Skip to main content

Role of Jasmonates in Plant Adaptation to Stress

  • Chapter
  • First Online:
Ecophysiology and Responses of Plants under Salt Stress

Abstract

Jasmonic acid and methyl jasmonate are naturally growth regulators widely distributed in plants. They are involved in the regulation of a multitude of processes. The functional physiology underlying these phenomena is not yet clear, although there is increasing evidence that jasmonates may interconnect with the network of the classic plant growth regulators. This chapter discusses some aspects related to jasmonates in plants, such as chemical properties, synthesis pathways, biological functions, antioxidant action, physiological and biochemical changes that occur in plants under normal conditions and the possible functions of jasmonates under changing environmental conditions. The study summarises the impacts of jasmonates on plant growth and physiology, and how jasmonates may impact horticultural crop growth, physiology, protection from stresses. The role of jasmonates in improving physiological processes in some horticultural crops and ecological significance of these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

GA:

Gibberellic acid

JA:

Jasmonic acid

JAZ proteins:

Jasmonte-Zim proteins

MeJA:

Methyl ester of jasmonic acid

JIPs:

JA-induced proteins

PSII:

Photosystem II

ROS:

Reactive oxygen species

RuBPCase:

Ribulose-1,5- bisphosphate carboxylase

RuBPOase:

Ribulose-1,5- bisphosphate oxygenase

References

  • Aldridge DC, Galt S, Giles D, Turner WB (1971) Metabolites of Lasiodiplodia theobromae. J Chem Soc C Organ :1623–1627

    Google Scholar 

  • Ali MB, Hah EJ, Paek YK (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng. Bioreactor root suspension cultures. Mol 12(3):607–662

    CAS  Google Scholar 

  • Alvarez S, Zhu M, Chen S (2009) Proteomics of Arabidopsis redox proteins in response to methyl jasmonates. J Proteomics 73(1):30–40

    Article  PubMed  CAS  Google Scholar 

  • Andresen I, Becker W, Schlüter K, Burges J, Parthier B, Apel K (1992) The identification of leaf thionin as one of the main jasmonate-induced proteins of barley (Hordeum vulgare). Plant Mol Biol 19:193–204

    Article  PubMed  CAS  Google Scholar 

  • Babst BA, Ferrieri RA, Gray DW, Lerdau M, Schlyer DJ, Schueller M, Thorpe MR, Orian CM (2005) Jasmonic acid induces rapid changes in carbon transport and partitioning in Populus. New Phytol 167(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • Barendse GWM, Croes AF, Vandenende G, Bosveld M, Creemers T (1985) Role of hormones on flower bud formation in thin-layer explants of Tobacco. Biol Plantar 27:408–412

    Article  CAS  Google Scholar 

  • Bonaventure G, Gfeller A, Proebsting WM, Hoerstensteiner S, Chételat A, Martinoia E, Farmer EE (2007) A gain of function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. Plant J 49:889–898

    Article  PubMed  CAS  Google Scholar 

  • Brown AD, Goya IA, Larsen H, Lilley RMC (1987) A salt-sensitive mutant of Dunaliella tertiolecta. A role of carbonic anhydrase. Arch Microbiol 147:309–314

    Article  CAS  Google Scholar 

  • Chen H, Jones AD, Howe GA (2006a) Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett 580:2540–2546

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Yu S, Zhang Y (2006b) Effects of jasmonic acid and heat acclimation on thermotolerance and antioxidant enzymes of young grape plants. Life Sci Res 2006–03

    Google Scholar 

  • Chini AS, Fonseca S, Fernández G, Adie B, Chico JM, Lorenzo O, García-Casado G, López-Vidriero I, Lozano FM, Ponce MR, Mico JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  PubMed  CAS  Google Scholar 

  • Cipollini D (2005) Interactive effects of lateral shading and jasmonic acid on morphology, physiology, seed production, and defense traits in Arabidopsis thaliana. Int J Plant Sci 166:955–959

    Article  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92:4114–4119

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  PubMed  CAS  Google Scholar 

  • Czapski J, Saniewski M (1992) Stimulation of ethylene production and ethylene-forming enzyme activity in fruits of the non-ripening nor and rin tomato mutants by methyl jasmonate. J Plant Physiol 139:265–268

    Article  CAS  Google Scholar 

  • Darras AI, Terry LA, Joyce DC (2005) Methyl jasmonate vapour treatment suppresses specking caused by Botrytis cinerea on cut Freesia hybrida L. flowers. Postharvest Biol Technol 38(2):175–182

    Article  CAS  Google Scholar 

  • Dathe W, Rönsch H, Preiss A, Schade W (1981) Endogenous plant hormones of the broad bean, Vicia faba L. (−)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 153:530–535

    Article  CAS  Google Scholar 

  • Demole E, Lederer E, Miercier DE (1962) Isolement et détermination de la structure du jasmonate de méthyle, constituant odorant charactéristique de l’essence de jasmin. Helv Chim Acta 45:675–685

    Article  CAS  Google Scholar 

  • Ding CK, Wang CY, Gross KC, Smith DL (2001) Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Sci 161:1153–1159

    Article  CAS  Google Scholar 

  • Dombrowski JE (2003) Salt stress activation of wound-induced gene expression in tomato plants. Plant Physiol 132(4):2098–2107

    Article  PubMed  CAS  Google Scholar 

  • Fan XT, Mattheis JP, Fellman JK (1998) Responses of apples to postharvest jasmonate. J Am Soc Hortic Sci 123:421–425

    CAS  Google Scholar 

  • Farmer EE, Weber H, Vollenweider S (1998) Fatty acid signaling in Arabidopsis. Planta 206:167–175

    Article  PubMed  CAS  Google Scholar 

  • Fisher M, Gokhman I, Pick U, Zamir A (1996) A salt-resistant plasma membrane carbonic anhydrase is induced by salt in Dunaliella salina. J Biol Chem 271:17718–17723

    Article  PubMed  CAS  Google Scholar 

  • Franceschi VR, Grimes HD (1991) Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc Natl Acad Sci USA 88:6745–6749

    Article  PubMed  CAS  Google Scholar 

  • Franceschi VR, Krekling T, Christiansen E (2002) Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am J Bot 89:578–586

    Article  PubMed  CAS  Google Scholar 

  • Fukui H, Koshimizu K, Usuda S, Yamazaki Y (1977) Isolation of plant growth regulators from seeds of Cucurbita pepo L. Agric Biol Chem 41:175–180

    Article  CAS  Google Scholar 

  • Gapper NE, Norris GE, Clarke SF, Lill RE, Jameson PE (2002) Novel jasmonate amino acid conjugates in Asparagus officinalis during harvest-induced and natural foliar senescence. Physiol Plant 114:116–124

    Article  PubMed  CAS  Google Scholar 

  • Gehring CA, Irving HR, Mc Conchie R, Parish RW (1997) Jasmonates induce intracellular alkalization and closure of Paphiopedilum guard cell. Ann Bot 80:485–489

    Article  CAS  Google Scholar 

  • Gfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate biochemical pathway. Sci Signal 3:cm3

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Aguilar AB, Buta JG, Wang CY (2003) Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain postharvest quality of papaya Sunrise. Postharvest Biol Technol 28:361–370

    Article  CAS  Google Scholar 

  • González-Aguilar GA, Tiznado-Hernández M, Wang CY (2006) Physiological and biochemical responses of horticultural products to methyl jasmonate. Stewart Postharvest Solut 2(1):1–9

    Google Scholar 

  • González-Herranz R, Cathline KA, Fidelibus MW, Burns JK (2009) Potential of methyl jasmonate as a harvest aid for ‘Thompson Seedless’ grapes: concentration and time needed for consistent berry loosening. Hort Sci 44(5):1330–1333

    Google Scholar 

  • Hadian J, Zolfagharinasab Z (2007) Influence of methyl jasmonate on inducing chilling tolerance in pomegranate fruits (Malas Save). Pak J Biol Sci 10:612–616

    Article  PubMed  Google Scholar 

  • Hamberg M, Gardner HW (1992) Oxylipin pathway to jasmonates: biochemistry and biological significance. Biochim Biophys Acta 1165:1–18

    Article  PubMed  CAS  Google Scholar 

  • Hause B, Demus U, Teichmann C, Parthier B, Wasternack C (1996) Developmental and tissue-specific expression of JIP-23, a jasmonate-inducible protein of barley. Plant Cell Physiol 37:641–649

    Article  PubMed  CAS  Google Scholar 

  • Hause B, Kogel KH, Parthier B, Wasternack C (1997) In barley leaf cells, jasmonates do not act as a signal during compatible or incompatible interactions with the powdery mildew fungus (Erisiphe graminis f., sp. Hordei). J Plant Physiol 150:127–132

    Article  CAS  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D (2002) Induction of jasmonate biosynthesis in Arbuscular Mycorrhizal barley roots. Plant Physiol 130:1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Heijari J, Nerg AM, Kainulainen P, Viiri H, Vuorinen M, Holopainen JK (2005) Application of methyl jasmonate reduces growth but increases chemical defence and resistance against Hyloblus abietis in Scots pine seedlings. In: Proceedings of 12th international symposium of insect-plant relationships 11, Berlin, 7–14 Aug 2004, p 283

    Google Scholar 

  • Hristova VA, Popova LP (2002) Treatment with methyl jasmonate alleviates the effects of paraquat on photosynthesis in barley plants. Photosynthetica 40(4):567–574

    Article  CAS  Google Scholar 

  • Huang Y, Han C, Peng W, Peng Z, Xiong X, Zhu Q, Gao B, Xie D, Ren C (2010) Brassinosteroid negatively regulates jasmonate inhibition of root growth in Arabidopsis. Plant Signal Behav 5:140–142

    Article  PubMed  CAS  Google Scholar 

  • Jubany-Marí T, Prinsen E, Munné-Bosch S, Alegre L (2010) The timing of methyl jasmonate, hydrogen peroxide and ascorbate accumulation during water deficit and subsequent recovery in the Mediterranean shrub Cistus albidus L. Environ Exp Bot 69:147–155

    Article  CAS  Google Scholar 

  • Kang DJ, Seo YJ, Lee JD, Ishii R, Kim KU, Shin DH, Park SK, Jang SW, Lee IJ (2005) Jasmonic acid differentially affects growth, ion uptake and abscisic acid concentration in salt-tolerant and salt-sensitive rice cultivars. J Agron Crop Sci 191(4):273–282

    Article  CAS  Google Scholar 

  • Kausch KD, Sobolev AP, Goyal RK, Fatima T, Beevi LR, Saftner RA, Handa AK, Matoo AK (2012) Methyl jasmonate deficiency alters cellular metabolome, including the aminome of tomato (Solanum lycopersicum L.) fruits. Amino Acids 42:843–885

    Article  PubMed  CAS  Google Scholar 

  • Kauss H, Jublick W, Ziegler J, Krabler W (1994) Pretreatment of parsley (Petroselinum crispum L.) suspension cultures with methyl jasmonate enhances elicitation of activated oxygen species. Plant Physiol 105:89–94

    PubMed  CAS  Google Scholar 

  • Kępczyńska E, Paulina Król P (2011) The phytohormone methyl jasmonate as an activator of induced resistance against the necrotroph Alternaria porri f. sp. solani in tomato plants. J Plant Interac. doi:10.1080/17429145.2011.645169

  • Keramat B, Manouchehri KK, Arvin MJ (2010) Effect of methyl jasmonate treatment on alleviation of cadmium damages in soybean. J Plant Nutr 33(7):1016–1025

    Article  CAS  Google Scholar 

  • Kęsy J, Wilmowicz E, Maciejewska B, Frankowski K, Glazińska P, Kopcewicz J (2011) Independent effects of jasmonates and ethylene on inhibition of Pharbitis nil flowering. Acta Physiol Plant 33:1211–1216

    Article  CAS  Google Scholar 

  • Kim EH, Park SH, Kim JK (2009) Methyl jasmonate triggers loss of grain yield under drought stress. Plant Signal Behav 4(4):348–349

    Article  PubMed  CAS  Google Scholar 

  • Kiribuchi K, Jikumaru Y, Kaku H, Minami E, Hasegawa M, Kodama O, Seto H, Okada K, Nojiri H, Yamane H (2005) Involvement of the basic helix-loop-helix transcription factor RERJ1 in wounding and drought stress responses in rice plants. Biosci Biotechnol Biochem 69:1042–1044

    Article  PubMed  CAS  Google Scholar 

  • Knöfel HD, Sembdner G (1995) Jasmonates from pine pollen. Phytochemistry 38:569–571

    Article  Google Scholar 

  • Koda Y (1992) The role of jasmonic acid and related compounds in the regulation of plant development. Int Rev Cytol 135:155–199

    Article  PubMed  CAS  Google Scholar 

  • Koda Y (1997) Possible involvement of jasmonates in various morphogenic events. Physiol Plant 100(3):639–646

    Article  CAS  Google Scholar 

  • Krajncic B, Kristl J, Janzekovic I (2006) Possible role of jasmonic acid in the regulation of floral induction, evocation and floral differentiation in Lemna minor L. Plant Physiol Biochem 44:752–758

    Article  PubMed  CAS  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000) Octadecanoid-derived alteration of gene expression and the “oxylipin signature” in stressed barley leaves: implications for different signaling pathways. Plant Physiol 123:177–186

    Article  PubMed  CAS  Google Scholar 

  • Krzyzanowska J, Czubacka A, Pecio L, Przybys M, Doroszewska T, Stochmal A, Oleszek W (2011) The effects of jasmonic acid and methyl jasmonate on rosmarinic acid production in Mentha  ×  piperita cell suspension cultures. Plant Cell Tissue Org Cult 108:73–81

    Article  CAS  Google Scholar 

  • Lannoo N, Peumans WP, Van Damme EJM (2006) The presence of jasmonate-inducible lectin genes in some but not all Nicotiana species explains a marked intragenus difference in plant responses to hormone treatment. J Exp Bot 57(12):3145–3155

    Article  PubMed  CAS  Google Scholar 

  • Larcher W (1995) Physiological plant ecology, 3rd edn. Springer, Berlin/Heidelberg/New York, pp 46–54

    Book  Google Scholar 

  • Latorella AH, Vadas RL (1973) Salinity adaptation by Dunaliella tertiolecta. I. Increases in carbonic anhydrase activity and evidence for a light-dependent Na+/H+ exchange. J Phycol 9:273–277

    CAS  Google Scholar 

  • Lee TM, Lur HS, Lin YH, Chu C (1996) Physiological and biochemical changes related to methyl jasmonate-induced chilling tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 19:65–74

    Article  CAS  Google Scholar 

  • Lehmann J, Atzorn R, Brückner C, Reinbothe S, Leopold J, Wasternack C, Parthier B (1995) Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. Planta 197:156–162

    Article  CAS  Google Scholar 

  • Liechti R, Farmer EE (2006) Jasmonate biochemical pathway. Sci STKE 322:1–3

    Google Scholar 

  • Lopez R, Dathe W, Bruckner C, Miersch O, Sembdner G (1987) Jasmonic acid in different parts of the developing soybean fruit. Biochem Physiol Pflanzen 182:195–201

    CAS  Google Scholar 

  • Maciejewska BD, Kesy J, Zielinska M, Kopcewicz J (2004) Jasmonates inhibit flowering in short-day plant Pharbitis nil. Plant Growth Regul 43:1–8

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162(12):1338–1346

    Article  PubMed  CAS  Google Scholar 

  • Maksymiek W, Krupa Z (2002) Jasmonic acid and heavy metals in Arabidopsis plants: a similar physiological response to both stressors? J Plant Physiol 159(5):509–515

    Article  Google Scholar 

  • Maksymiek W, Krupa Z (2006) The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Envirn Exp Bot 57(1–2):187–194

    Article  CAS  Google Scholar 

  • Maksymiek W, Krupa Z (2007) Effect of methyl jasmonate and excess cooper on leaf and root growth. Biol Plant 51(2):321–332

    Google Scholar 

  • Mansour N, Mimi Z, Harb J (2008) Stress imposed on broad bean (Vicia faba) plants irrigated with reclaimed wastewater mixed with brackish water through exogenous application of jasmonic acid. In: Al Baz I et al (eds) Efficient management of wastewater. Springer, Berlin/Heidelberg, pp 91–102

    Chapter  Google Scholar 

  • Maslenkova LT, Zanev Y, Popova LP (1990) Oxygen-evolving activity of thylakoids from barley plants cultivated on different concentrations of jasmonic acid. Plant Physiol 93:1316–1321

    Article  PubMed  CAS  Google Scholar 

  • Maslenkova LT, Miteva TS, Popova LP (1992) Changes in the polypeptide patterns of barley seedlings exposed to jasmonic acid and salinity. Plant Physiol 98:700–707

    Article  PubMed  CAS  Google Scholar 

  • Maslenkova L, Toncheva S, Zeinalov Y (1995) Effect of abscisic acid and jasmonic acid (or MeJA) on photosynthetic electron transport and oxygen evolving reactions in pea plants. Bulg J Plant Physiol 21(4):48–55

    CAS  Google Scholar 

  • Mathew R, Sankar PD (2012) Effect of methyl jasmonate and chitosan on growth characteristics of Ocimum basilicum L., Ocimum sanctum L. and Ocimum gratissimum L. cell suspension cultures. Afr J Biotechnol 11:4759–4766

    CAS  Google Scholar 

  • Maucher H, Hause B, Ziegler J, Wasternack C (2000) Allene oxidase syntheses of barley-tissues specific regulation in seedling development. Plant J 21:199–213

    Article  PubMed  CAS  Google Scholar 

  • Mei C, Qi M, Sheng G, Yang Y (2006) Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol Plant Microbe Interact 19:1127–1137

    Article  PubMed  CAS  Google Scholar 

  • Metodiev MV, Tsonev TD, Popova LP (1996) Effect of jasmonic acid on the stomatal and nonstomatal limitation of leaf photosynthesis in barley leaves. J Plant Growth Regul 15:75–80

    Article  CAS  Google Scholar 

  • Meyer M, Miersch O, Buttner C, Dathe W, Sembdner G (1984) Occurrence of the plant growth regulator jasmonic acid in plants. J Plant Growth Regul 3:1–8

    Article  CAS  Google Scholar 

  • Miersch O, Sembdner G, Schreiber K (1989) Occurrence of jasmonic acid analogues in Vicia faba. Phytochemistry 28:339–340

    Article  CAS  Google Scholar 

  • Moons A, Prinsen E, Bauw G, Montagu MV (1997) Antagonistic effects of abscisic acid and jasmonates on salt stress-inducible transcripts in rice roots. Plant Cell 9:2243–2259

    PubMed  CAS  Google Scholar 

  • Mueller-Uri F, Parthier B, Nover L (1988) Jasmonates induced alterations in gene expression in barley leaf segments analyzed by in vivo and in vitro protein synthesis. Planta 176:241–247

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 3:645–663

    Article  CAS  Google Scholar 

  • Nimitkeatkai H, Shishido M, Okawa K, Ohara H, Ban Y, Kita M, Moriguchi T, Ikeura H, Hayata Y, Kondo S (2011) Effect of jasmonates on ethylene biosynthesis and aroma volatile emission in Japanese apricot infected by a pathogen (Colletotrichum gloeosporioides). J Agric Food Chem 59(12):6423–6429

    Article  PubMed  CAS  Google Scholar 

  • Norastehnia A, Asghari MN (2006) Effects of methyl jasmonate on the enzymatic antioxidant defense system in maize seedlings subjected to paraquat. Asian J Plant Sci 5:17–23

    Article  CAS  Google Scholar 

  • Orozco-Cárdenas S, Ryan CA (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoic pathway. Proc Nat Acad Sci USA 96:6553–6557

    Article  PubMed  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    PubMed  Google Scholar 

  • Ortel B, Atzorn R, Hause B, Feussner I, Miersh O, Wasternack C (1999) Jasmonate-induced gene expression in barley (Hordeum vulgare) leaves, the link between jasmonate and abscisic acid. Plant Growth Regul 29:113–122

    Article  CAS  Google Scholar 

  • Pan RC, Dou ZJ, Ye QS (1995) Effect of methyl jasmonate on SOD activity and membrane lipid peroxidation in peanut seedlings during water stress. Acta Phytophysiol Sinica 21(3):221–228

    CAS  Google Scholar 

  • Parra-Lobato MC, Garcia NF, Olmos E, Alvarez-Tinaut AC, Jimenez MCG (2009) Methyl jasmonate-induced antioxidant defence in root apoplast from sunflower seedlings. Environ Exp Bot 66(1):9–17

    Article  CAS  Google Scholar 

  • Parthier B (1989) Hormone-induced alterations in gene expression. Physiol Pflanzen 185:289–314

    CAS  Google Scholar 

  • Parthier B (1991) Jasmonates, new regulators of plant growth and development: many facts and few hypothesis of their action. Bot Acta 104:446–454

    CAS  Google Scholar 

  • Parthier B, Bruckner C, Dathe W, Hause B, Herrmann HD, Knofel HM, Kramell J, Lehmann O, Miersch S, Reinbote G, Sembdner S, Vasternack U, Nieden Z (1992) Jasmonates: metabolism, biological activities and mode of action in senescence and stress responses. In: Regul Gr, Karssen CV, van Lon LC, Vreugdenhil D (eds) Progress in plant. Kluwer, Dordrecht, pp 276–285

    Google Scholar 

  • Patent: 1995012311, Natural suppression of sprouting in stored potatoes using jasmonates

    Google Scholar 

  • Pauwels L, Morreel K, Witte ED, Lammertyn F, Montagu MV, Boerjan W, Inzé D, Goossens A (2008) Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proc Natl Acad Sci USA 29:1380–1385

    Article  Google Scholar 

  • Pedranzani H, Racagni G, Alemano S, Miersch O, Ramírez I, Peña-Cortés H, Taleisnik E, Machado-Domenech E, Abdala G (2003) Salt tolerant tomato plants show increased levels of jasmonic acid. Plant Growth Regul 41:149–158

    Article  CAS  Google Scholar 

  • Pedranzani H, Sierra-de-Grado R, Vigliocco A, Miersch O, Abdala G (2007) Cold and water stresses produce changes in endogenous jasmonates in two populations of Pinus pinaster Ait. Plant Growth Regul 52:111–116

    Article  CAS  Google Scholar 

  • Pijaotrowska A, Bajgus A, Godlewska B, Caerpak Kaminska MR (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Walfia arrhiza (Lemnaceae). Environ Exp Bot 63(3):507–513

    Article  CAS  Google Scholar 

  • Popova LP, Maslenkova LT (1997) Involvement of jasmonic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. Recent Res Devel Plant Physiol 1:29–43

    Google Scholar 

  • Popova LP, Uzunova AN (1996) Changes in the chloroplasts ultrastructure of barley leaves under treatment with jasmonic acid. Photosynthetica 32(4):635–639

    CAS  Google Scholar 

  • Popova LP, Vaklinova SG (1988) Effect of jasmonic acid on the synthesis of ribulose-1,5-bisphosphate carboxylase-oxygenase in barley leaves. J Plant Physiol 133:210–215

    Article  CAS  Google Scholar 

  • Popova LP, Tsonev TD, Valklinova SG (1987) A possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves. Plant Physiol 83:824–828

    Article  Google Scholar 

  • Popova LP, Tsonev TD, Vaklinova SG (1988) Changes in some photosynthetic and photorespiratory properties in barley leaves after treatment with jasmonic acid. J Physiol Plant 69:161–166

    Google Scholar 

  • Popova LP, Lazova GH, Miteva TS (1991) Carbonic anhydrase activity in barley leaves after treatment with abscisic acid and jasmonic acid. Com Rend ABS 44(5):51–54

    CAS  Google Scholar 

  • Pozo MJ, van Loon LC, Pieterse MJ (2004) Jasmonates: signals in plant-microbe interactions. J Plant Growth Regul 23:211–222

    CAS  Google Scholar 

  • Radhika V, Kost C, Bolland W, Heil M (2010) The role of jasmonates on floral nectar secretion. PLoS One 5:e9265

    Article  PubMed  Google Scholar 

  • Raghavendra AS, Reddy KB (1987) Action of proline on stomata differs from that of abscisic acid, G-substances or methyl jasmonate. Plant Physiol 44:691–695

    Google Scholar 

  • Rakwal R, Tamogami S, Agrawal GK, Iwahashi H (2002) Octadecanoid signaling component “burst” in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochem Biophys Res Commun 295:1041–1045

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Parthier B (1992) Differential accumulation of methyl jasmonate-induced mRNAs in response to abscisic acid and desiccation in barley (Hordeum vulgare). Physiol plant 86:49–56

    Article  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Parthier B (1993) Methyl jasmonate represses translation initiation of a specific set of m RNAs in barley. Plant J 4:459–467

    Article  CAS  Google Scholar 

  • Reinbothe S, Reinbothe C, Lehmann J, Becker W, Apel K, Parthier B (1994a) JIP60, a methyl jasmonate-induced ribosome-inactivating protein involved in plant stress reactions. Proc Nat Acad Sci USA 91:7012–7016

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe S, Mollenhauer B, Reinbothe C (1994b) JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197–1209

    PubMed  CAS  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopatol 49:317–343

    Article  CAS  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    Article  PubMed  CAS  Google Scholar 

  • Saniewski M, Miszczak A, Kawa-Miszczak L, Wegrzynowicz-Lesiak E, Miyamoto K, Ueda J (1998) Effects of methyl jasmonate on anthocyanin accumulation, ethylene production, and CO2 evolution in uncooled and cooled tulip bulbs. J Plant Growth Regul 17:33–37

    Article  CAS  Google Scholar 

  • Saniewski A, Horbowicz M, Puchalski J, Ueda J (2003) Methyl jasmonate stimulates the formation and the accumulation of anthocyanin in Kalanchoe blossfeldiana. Acta Physiol Plant 25:143–149

    Article  CAS  Google Scholar 

  • Saniewski A, Horbowicz M, Puchalski J (2006) Induction of anthocyanins accumulation by methyl jasmonate in shoots of Crassula multicava Lam. Acta Agrobot 59:43–50

    Google Scholar 

  • Sasaki-Sekimoto Y, Taki N, Obayashi T, Aono M, Matsumoto F, Sakurai N, Suzuki H, Hirai MY, Noji M, Saito K, Masuda T, Takamiya K, Shibata D, Ohta H (2005) Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J 44:653–668

    Article  PubMed  CAS  Google Scholar 

  • See KS, Bhatt A, Keng CL (2011) Effect of sucrose and methyl jasmonate on biomass and anthocyanin production in cell suspension culture of Melastoma malabathricum (Melastomaceae). Rev Biol Trop 59(2):597–606

    PubMed  Google Scholar 

  • Sembdner G, Gross D (1986) Plant growth substances of plant and microbial origin. In: Bopp M (ed) Plant growth substances 1985. Springer, Berlin, pp 139–147

    Chapter  Google Scholar 

  • Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44:569–589

    Article  CAS  Google Scholar 

  • Seo HS, Song JT, Cheong JJ, Lee H, Lee YW, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant response. Proc Natl Acad Sci USA 98:4788–4793

    Article  PubMed  CAS  Google Scholar 

  • Sevillano L, Sanchez-Ballestra MT, Romojaro F, Flores FB (2010) Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. J Sci Food Agric 89:555–573

    Article  CAS  Google Scholar 

  • Shahzad AN, Pollman S, Schubert S (2009) Does jasmonic acid control the maize shoot growth during the first phase of salt stress? In: Proceedings of the international plant nutrition colloquium XVI, Department of Plant Sciences, UC Davis, pp 26–32

    Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defense hypothesis. Q Rev Biol 78:23–55

    Article  PubMed  Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    Article  PubMed  CAS  Google Scholar 

  • Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in a Arabidopsis thaliana mutants. Proc Natl Acad Sci USA 89:6837–6840

    Article  PubMed  CAS  Google Scholar 

  • Suhita D, Kolla VA, Vavasseur A, Raghavendra AS (2003) Different signaling pathways involved during the suppression of stomatal opening by methyl jasmonate or abscisic acid. Plant Sci 164:481–488

    Article  CAS  Google Scholar 

  • Suhita D, Agepati S, Raghavendra J, Kwak JM, Vavasseur A (2004) Cytoplasmic alkalinization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol 134:1536–1545

    Article  PubMed  CAS  Google Scholar 

  • Suza WP, Avila CA, Carruthers K, Kulkarni S, Goggin FL, Lorence A (2010) Exploring the impact of wounding and jasmonates on ascorbate metabolism. Plant Physiol Biochem 48(5):337–350

    Article  PubMed  CAS  Google Scholar 

  • Tamari G, Borochov A, Atzorn R, Weiss D (1995) Methyl jasmonate induces pigmentation and flavonoid gene expression in petunia corollas: in possible role in wound response. Physiol Plant 94:45–50

    Article  CAS  Google Scholar 

  • Tani T, Sobajima H, Okada K, Chujo T, Arimura S, Tsutumi N, Nishimura M, Seto H, Nojiri H, Yamane H (2008) Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice. Planta 227:517–526

    Article  CAS  Google Scholar 

  • Thines B, Katsir L, Melotto M, Niu Y (2007) JAZ repressor proteins are targets of the SCF (COI1) complex during jasmonate signalling. Nature 448:661–665

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckk IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Toteja N, Sopory SK (2008) Chemical signaling under abiotic stress environment in plants. Plant Signal Behav 3(8):525–536

    Article  PubMed  CAS  Google Scholar 

  • Truman W, Bennet MH, Kubigstelting I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104(3):1075–1080

    Article  PubMed  CAS  Google Scholar 

  • Tsonev TD, Lazova GN, Stoinova ZhG, Popova LP (1998) A possible role for jasmonic in adaptation of barley seedlings to salinity stress. J Plant Growth Regul 17:153–159

    Article  CAS  Google Scholar 

  • Ueda J, Kato J (1980) Isolation and identification of a senescence-promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249

    Article  PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75:458–461

    Article  PubMed  CAS  Google Scholar 

  • Vick BA, Zimmerman DC (1987) Oxidative systems for modifications of fatty acids: the lipoxygenase pathway. In: Stumpf PK, Con EE (eds) The biochemistry of plants: a comprehensive treatise, vol 9. Academic, Orlando, pp 53–90

    Google Scholar 

  • Vidhyavathi R, Sarada R (2011) Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis. Acta Physiol Plant 33(3):1043–1049

    Article  CAS  Google Scholar 

  • Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close TJ (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156

    Article  PubMed  CAS  Google Scholar 

  • Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Close TJ (2007) Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress. Plant Cell Environ 30:410–421

    Article  PubMed  CAS  Google Scholar 

  • Wang SY (1999) Methyl Jasmonates reduces water stress in strawberry. J Plant Growth Regul 18:127–134

    Article  PubMed  Google Scholar 

  • Wang CY, Buta JG (1994) Methyl jasmonate reduces chilling injury in Cucurbita pepo through its regulation of abscisic acid and polyamine levels. Environ Exp Bot 34:427–432

    Article  CAS  Google Scholar 

  • Wang JW, Wu JY (2005) Nitric oxide is involved in methyl jasmonate-Induced defense responses and secondary metabolism activities of Taxus cells. Plant Cell Physiol 46:923–930

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Mopper S, Hasenstein KH (2001) Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J Chem Ecol 27:327–342

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acids Res Mol Biol 72:165–221

    Article  CAS  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2:302–307

    Article  Google Scholar 

  • Weidhase RA, Lehmann J, Kramell HN, Sembdner G, Parthier B (1987) Degradation of ribulose-1, 5-bisphosphate carboxylase and chlorophyll in senescing barley leaf segments triggered by jasmonic acid and methyl ester and counteraction by cytokinin. Physiol Plant 69:161–166

    Article  CAS  Google Scholar 

  • Weiler EW, Albrecht T, Groth B, Xia ZQ, Luxem M, Li H, Andert L, Spengler P (1993) Evidence for the involvement of jasmonates and their octadecanoid precursors in the tendril coiling response of Bryonia dioica. Phytochemistry 32:591–600

    Article  CAS  Google Scholar 

  • Wilson C (2007) Effect of jasmonic acid on growth and ion relations of Oryza sativa L. grown under salinity stress. In: American Society of Agronomy Meetings, Paper number 3, pp 13–14

    Google Scholar 

  • Xiang BB, Zhu YR, Wang WJ, Bai YL, Wang Y (2011) Influence of methyl jasmonate on cell membrane permeability and ajmalicine accumulation in salt-stressed Catharanthus roseus suspension cells. In: International conference on Bioinformatics and Biomedical Engineering, (iCBBE) 2011, Wuhan, 10–12 May 2011, pp 1–4

    Google Scholar 

  • Yamane H, Abe H, Takahashi N (1982) Jasmonic acid and methyl jasmonate in pollens and anthers of three Camellia species. Plant Cell Physiol 23:1125–1127

    CAS  Google Scholar 

  • Yoon JY, Hamayun M, Lee SKIJ (2009) Methyl Jasmonate alleviated salinity stress in soybean. J Crop Sci Biotechnol 12(2):63–68

    Article  Google Scholar 

  • Yoshihara T, Omer ESA, Koshino H, Sakamura S, Kikuta Y, Koda Y (1989) Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem 53:2835–2837

    Article  CAS  Google Scholar 

  • Zeinalov Yu (1982) Existence of two different ways for oxygen evolution in photosynthesis and photosynthetic unit concept. Photosynthetica 16:27–35

    CAS  Google Scholar 

Download references

Acknowledgements

The author hereby thanks his colleagues Liliana Maslenkova, Tsonko Tsonev, Metodi Metodiev, and Zhivka Stoinova who have participated with their expert skills and helpful discussions through the numerous stages of the research over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Losanka P. Popova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Popova, L.P. (2013). Role of Jasmonates in Plant Adaptation to Stress. In: Ahmad, P., Azooz, M., Prasad, M. (eds) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4747-4_14

Download citation

Publish with us

Policies and ethics