Skip to main content

Metabolic Spinal Disorders in the Young Athlete

  • Chapter
  • First Online:
Spinal Injuries and Conditions in Young Athletes

Abstract

The most important clinical consequences of metabolic spinal diseases in children and adolescents include bone deformations, decreased linear growth, and non-traumatic fractures leading to bone pain and disability. The abnormal bone morphology, mineralization, or microarchitecture of vertebrae can lead to poor mechanical properties and bone failure under loads experienced during athletics. In this chapter, we review basic bone physiology and growth, and discuss various metabolic bone diseases in children. These include primary and secondary osteoporosis, hormonal abnormalities, nutritional deficiencies, and other genetic bone diseases. When a patient presents with spinal pain, a detailed history and physical exam are an essential component of the workup to lead to a correct diagnosis. The presenting visit is also an excellent time to screen for potential risk factors for overall poor skeletal health; thus, reviewing physical activity, nutritional requirements, and hormonal balance is important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson JC, Netter FH. Netter’s concise orthopaedic anatomy. 2nd Ed. Philadelphia, PA: Saunders Elsevier; 2010. pp. x, 404.

    Google Scholar 

  2. Truumees E, Hilibrand A, Vaccaro AR. Percutaneous vertebral augmentation. Spine J. 2004;4(2):218–29.

    Article  PubMed  Google Scholar 

  3. Bailey DA, et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14(10):1672–9.

    Article  PubMed  CAS  Google Scholar 

  4. Bianchi ML. Osteoporosis in children and adolescents. Bone. 2007;41(4):486–95.

    Article  PubMed  Google Scholar 

  5. Mosekilde L, Mosekilde L. Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone. 1990;11(2):67–73.

    Article  PubMed  CAS  Google Scholar 

  6. Mora S, Gilsanz V. Establishment of peak bone mass. Endocrinol Metab Clin North Am. 2003;32(1):39–63.

    Article  PubMed  Google Scholar 

  7. Mellman MF, et al. Differential diagnosis of back and lower extremity problems. In: Watkins RG, Editor. The spine in sports. St. Louis: Mosby; 1996. pp. xxi, 657.

    Google Scholar 

  8. Emons J, et al. Mechanisms of growth plate maturation and epiphyseal fusion. Horm Res Paediatr. 2011;75(6):383–91.

    Article  PubMed  CAS  Google Scholar 

  9. Carani C, et al. Effect of testosterone and estradiol in a man with aromatase deficiency. N Engl J Med. 1997;337(2):91–5.

    Article  PubMed  CAS  Google Scholar 

  10. Veldhuis JD, et al. Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev. 2005;26(1):114–46.

    Article  PubMed  CAS  Google Scholar 

  11. Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88.

    Article  PubMed  CAS  Google Scholar 

  12. Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Kronenberg H, Williams RH, Editors. Williams textbook of endocrinology. Philadelphia, PA: Saunders/Elsevier; 2008. pp. 1203–1268.

    Google Scholar 

  13. Russell M, Misra M. Influence of ghrelin and adipocytokines on bone mineral density in adolescent female athletes with amenorrhea and eumenorrheic athletes. Med Sport Sci. 2010;55:103–13.

    Article  PubMed  CAS  Google Scholar 

  14. Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. PM R. 2011;3(9):861–7.

    Article  PubMed  Google Scholar 

  15. Ma NS, Gordon CM. Pediatric osteoporosis: where are we now? J Pediatr. 2012;161(6):983–90.

    Article  PubMed  Google Scholar 

  16. Nattiv A, et al. American College of Sports Medicine position stand. The female athlete triad. Med Sci Sports Exerc. 2007;39(10):1867–82.

    Article  PubMed  Google Scholar 

  17. Christo K, et al. Bone metabolism in adolescent athletes with amenorrhea, athletes with eumenorrhea, and control subjects. Pediatrics. 2008;121(6):1127–36.

    Article  PubMed  Google Scholar 

  18. Nazem TG, Ackerman KE. The female athlete triad. Sports Health. 2012;4(4):302–11.

    Article  PubMed  Google Scholar 

  19. Keen AD, Drinkwater BL. Irreversible bone loss in former amenorrheic athletes. Osteoporos Int. 1997;7(4):311–5.

    Article  PubMed  CAS  Google Scholar 

  20. Ruda JM, Hollenbeak CS, Stack BC Jr. A systematic review of the diagnosis and treatment of primary hyperparathyroidism from 1995 to 2003. Otolaryngol Head Neck Surg. 2005;132(3):359–72.

    Google Scholar 

  21. Khosla S, et al. Primary hyperparathyroidism and the risk of fracture: a population-based study. J Bone Miner Res. 1999;14(10):1700–7.

    Article  PubMed  CAS  Google Scholar 

  22. Silverberg SJ, et al. Abnormalities in parathyroid hormone secretion and 1,25-dihydroxyvitamin D3 formation in women with osteoporosis. N Engl J Med. 1989;320(5):277–81.

    Article  PubMed  CAS  Google Scholar 

  23. Khan AA, et al. Alendronate in primary hyperparathyroidism: a double-blind, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2004;89(7):3319–25.

    Article  PubMed  CAS  Google Scholar 

  24. Britto JM, et al. Osteoblasts mediate thyroid hormone stimulation of osteoclastic bone resorption. Endocrinology. 1994;134(1):169–76.

    Article  PubMed  CAS  Google Scholar 

  25. Wexler JA, Sharretts J. Thyroid and bone. Endocrinol Metab Clin North Am. 2007;36(3):673–705, vi.

    Google Scholar 

  26. American Academy of Pediatrics, Committee on Nutrition, Kleinman RE. Pediatric nutrition handbook. 4th Ed. Elk Grove Village, IL: The Academy; 1998. pp. xxvi, 833.

    Google Scholar 

  27. Alman BA, Howard AW. Metabolic and Endocrine Abnormalities. In: Lovell WW, et al. Editors. Lovell and Winter’s pediatric orthopaedics. Philadelphia: Lippincott Williams & Wilkins; 2006. pp. 168–203.

    Google Scholar 

  28. Fleisch H. New bisphosphonates in osteoporosis. Osteoporos Int. 1993;3(Suppl 2):S15–22.

    Google Scholar 

  29. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  PubMed  CAS  Google Scholar 

  30. LaBotz M. Sports Nutrition. In: Harris SS, et al. Editors. Care of the young athlete. Elk Grove Village, IL: American Academy of Pediatrics; 2010. pp. 71–80.

    Google Scholar 

  31. Weng FL, et al. Risk factors for low serum 25-hydroxyvitamin D concentrations in otherwise healthy children and adolescents. Am J Clin Nutr. 2007;86(1):150–8.

    PubMed  CAS  Google Scholar 

  32. Jones A, Rezet B. Nutritional Deficiencies. In: Florin TA, Netter FH, Editors. Netter’s pediatrics. Philadelphia: Elsevier Saunders; 2011. pp. 97–101.

    Google Scholar 

  33. Holick MF, et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  PubMed  CAS  Google Scholar 

  34. Thakker RV. Primer on the metabolic bone diseases and disorders of mineral metabolism. In: Favus MJ, American Society for Bone and Mineral Research, Editors. Primer on the metabolic bone diseases and disorders of mineral metabolism. Washington DC: American Society for Bone and Mineral Research; 2006. p. 213.

    Google Scholar 

  35. Chan FK, et al. Increased bone mineral density in patients with chronic hypoparathyroidism. J Clin Endocrinol Metab. 2003;88(7):3155–9.

    Article  PubMed  CAS  Google Scholar 

  36. Bergada I, et al. Kenny syndrome: description of additional abnormalities and molecular studies. Hum Genet. 1988;80(1):39–42.

    Article  PubMed  CAS  Google Scholar 

  37. National Institutes of Health (U.S.), O.o.D.S. Dietary Supplement Fact Sheet: Calcium. Available from: http://www.ods.od.nih/gov/factsheets/Calcium-HealthProfessional.

    Google Scholar 

  38. Lotz M, Zisman E, Bartter FC. Evidence for a phosphorus-depletion syndrome in man. N Engl J Med. 1968;278(8):409–15.

    Article  PubMed  CAS  Google Scholar 

  39. Singhal PC, et al. Prevalence and predictors of rhabdomyolysis in patients with hypophosphatemia. Am J Med. 1992;92(5):458–64.

    Article  PubMed  CAS  Google Scholar 

  40. Brodsky J, Levine MA. Disorders of calcium and bone metabolism. In: Florin TA, Ludwig S, Netter FH, Editors. Netter’s pediatrics. Philadelphia, Pa.: Elsevier Saunders; 2011. pp. 429–435.

    Google Scholar 

  41. Center, N.I.o.H.U.S.O.a.R.B.D.N.R. Juvenile osteoporosis. 2012 [cited 2103 January 8]; Available from: http://www.niams.nih.gov/Health_Info/Bone/Bone_Health/Juvenile/juvenile_osteoporosis.asp.

  42. Byers PH, Cole WG. Osteogenesis Imperfecta. In: Royce PM, Steinmann BU, Editors. Connective tissue and its heritable disorders: molecular, genetic, and medical aspects. New York: Wiley-Liss; 2002. pp. 385–430.

    Google Scholar 

  43. Ward LM, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. 2011;96(2):355–64.

    Article  PubMed  CAS  Google Scholar 

  44. Yuan PS. Primary benign tumors. In: Bono CM, Garfin SR, Editors. Orthopaedic surgery essentials: spine. Philadelphia: Lippincott Williams & Wilkins; 2004. pp. 86–91.

    Google Scholar 

  45. Baren JM. Pediatric emergency medicine. Philadelphia: Saunders/ Elsevier; 2006. pp. xxxi, 1320.

    Google Scholar 

  46. Levine D. The painful low back. New York: PW Communications, Inc.; 1979. p. 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn E. Ackerman MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brown, N., Ackerman, K. (2014). Metabolic Spinal Disorders in the Young Athlete. In: Micheli, L., Stein, C., O'Brien, M., d’Hemecourt, P. (eds) Spinal Injuries and Conditions in Young Athletes. Contemporary Pediatric and Adolescent Sports Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4753-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4753-5_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4752-8

  • Online ISBN: 978-1-4614-4753-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics