Advertisement

Transcriptional Regulation of ncx1 Gene in the Brain

  • Valeria Valsecchi
  • Giuseppe Pignataro
  • Rossana Sirabella
  • Carmela Matrone
  • Francesca Boscia
  • Antonella Scorziello
  • Maria Josè Sisalli
  • Elga Esposito
  • Nicola Zambrano
  • Mauro Cataldi
  • Gianfranco Di Renzo
  • Lucio AnnunziatoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 961)

Abstract

The ubiquitous sodium–calcium exchanger isoform 1 (NCX1) is a ­bidirectional transporter that plays a relevant role under physiological and pathophysiological conditions including brain ischemia by regulating intraneuronal Ca2+ and Na+ homeostasis. Although changes in ncx1 protein and transcript expression have been detected during stroke, its transcriptional regulation is still largely unexplored. Here, we reviewed our recent findings on several transcription factors including cAMP response element-binding protein (CREB), nuclear factor kappa B (NF-κB), and hypoxia-inducible factor-1 (HIF-1) in the control of the ncx1 gene expression in neuronal cells.

Keywords

ncx1 HIF-1 Ischemic preconditioning Hypoxia Transcriptional regulation 

Notes

Acknowledgments

This work was supported by COFIN2008, Ricerca-Sanitaria RF-FSL352059 Ricerca finalizzata 2006, Ricerca-Oncologica 2006, Progetto-Strategico 2007, Progetto Ordinario 2007, Ricerca finalizzata 2009, Ricerca-Sanitaria Progetto Ordinario by Ministero della Salute 2008, and MIUR, Progetto Operativo Nazionale (PON) 01602 all to LA.

References

  1. L. Annunziato, G. Pignataro, G.F. Di Renzo, Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev. 56, 633–654 (2004)PubMedCrossRefGoogle Scholar
  2. L. Annunziato, G. Pignataro, F. Boscia, R. Sirabella, L. Formisano, M. Saggese, O. Cuomo, R. Gala, A. Secondo, D. Viggiano, P. Molinaro, V. Valsecchi, A. Tortiglione, A. Adornetto, A. Scorziello, M. Cataldi, GF. Di RenzoPubMedCrossRefGoogle Scholar
  3. L. Annunziato, P. Molinaro, A. Secondo, A. Panaccione, A. Scorziello, G. Pignataro, O. Cuomo, R. Sirabella, F. Boscia, A. Spinali, G. Di Renzo, The Na+/Ca2+ exchanger: a target for therapeutic intervention in cerebral ischemia, in New Strategies in Stroke Intervention, ed. by L. Annunziato (Springer, Totowa, 2009), pp. 65–87CrossRefGoogle Scholar
  4. H. Autio, K. Matlik, T. Rantamaki, L. Lindemann, M.C. Hoener, M. Chao, U. Arumae, E. Castren, Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus. Neuropharmacology 61, 1291–1296 (2011)PubMedCrossRefGoogle Scholar
  5. K.V. Barnes, G. Cheng, M.M. Dawson, D.R. Menick, Cloning of cardiac, kidney, and brain promoters of the feline NCX1 gene. J. Biol. Chem. 272, 11510–11517 (1997)PubMedCrossRefGoogle Scholar
  6. M. Bergeron, A.Y. Yu, K.E. Solway, G.L. Semenza, F.R. Sharp, Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur. J. Neurosci. 11, 4159–4170 (1999)PubMedCrossRefGoogle Scholar
  7. F. Boscia, R. Gala, G. Pignataro, A. de Bartolomeis, M. Cicale, A. Ambesi-Impiombato, G. Di Renzo, L. Annunziato, Permanent focal brain ischemia induces isoform-dependent changes in the pattern of Na+/Ca2+ exchanger gene expression in the ischemic core, periinfarct area, and intact brain regions. J. Cereb. Blood Flow Metab. 26, 502–517 (2006)PubMedCrossRefGoogle Scholar
  8. R.K. Bruick, Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. Genes Dev. 17, 2614–2623 (2003)PubMedCrossRefGoogle Scholar
  9. J.C. Chavez, J.C. LaManna, Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J. Neurosci. 22, 8922–8931 (2002)PubMedGoogle Scholar
  10. G. Cheng, T.P. Hagen, M.L. Dawson, K.V. Barnes, D.R. Menick, The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+-Ca2+ exchanger gene. J. Biol. Chem. 274, 12819–12826 (1999)PubMedCrossRefGoogle Scholar
  11. S.T. Crews, Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev. 12, 607–620 (1998)PubMedCrossRefGoogle Scholar
  12. D. De Cesare, G.M. Fimia, P. Sassone-Corsi, Signaling routes to CREM and CREB: plasticity in transcriptional activation. Trends Biochem. Sci. 24, 281–285 (1999)PubMedCrossRefGoogle Scholar
  13. L. Formisano, M. Saggese, A. Secondo, R. Sirabella, P. Vito, V. Valsecchi, P. Molinaro, G. Di Renzo, L. Annunziato, The two isoforms of the Na+/Ca2+ exchanger, NCX1 and NCX3, constitute novel additional targets for the prosurvival action of Akt/protein kinase B pathway. Mol. Pharmacol. 73, 727–737 (2008)PubMedCrossRefGoogle Scholar
  14. K. Fukunaga, T. Kawano, Akt is a molecular target for signal transduction therapy in brain ischemic insult. J. Pharmacol. Sci. 92, 317–327 (2003)PubMedCrossRefGoogle Scholar
  15. N. Gabellini, S. Bortoluzzi, G.A. Danieli, E. Carafoli, The gene promoter of human Na+/Ca2+ exchanger isoform 3 (SLC8A3) is controlled by cAMP and calcium. Ann. N. Y. Acad. Sci. 976, 282–284 (2002)PubMedCrossRefGoogle Scholar
  16. N. Gabellini, S. Bortoluzzi, G.A. Danieli, E. Carafoli, Control of the Na+/Ca2+ exchanger 3 promoter by cyclic adenosine monophosphate and Ca2+ in differentiating neurons. J. Neurochem. 84, 282–293 (2003)PubMedCrossRefGoogle Scholar
  17. G.T. Gibney, J.H. Zhang, R.M. Douglas, G.G. Haddad, Y. Xia, Na+/Ca2+ exchanger expression in the developing rat cortex. Neuroscience 112, 65–73 (2002)PubMedCrossRefGoogle Scholar
  18. K.L. Golden, Q.I. Fan, B. Chen, J. Ren, J. O’Connor, J.D. Marsh, Adrenergic stimulation regulates Na+/Ca2+exchanger expression in rat cardiac myocytes. J. Mol. Cell. Cardiol. 32, 611–620 (2000)PubMedCrossRefGoogle Scholar
  19. R. Gomez-Villafuertes, B. Torres, J. Barrio, M. Savignac, N. Gabellini, F. Rizzato, B. Pintado, A. Gutierrez-Adan, B. Mellstrom, E. Carafoli, J.R. Naranjo, Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J. Neurosci. 25, 10822–10830 (2005)PubMedCrossRefGoogle Scholar
  20. M.S. Hayden, S. Ghosh, Shared principles in NF-kappaB signaling. Cell 132, 344–362 (2008)PubMedCrossRefGoogle Scholar
  21. B.H. Jiang, E. Rue, G.L. Wang, R. Roe, G.L. Semenza, Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J. Biol. Chem. 271, 17771–17778 (1996)PubMedCrossRefGoogle Scholar
  22. P.J. Kallio, I. Pongratz, K. Gradin, J. McGuire, L. Poellinger, Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the ARNT transcription factor. Proc. Natl. Acad. Sci. U. S. A. 94, 5667–5672 (1997)PubMedCrossRefGoogle Scholar
  23. S.L. Lee, A.S. Yu, J. Lytton, Tissue-specific expression of Na+-Ca2+ exchanger isoforms. J. Biol. Chem. 269, 14849–14852 (1994)PubMedGoogle Scholar
  24. A.P. Levy, N.S. Levy, S. Wegner, M.A. Goldberg, Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 270, 13333–13340 (1995)PubMedCrossRefGoogle Scholar
  25. Z. Li, S. Matsuoka, L.V. Hryshko, D.A. Nicoll, M.M. Bersohn, E.P. Burke, R.P. Lifton, K.D. Philipson, Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J. Biol. Chem. 269, 17434–17439 (1994)PubMedGoogle Scholar
  26. L. Li, D. Guerini, E. Carafoli, Calcineurin controls the transcription of Na+/Ca2+ exchanger isoforms in developing cerebellar neurons. J. Biol. Chem. 275, 20903–20910 (2000)PubMedCrossRefGoogle Scholar
  27. L.L. Li, L.N. Sun, H.Y. Zhou, Z.B. Li, X.L. Wang, Selective alteration of expression of Na+/Ca2+ exchanger isoforms after transient focal cerebral ischemia in rats. Neurosci. Lett. 404, 249–253 (2006)PubMedCrossRefGoogle Scholar
  28. J. Lu, X.Y. Tong, X.L. Wang, Altered gene expression of Na+/Ca2+ exchanger isoforms NCX1, NCX2 and NCX3 in chronic ischemic rat brain. Neurosci. Lett. 332, 21–24 (2002)PubMedCrossRefGoogle Scholar
  29. C. Matrone, G. Pignataro, P. Molinaro, C. Irace, A. Scorziello, G.F. Di Renzo, L. Annunziato, HIF-1alpha reveals a binding activity to the promoter of iNOS gene after permanent middle cerebral artery occlusion. J. Neurochem. 90, 368–378 (2004)PubMedCrossRefGoogle Scholar
  30. J.G. Muller, J.T. Thompson, A.M. Edmonson, M.S. Rackley, H. Kasahara, S. Izumo, T.C. McQuinn, D.R. Menick, T.X. O’Brien, Differential regulation of the cardiac sodium calcium exchanger promoter in adult and neonatal cardiomyocytes by Nkx2.5 and serum response factor. J. Mol. Cell. Cardiol. 34, 807–821 (2002)PubMedCrossRefGoogle Scholar
  31. S.B. Nicholas, K.D. Philipson, Cardiac expression of the Na+/Ca2+ exchanger NCX1 is GATA factor dependent. Am. J. Physiol. 277, H324–H330 (1999)PubMedGoogle Scholar
  32. S.B. Nicholas, W. Yang, S.L. Lee, H. Zhu, K.D. Philipson, J. Lytton, Alternative promoters and cardiac muscle cell-specific expression of the Na+/Ca2+ exchanger gene. Am. J. Physiol. 274, H217–H232 (1998)PubMedGoogle Scholar
  33. D.A. Nicoll, S. Longoni, K.D. Philipson, Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science 250, 562–565 (1990)PubMedCrossRefGoogle Scholar
  34. D.A. Nicoll, B.D. Quednau, Z. Qui, Y.R. Xia, A.J. Lusis, K.D. Philipson, Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J. Biol. Chem. 271, 24914–24921 (1996)PubMedCrossRefGoogle Scholar
  35. M. Papa, A. Canitano, F. Boscia, P. Castaldo, S. Sellitti, H. Porzig, M. Taglialatela, L. Annunziato, Differential expression of the Na+-Ca2+ exchanger transcripts and proteins in rat brain regions. J. Comp. Neurol. 461, 31–48 (2003)PubMedCrossRefGoogle Scholar
  36. N.D. Perkins, T.D. Gilmore, Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ. 13, 759–772 (2006)PubMedCrossRefGoogle Scholar
  37. G. Pignataro, R. Gala, O. Cuomo, A. Tortiglione, L. Giaccio, P. Castaldo, R. Sirabella, C. Matrone, A. Canitano, S. Amoroso, G. Di Renzo, L. Annunziato, Two sodium/calcium exchanger gene products, NCX1 and NCX3, play a major role in the development of permanent focal cerebral ischemia. Stroke 35, 2566–2570 (2004)PubMedCrossRefGoogle Scholar
  38. G. Pignataro, A. Scorziello, G. Di Renzo, L. Annunziato, Post-ischemic brain damage: effect of ischemic preconditioning and postconditioning and identification of potential candidates for stroke therapy. FEBS J. 276, 46–57 (2009)PubMedCrossRefGoogle Scholar
  39. B.D. Quednau, D.A. Nicoll, K.D. Philipson, Tissue specificity and alternative splicing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am. J. Physiol. 272, C1250–C1261 (1997)PubMedGoogle Scholar
  40. M. Sakaue, H. Nakamura, I. Kaneko, Y. Kawasaki, N. Arakawa, H. Hashimoto, Y. Koyama, A. Baba, T. Matsuda, Na+-Ca2+ exchanger isoforms in rat neuronal preparations: different changes in their expression ­during postnatal development. Brain Res. 881, 212–216 (2000)PubMedCrossRefGoogle Scholar
  41. T. Scheller, A. Kraev, S. Skinner, E. Carafoli, Cloning of the multipartite promoter of the sodium-calcium exchanger gene NCX1 and characterization of its activity in vascular smooth muscle cells. J. Biol. Chem. 273, 7643–7649 (1998)PubMedCrossRefGoogle Scholar
  42. A. Secondo, R.I. Staiano, A. Scorziello, R. Sirabella, F. Boscia, A. Adornetto, V. Valsecchi, P. Molinaro, L.M. Canzoniero, G. Di Renzo, L. Annunziato, BHK cells transfected with NCX3 are more resistant to hypoxia followed by reoxygenation than those transfected with NCX1 and NCX2: possible relationship with mitochondrial membrane potential. Cell Calcium 42, 521–535 (2007)PubMedCrossRefGoogle Scholar
  43. G.L. Semenza, Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114, 2015–2019 (2009)PubMedCrossRefGoogle Scholar
  44. G.L. Semenza, M.K. Nejfelt, S.M. Chi, S.E. Antonarakis, Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc. Natl. Acad. Sci. U. S. A. 88, 5680–5684 (1991)PubMedCrossRefGoogle Scholar
  45. G.L. Semenza, B.H. Jiang, S.W. Leung, R. Passantino, J.P. Concordet, P. Maire, A. Giallongo, Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529–32537 (1996)PubMedCrossRefGoogle Scholar
  46. R. Sirabella, A. Secondo, A. Pannaccione, A. Scorziello, V. Valsecchi, A. Adornetto, L. Bilo, G. Di Renzo, L. Annunziato, Anoxia-induced NF-kappaB-dependent upregulation of NCX1 contributes to Ca2+ refilling into endoplasmic reticulum in cortical neurons. Stroke 40, 922–929 (2009)PubMedCrossRefGoogle Scholar
  47. L. Smith, J.B. Smith, Regulation of sodium-calcium exchanger by glucocorticoids and growth factors in vascular smooth muscle. J. Biol. Chem. 269, 27527–27531 (1994)PubMedGoogle Scholar
  48. S. Taie, J. Ono, Y. Iwanaga, S. Tomita, T. Asaga, K. Chujo, M. Ueki, Hypoxia-inducible factor-1 alpha has a key role in hypoxic preconditioning. J. Clin. Neurosci. 16, 1056–1060 (2009)PubMedCrossRefGoogle Scholar
  49. K. Tanimoto, Y. Makino, T. Pereira, L. Poellinger, Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 19, 4298–4309 (2000)PubMedCrossRefGoogle Scholar
  50. V. Valsecchi, G. Pignataro, A. Del Prete, R. Sirabella, C. Matrone, F. Boscia, A. Scorziello, M.J. Sisalli, E. Esposito, N. Zambrano, G. Di Renzo, L. Annunziato, NCX1 is a novel target gene for hypoxia-inducible factor-1 in ischemic brain preconditioning. Stroke 42, 754–763 (2011)PubMedCrossRefGoogle Scholar
  51. G.L. Wang, G.L. Semenza, Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268, 21513–21518 (1993)PubMedGoogle Scholar
  52. L. Yu, R.A. Colvin, Regional differences in expression of transcripts for Na+/Ca2+ exchanger isoforms in rat brain. Brain Res. Mol. Brain Res. 50, 285–292 (1997)PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Valeria Valsecchi
    • 1
  • Giuseppe Pignataro
    • 1
  • Rossana Sirabella
    • 2
  • Carmela Matrone
    • 1
  • Francesca Boscia
    • 1
  • Antonella Scorziello
    • 1
  • Maria Josè Sisalli
    • 1
  • Elga Esposito
    • 1
  • Nicola Zambrano
    • 3
  • Mauro Cataldi
    • 1
  • Gianfranco Di Renzo
    • 1
  • Lucio Annunziato
    • 1
    Email author
  1. 1.Division of Pharmacology, Department of Neuroscience, School of Medicine“Federico II” University of NaplesNaplesItaly
  2. 2.Fondazione IRCCS SDNNaplesItaly
  3. 3.Department of Biochemistry and Medical Biotechnology“Federico II” University of NaplesNaplesItaly

Personalised recommendations