52. M. Ottolia, S. John, X. Ren, K.D. Philipson, Fluorescent Na+/Ca2+ exchangers: electrophysiological and optical characterization. J. Biol. Chem. 282, 3695–3701 (2007)PubMedCrossRefGoogle Scholar
  53. M. Ottolia, D.A. Nicoll, K.D. Philipson, Roles of two Ca2+-binding domains in regulation of the cardiac Na+-Ca2+ exchanger. J. Biol. Chem. 284, 32735–32741 (2009)PubMedCrossRefGoogle Scholar
  54. K.D. Philipson, M.M. Bersohn, Y. Nishimoto, Effects of pH on Na+-Ca2+ exchange in canine cardiac sarcolemmal vesicles. Circ. Res. 50, 287–293 (1982)PubMedCrossRefGoogle Scholar
  55. V. Posada, L. Beaugé, G. Berberián, Maximal Ca2+i stimulation of cardiac Na+/Ca2+ exchange requires simultaneous alkalinization and binding of the PtdIns-4,5-P2to the exchanger. Biol. Chem. 388, 281–288 (2007)PubMedCrossRefGoogle Scholar
  56. D. Raimunda, M. Bollo, L. Beaugé, G. Berberián, Squid nerve Na/Ca exchanger expressed in Saccharomyces cerevisiae: Up-regulation by a phosphorylated cytosolic protein (ReP1-NCXSQ) is identical to that of native exchanger in situ. Cell Calcium 45, 499–508 (2009)PubMedCrossRefGoogle Scholar
  57. D.H. Schulze, M. Muqhal, W.J. Lederer, A.M. Ruknudin, Sodium/calcium exchanger (NCX1) macromolecular complex. J. Biol. Chem. 278, 28849–28855 (2003)PubMedCrossRefGoogle Scholar
  58. B. Shinpei, R. Noguchi, K. Yamashita, F. Fukumori, M. Kimura, I. Yamaguchi, M. Fujimura, Roles of putative His-to-Asp signaling modules HPT-1 and RRG-2, on viability and sensitivity to osmotic and oxidative stresses in Neurospora crassa. Curr. Genet. 51, 197–208 (2007)CrossRefGoogle Scholar
  59. A. Skerra, Alternative binding proteins: anticalins-harnessing the structural plasticity of the lipocalin ligand pocked of engineer novel binding activities. FEBS J. 275, 2677–2683 (2008)PubMedCrossRefGoogle Scholar
  60. F. Tanfani, Z. Kochan, J. Swierczynski, M.M. Zydowo, E. Bertoli, Structural properties and thermal stability of human liver and heart fatty acid binding proteins: a Fourier transform IR spectroscopy study. Biopolymers 36, 569–577 (1995)PubMedCrossRefGoogle Scholar
  61. S. Wakabayashi, K. Goshima, Comparison of kinetic characteristics of Na-Ca exchange in sarcolemma vesicles and cultured cells from chick heart. Biochim. Biophys. Acta 645, 311–317 (1981)PubMedCrossRefGoogle Scholar
  62. M. Wu, M. Wang, J. Nix, L.V. Hryshko, L.J. Zheng, Crystal structure of CBD2 from the Drosophila Na+/Ca2+ exchanger: diversity of Ca2+ regulation and its alternative splicing modification. Mol. Biol. 387, 104–112 (2009)CrossRefGoogle Scholar
  63. A. Yaradanakul, S. Feng, C. Shen, V. Lariccia, M.J. Lin, J. Yang, T.M. Kang, P. Dong, H.L. Yin, J.P. Albanesi, D.W. Hilgemann, Dual control of cardiac Na+ Ca2+ exchange by PIP(2): electrophysiological analysis of direct and indirect mechanism. J. Physiol. 582, 991–1010 (2007)PubMedCrossRefGoogle Scholar
  64. A.C. Young, G. Scapin, A. Kromminga, S.B. Patel, J.H. Veerkamp, J.C. Sacchettini, Structural studies on human muscle fatty acid binding protein at 1.4 Å resolution: binding interactions with three C18 fatty acids. Structure 15, 523–534 (1994)CrossRefGoogle Scholar
  65. S. Zlatanos, K. Laskaridis, C. Feist, A. Sagredos, Proximate composition, fatty acid analysis and protein digestibility-corrected amino acids core of three Mediterranean cephalopods. Mol. Nutr. Food Res. 50, 967–970 (2006)CrossRefGoogle Scholar
  66. Y.H. Zhang, J.C. Hancox, Regulation of cardiac Na+-Ca2+ exchanger activity by protein kinase phosphorylation still a paradox? Cell Calcium 45, 1–10 (2009)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Luis Beaugé
    • 1
    Email author
  • Reinaldo DiPolo
    • 2
  • Mariana Bollo
    • 1
  • Alexandra Cousido
    • 3
  • Graciela Berberián
    • 1
  • Alberto Podjarny
    • 3
  1. 1.Laboratorio de BiofísicaInstituto de Investigación Médica “Mercedes y Martín Ferreyra” (INIMEC-CONICET)CórdobaArgentina
  2. 2.Laboratorio de Fisiología CelularCentro de Biofísica, Instituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela
  3. 3.Department of Structural Biology and Genomics, IGBMC, CNRS, INSERMUniversité de StrasbourgIllkirchFrance

Personalised recommendations