Skip to main content

Cellular Protection Against the Antitumor Drug Bleomycin

  • Chapter
  • First Online:
  • 1225 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 72))

Abstract

Bleomycin is a small glycopeptide antibiotic used for treating specific types of cancers. The antitumor effect of bleomycin is due to its ability to bind to DNA and induce the formation of a variety of toxic DNA lesions via a free radical reactive complex. However, the chemotherapeutic potential of bleomycin is limited, as it causes pulmonary fibrosis and tumor resistance at high doses associated with membrane and DNA damage, respectively. Bleomycin has been extensively studied and the details of its chemical structure and modes of action are known, which provide a foundation towards improving its therapeutic value, as well as that of other model anticancer drugs. This chapter provides an overview of the structure of bleomycin and its deleterious effect on various cellular targets. In addition, several factors that could limit the genotoxicity of bleomycin are highlighted, although the most important of these involves a transporter that mediates uptake of bleomycin into the cells and DNA repair mechanisms. Thus, defects in this transporter would allow cancerous cells to evade the antitumor effects of bleomycin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Umezawa H (1965) Bleomycin and other antitumor antibiotics of high molecular weight. Antimicrob Agents Chemother 5:1079–1085

    PubMed  CAS  Google Scholar 

  2. Umezawa H, Maeda K, Takeuchi T, Okami Y (1966) New antibiotics, bleomycin A and B. J Antibiot (Tokyo) 19:200–209

    CAS  Google Scholar 

  3. Umezawa H, Ishizuka M, Maeda K, Takeuchi T (1967) Studies on bleomycin. Cancer 20:891–895

    Article  PubMed  CAS  Google Scholar 

  4. Umezawa H (1971) Natural and artificial bleomycins: chemistry and antitumor activities. Pure Appl Chem 28:665–680

    Article  PubMed  CAS  Google Scholar 

  5. Fisher LM, Kuroda R, Sakai TT (1985) Interaction of bleomycin A2 with deoxyribonucleic acid: DNA unwinding and inhibition of bleomycin-induced DNA breakage by cationic thiazole amides related to bleomycin A2. Biochemistry 24:3199–3207

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki H, Nagai K, Yamaki H, Tanaka N, Umezawa H (1968) Mechanism of action of bleomycin. Studies with the growing culture of bacterial and tumor cells. J Antibiot (Tokyo) 21:379–386

    Article  CAS  Google Scholar 

  7. Kanno T, Nakazawa T, Sugimoto T (1969) Study of bleomycin on brain tumors. 1. Inhibitory effect of bleomycin on cultured brain tumor cells. Seishin Igaku Kenkyusho Gyosekishu 16:23–31

    PubMed  CAS  Google Scholar 

  8. Terasima T, Umezawa H (1970) Lethal effect of bleomycin on cultured mammalian cells. J Antibiot (Tokyo) 23:300–304

    Article  CAS  Google Scholar 

  9. Ichikawa T, Nakano I, Hirokawa I (1969) Bleomycin treatment of the tumors of penis and scrotum. J Urol 102:699–707

    PubMed  CAS  Google Scholar 

  10. Oka S, Sato K, Nakai Y, Kurita K, Hashimoto K (1970) Treatment of lung cancer with bleomycin. II. Sci Rep Res Inst Tohoku Univ Med 17:77–91

    PubMed  CAS  Google Scholar 

  11. Terasima T, Yasukawa M, Umezawa H (1970) Breaks and rejoining of DNA in cultured mammalian cells treated with bleomycin. Gann 61:513–516

    PubMed  CAS  Google Scholar 

  12. Suzuki H, Nagai K, Akutsu E, Yamaki H, Tanaka N (1970) On the mechanism of action of bleomycin. Strand scission of DNA caused by bleomycin and its binding to DNA in vitro. J Antibiot (Tokyo) 23:473–480

    Article  CAS  Google Scholar 

  13. Haidle CW, Weiss KK, Mace ML Jr (1972) Induction of bacteriophage by bleomycin. Biochem Biophys Res Commun 48:1179–1184

    Article  PubMed  CAS  Google Scholar 

  14. Ferguson LR, Turner PM (1988) ‘Petite’ mutagenesis by anticancer drugs in Saccharomyces cerevisiae. Eur J Cancer Clin Oncol 24:591–596

    Article  PubMed  CAS  Google Scholar 

  15. Koy JF, Pleninger P, Wall L, Pramanik A, Martinez M, Moore CW (1995) Genetic changes and bioassays in bleomycin- and phleomycin-treated cells, and their relationship to chromosomal breaks. Mutat Res 336:19–27

    Article  PubMed  CAS  Google Scholar 

  16. Demopoulos NA, Stamatis ND, Yannopoulos G (1980) Induction of somatic and male crossing-over by bleomycin in Drosophila melanogaster. Mutat Res 78:347–351

    Article  PubMed  CAS  Google Scholar 

  17. Demopoulos NA, Kappas A, Pelecanos M (1982) Recombinogenic and mutagenic effects of the antitumor antibiotic bleomycin in Aspergillus nidulans. Mutat Res 102:51–57

    Article  PubMed  CAS  Google Scholar 

  18. Cederberg H, Ramel C (1989) Modifications of the effect of bleomycin in the somatic mutation and recombination test in Drosophila melanogaster. Mutat Res 214:69–80

    Article  PubMed  CAS  Google Scholar 

  19. Hoffmann GR, Colyer SP, Littlefield LG (1993) Induction of micronuclei by bleomycin in G0 human lymphocytes: I. Dose–response and distribution. Environ Mol Mutagen 21:130–135

    Article  PubMed  CAS  Google Scholar 

  20. Burger RM, Peisach J, Horwitz SB (1981) Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA. J Biol Chem 256:11636–11644

    PubMed  CAS  Google Scholar 

  21. Burger RM, Peisach J, Horwitz SB (1982) Stoichiometry of DNA strand scission and aldehyde formation by bleomycin. J Biol Chem 257:8612–8614

    PubMed  CAS  Google Scholar 

  22. Hecht SM (1986) DNA strand scission by activated bleomycin group antibiotics. Fed Proc 45:2784–2791

    PubMed  CAS  Google Scholar 

  23. Kane SA, Hecht SM (1994) Polynucleotide recognition and degradation by bleomycin. Prog Nucleic Acid Res Mol Biol 49:313–352

    Article  PubMed  CAS  Google Scholar 

  24. Hecht SM (2000) Bleomycin: new perspectives on the mechanism of action. J Nat Prod 63:158–168

    Article  PubMed  CAS  Google Scholar 

  25. Wharam MD, Phillips TL, Kane L, Utley JF (1973) Response of a murine solid tumor to in vivo combined chemotherapy and irradiation. Radiology 109:451–455

    PubMed  CAS  Google Scholar 

  26. Jani JP, Mistry JS, Morris G, Davies P, Lazo JS, Sebti SM (1992) In vivo circumvention of human colon carcinoma resistance to bleomycin. Cancer Res 52:2931–2937

    PubMed  CAS  Google Scholar 

  27. Povirk LF, Austin MJ (1991) Genotoxicity of bleomycin. Mutat Res 257:127–143

    Article  PubMed  CAS  Google Scholar 

  28. Lazo JS, Sebti SM, Schellens JH (1996) Bleomycin. Cancer Chemother Biol Response Modif 16:39–47

    PubMed  CAS  Google Scholar 

  29. Dorr RT (1992) Bleomycin pharmacology: mechanism of action and resistance, and clinical pharmacokinetics. Semin Oncol 19:3–8

    PubMed  CAS  Google Scholar 

  30. Sikic BI (1986) Biochemical and cellular determinants of bleomycin cytotoxicity. Cancer Surv 5:81–91

    PubMed  CAS  Google Scholar 

  31. Harrison JH Jr, Lazo JS (1987) High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis. J Pharmacol Exp Ther 243:1185–1194

    PubMed  CAS  Google Scholar 

  32. Ekimoto H, Takahashi K, Matsuda A, Takita T, Umezawa H (1985) Lipid peroxidation by bleomycin-iron complexes in vitro. J Antibiot (Tokyo) 38:1077–1082

    Article  CAS  Google Scholar 

  33. Wang Q, Wang Y, Hyde DM, Gotwals PJ, Lobb RR, Ryan ST, Giri SN (2000) Effect of antibody against integrin alpha4 on bleomycin-induced pulmonary fibrosis in mice. Biochem Pharmacol 60:1949–1958

    Article  PubMed  CAS  Google Scholar 

  34. Miyaki M, Ono T, Hori S, Umezawa H (1975) Binding of bleomycin to DNA in bleomycin-sensitive and -resistant rat ascites hepatoma cells. Cancer Res 35:2015–2019

    PubMed  CAS  Google Scholar 

  35. Akiyama S, Ikezaki K, Kuramochi H, Takahashi K, Kuwano M (1981) Bleomycin-resistant cells contain increased bleomycin-hydrolase activities. Biochem Biophys Res Commun 101:55–60

    Article  PubMed  CAS  Google Scholar 

  36. Morris G, Mistry JS, Jani JP, Mignano JE, Sebti SM, Lazo JS (1992) Neutralization of bleomycin hydrolase by an epitope-specific antibody. Mol Pharmacol 42:57–62

    PubMed  CAS  Google Scholar 

  37. Sebti SM, Jani JP, Mistry JS, Gorelik E, Lazo JS (1991) Metabolic inactivation: a mechanism of human tumor resistance to bleomycin. Cancer Res 51:227–232

    PubMed  CAS  Google Scholar 

  38. Urade M, Ogura T, Mima T, Matsuya T (1992) Establishment of human squamous carcinoma cell lines highly and minimally sensitive to bleomycin and analysis of factors involved in the sensitivity. Cancer 69:2589–2597

    Article  PubMed  CAS  Google Scholar 

  39. Oppenheimer NJ, Rodriguez LO, Hecht SM (1980) Metal binding to modified bleomycins. Zinc and ferrous complexes with an acetylated bleomycin. Biochemistry 19:4096–4103

    Article  PubMed  CAS  Google Scholar 

  40. Ehrenfeld GM, Rodriguez LO, Hecht SM, Chang C, Basus VJ, Oppenheimer NJ (1985) Copper(I)-bleomycin: structurally unique complex that mediates oxidative DNA strand scission. Biochemistry 24:81–92

    Article  PubMed  CAS  Google Scholar 

  41. Ehrenfeld GM, Shipley JB, Heimbrook DC, Sugiyama H, Long EC, van Boom JH, van der Marel GA, Oppenheimer NJ, Hecht SM (1987) Copper-dependent cleavage of DNA by bleomycin. Biochemistry 26:931–942

    Article  PubMed  CAS  Google Scholar 

  42. Levy MJ, Hecht SM (1988) Copper(II) facilitates bleomycin-mediated unwinding of plasmid DNA. Biochemistry 27:2647–2650

    Article  PubMed  CAS  Google Scholar 

  43. Petering DH, Mao Q, Li W, DeRose E, Antholine WE (1996) Metallobleomycin-DNA interactions: structures and reactions related to bleomycin-induced DNA damage. Met Ions Biol Syst 33:619–648

    PubMed  CAS  Google Scholar 

  44. Hoehn ST, Junker HD, Bunt RC, Turner CJ, Stubbe J (2001) Solution structure of co(iii)-bleomycin-ooh bound to a phosphoglycolate lesion containing oligonucleotide: implications for bleomycin-induced double-strand dna cleavage. Biochemistry 40:5894–5905

    Article  PubMed  CAS  Google Scholar 

  45. Oppenheimer NJ, Chang C, Rodriguez LO, Hecht SM (1981) Copper(I). bleomycin. A structurally unique oxidation-reduction active complex. J Biol Chem 256:1514–1517

    PubMed  CAS  Google Scholar 

  46. Sausville EA, Peisach J, Horwitz SB (1976) A role for ferrous ion and oxygen in the degradation of DNA by bleomycin. Biochem Biophys Res Commun 73:814–822

    Article  PubMed  CAS  Google Scholar 

  47. Sausville EA, Stein RW, Peisach J, Horwitz SB (1978) Properties and products of the degradation of DNA by bleomycin and iron(II). Biochemistry 17:2746–2754

    Article  PubMed  CAS  Google Scholar 

  48. Sausville EA, Peisach J, Horwitz SB (1978) Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry 17:2740–2746

    Article  PubMed  CAS  Google Scholar 

  49. Kane SA, Natrajan A, Hecht SM (1994) On the role of the bithiazole moiety in sequence-selective DNA cleavage by Fe.bleomycin. J Biol Chem 269:10899–10904

    PubMed  CAS  Google Scholar 

  50. Abraham AT, Zhou X, Hecht SM (1999) DNA cleavage by Fe(II). bleomycin conjugated to a solid support. J Am Chem Soc 121:1982–1983

    Article  CAS  Google Scholar 

  51. Aouida M, Leduc A, Poulin R, Ramotar D (2005) AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J Biol Chem 280:24267–24276

    Article  PubMed  CAS  Google Scholar 

  52. Leitheiser CJ, Rishel MJ, Wu X, Hecht SM (2000) Solid-phase synthesis of bleomycin group antibiotics. Elaboration of deglycobleomycin A(5). Org Lett 2:3397–3399

    Article  PubMed  CAS  Google Scholar 

  53. Burger RM (1998) Cleavage of nucleic acids by bleomycin. Chem Rev 98:1153–1169

    Article  PubMed  CAS  Google Scholar 

  54. Burger RM, Peisach J, Blumberg WE, Horwitz SB (1979) Iron-bleomycin interactions with oxygen and oxygen analogues. Effects on spectra and drug activity. J Biol Chem 254: 10906–10912

    PubMed  CAS  Google Scholar 

  55. Povirk LF, Wubter W, Kohnlein W, Hutchinson F (1977) DNA double-strand breaks and alkali-labile bonds produced by bleomycin. Nucleic Acids Res 4:3573–3580

    Article  PubMed  CAS  Google Scholar 

  56. Ekimoto H, Kuramochi H, Takahashi K, Matsuda A, Umezawa H (1980) Kinetics of the reaction of bleomycin-Fe(II)-O2 complex with DNA. J Antibiot (Tokyo) 33:426–434

    Article  CAS  Google Scholar 

  57. Burger RM, Berkowitz AR, Peisach J, Horwitz SB (1980) Origin of malondialdehyde from DNA degraded by Fe(II) x bleomycin. J Biol Chem 255:11832–11838

    PubMed  CAS  Google Scholar 

  58. Burger RM, Peisach J, Horwitz SB (1981) Mechanism of bleomycin action: in vitro studies. Life Sci 28:715–727

    Article  PubMed  CAS  Google Scholar 

  59. Worth L Jr, Frank BL, Christner DF, Absalon MJ, Stubbe J, Kozarich JW (1993) Isotope effects on the cleavage of DNA by bleomycin: mechanism and modulation. Biochemistry 32:2601–2609

    Article  PubMed  CAS  Google Scholar 

  60. Giloni L, Takeshita M, Johnson F, Iden C, Grollman AP (1981) Bleomycin-induced strand-scission of DNA. Mechanism of deoxyribose cleavage. J Biol Chem 256:8608–8615

    PubMed  CAS  Google Scholar 

  61. Dedon PC, Plastaras JP, Rouzer CA, Marnett LJ (1998) Indirect mutagenesis by oxidative DNA damage: formation of the pyrimidopurinone adduct of deoxyguanosine by base propenal. Proc Natl Acad Sci USA 95:11113–11116

    Article  PubMed  CAS  Google Scholar 

  62. Chaudhary AK, Nokubo M, Reddy GR, Yeola SN, Morrow JD, Blair IA, Marnett LJ (1994) Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science 265:1580–1582

    Article  PubMed  CAS  Google Scholar 

  63. Fink SP, Reddy GR, Marnett LJ (1997) Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proc Natl Acad Sci USA 94:8652–8657

    Article  PubMed  CAS  Google Scholar 

  64. Mao H, Schnetz-Boutaud NC, Weisenseel JP, Marnett LJ, Stone MP (1999) Duplex DNA catalyzes the chemical rearrangement of a malondialdehyde deoxyguanosine adduct. Proc Natl Acad Sci USA 96:6615–6620

    Article  PubMed  CAS  Google Scholar 

  65. Absalon MJ, Wu W, Kozarich JW, Stubbe J (1995) Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 2. Mechanism and dynamics. Biochemistry 34:2076–2086

    Article  PubMed  CAS  Google Scholar 

  66. Dedon PC, Goldberg IH (1992) Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chem Res Toxicol 5:311–332

    Article  PubMed  CAS  Google Scholar 

  67. Steighner RJ, Povirk LF (1990) Bleomycin-induced DNA lesions at mutational hot spots: implications for the mechanism of double-strand cleavage. Proc Natl Acad Sci USA 87:8350–8354

    Article  PubMed  CAS  Google Scholar 

  68. Onishi T, Iwata H, Takagi Y (1975) Effects of reducing and oxidizing agents on the action of bleomycin. J Biochem (Tokyo) 77:745–752

    CAS  Google Scholar 

  69. Burger RM, Peisach J, Horwitz SB (1982) Effects of O2 on the reactions of activated bleomycin. J Biol Chem 257:3372–3375

    PubMed  CAS  Google Scholar 

  70. Burger RM, Blanchard JS, Horwitz SB, Peisach J (1985) The redox state of activated bleomycin. J Biol Chem 260:15406–15409

    PubMed  CAS  Google Scholar 

  71. Templin J, Berry L, Lyman S, Byrnes RW, Antholine WE, Petering DH (1992) Properties of redox-inactivated bleomycins. In vitro DNA damage and inhibition of Ehrlich cell proliferation. Biochem Pharmacol 43:615–623

    Article  PubMed  CAS  Google Scholar 

  72. Absalon MJ, Kozarich JW, Stubbe J (1995) Sequence-specific double-strand cleavage of DNA by Fe-bleomycin. 1. The detection of sequence-specific double-strand breaks using hairpin oligonucleotides. Biochemistry 34:2065–2075

    Article  PubMed  CAS  Google Scholar 

  73. Povirk LF (1979) Catalytic release of deoxyribonucleic acid bases by oxidation and reduction of an iron.bleomycin complex. Biochemistry 18:3989–3995

    Article  PubMed  CAS  Google Scholar 

  74. Kuroda R, Shinomiya M, Otsuka M (1992) Origin of sequence specific cleavage of DNA by bleomycins. Nucleic Acids Symp Ser:9–10

    Google Scholar 

  75. Nightingale KP, Fox KR (1993) DNA structure influences sequence specific cleavage by bleomycin. Nucleic Acids Res 21:2549–2555

    Article  PubMed  CAS  Google Scholar 

  76. Kuroda R, Satoh H, Shinomiya M, Watanabe T, Otsuka M (1995) Novel DNA photocleaving agents with high DNA sequence specificity related to the antibiotic bleomycin A2. Nucleic Acids Res 23:1524–1530

    Article  PubMed  CAS  Google Scholar 

  77. Kane SA, Hecht SM, Sun JS, Garestier T, Helene C (1995) Specific cleavage of a DNA triple helix by FeII.bleomycin. Biochemistry 34:16715–16724

    Article  PubMed  CAS  Google Scholar 

  78. Mascharak PK, Sugiura Y, Kuwahara J, Suzuki T, Lippard SJ (1983) Alteration and activation of sequence-specific cleavage of DNA by bleomycin in the presence of the antitumor drug cis-diamminedichloroplatinum(II). Proc Natl Acad Sci USA 80:6795–6798

    Article  PubMed  CAS  Google Scholar 

  79. Hertzberg RP, Caranfa MJ, Hecht SM (1985) DNA methylation diminishes ­bleomycin-mediated strand scission. Biochemistry 24:5286–5289

    Article  PubMed  CAS  Google Scholar 

  80. Hertzberg RP, Caranfa MJ, Hecht SM (1988) Degradation of structurally modified DNAs by bleomycin group antibiotics. Biochemistry 27:3164–3174

    Article  PubMed  CAS  Google Scholar 

  81. Bennett RA, Swerdlow PS, Povirk LF (1993) Spontaneous cleavage of bleomycin-induced abasic sites in chromatin and their mutagenicity in mammalian shuttle vectors. Biochemistry 32:3188–3195

    Article  PubMed  CAS  Google Scholar 

  82. Dar ME, Jorgensen TJ (1995) Deletions at short direct repeats and base substitutions are characteristic mutations for bleomycin-induced double- and single-strand breaks, respectively, in a human shuttle vector system. Nucleic Acids Res 23:3224–3230

    Article  PubMed  CAS  Google Scholar 

  83. Pavon V, Esteve I, Guerrero R, Villaverde A, Gaju N (1995) Induced mutagenesis by bleomycin in the purple sulfur bacterium Thiocapsa roseopersicina. Curr Microbiol 30: 117–120

    Article  PubMed  CAS  Google Scholar 

  84. Steighner RJ, Povirk LF (1990) Effect of in vitro cleavage of apurinic/apyrimidinic sites on bleomycin-induced mutagenesis of repackaged lambda phage. Mutat Res 240:93–100

    Article  PubMed  CAS  Google Scholar 

  85. Tates AD, van Dam FJ, Natarajan AT, Zwinderman AH, Osanto S (1994) Frequencies of HPRT mutants and micronuclei in lymphocytes of cancer patients under chemotherapy: a prospective study. Mutat Res 307:293–306

    Article  PubMed  CAS  Google Scholar 

  86. Carter BJ, de Vroom E, Long EC, van der Marel GA, van Boom JH, Hecht SM (1990) Site-specific cleavage of RNA by Fe(II).bleomycin. Proc Natl Acad Sci USA 87:9373–9377

    Article  PubMed  CAS  Google Scholar 

  87. Huttenhofer A, Hudson S, Noller HF, Mascharak PK (1992) Cleavage of tRNA by Fe(II)-bleomycin. J Biol Chem 267:24471–24475

    PubMed  CAS  Google Scholar 

  88. Holmes CE, Hecht SM (1993) Fe.bleomycin cleaves a transfer RNA precursor and its “transfer DNA” analog at the same major site. J Biol Chem 268:25909–25913

    PubMed  CAS  Google Scholar 

  89. Hecht SM (1994) RNA degradation by bleomycin, a naturally occurring bioconjugate. Bioconjug Chem 5:513–526

    Article  PubMed  CAS  Google Scholar 

  90. Keck MV, Hecht SM (1995) Sequence-specific hydrolysis of yeast tRNA(Phe) mediated by metal-free bleomycin. Biochemistry 34:12029–12037

    Article  PubMed  CAS  Google Scholar 

  91. Morgan MA, Hecht SM (1994) Iron(II) bleomycin-mediated degradation of a DNA-RNA heteroduplex. Biochemistry 33:10286–10293

    Article  PubMed  CAS  Google Scholar 

  92. Holmes CE, Carter BJ, Hecht SM (1993) Characterization of iron (II).bleomycin-mediated RNA strand scission. Biochemistry 32:4293–4307

    Article  PubMed  CAS  Google Scholar 

  93. Holmes CE, Duff RJ, van der Marel GA, van Boom J, Hecht SM (1997) On the chemistry of RNA degradation by Fe.bleomycin. Bioorg Med Chem 5:1235–1248

    Article  PubMed  CAS  Google Scholar 

  94. Moore CW, Del Valle R, McKoy J, Pramanik A, Gordon RE (1992) Lesions and preferential initial localization of [S-methyl-3 H]bleomycin A2 on Saccharomyces cerevisiae cell walls and membranes. Antimicrob Agents Chemother 36:2497–2505

    Article  PubMed  CAS  Google Scholar 

  95. Beaudouin R, Lim ST, Steide JA, Powell M, McKoy J, Pramanik AJ, Johnson E, Moore CW, Lipke PN (1993) Bleomycin affects cell wall anchorage of mannoproteins in Saccharomyces cerevisiae. Antimicrob Agents Chemother 37:1264–1269

    Article  PubMed  CAS  Google Scholar 

  96. Lim ST, Jue CK, Moore CW, Lipke PN (1995) Oxidative cell wall damage mediated by bleomycin-Fe(II) in Saccharomyces cerevisiae. J Bacteriol 177:3534–3539

    PubMed  CAS  Google Scholar 

  97. Hay J, Shahzeidi S, Laurent G (1991) Mechanisms of bleomycin-induced lung damage. Arch Toxicol 65:81–94

    Article  PubMed  CAS  Google Scholar 

  98. Arndt D, Zeisig R, Bechtel D, Fichtner I (2001) Liposomal bleomycin: increased therapeutic activity and decreased pulmonary toxicity in mice. Drug Deliv 8:1–7

    Article  PubMed  CAS  Google Scholar 

  99. Pron G, Belehradek J Jr, Mir LM (1993) Identification of a plasma membrane protein that specifically binds bleomycin. Biochem Biophys Res Commun 194:333–337

    Article  PubMed  CAS  Google Scholar 

  100. Ramotar D (1997) The apurinic-apyrimidinic endonuclease IV family of DNA repair enzymes. Biochem Cell Biol 75:327–336

    PubMed  CAS  Google Scholar 

  101. Pron G, Mahrour N, Orlowski S, Tounekti O, Poddevin B, Belehradek J Jr, Mir LM (1999) Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochem Pharmacol 57:45–56

    Article  PubMed  CAS  Google Scholar 

  102. Genilloud O, Garrido MC, Moreno F (1984) The transposon Tn5 carries a bleomycin-resistance determinant. Gene 32:225–233

    Article  PubMed  CAS  Google Scholar 

  103. Collis CM, Hall RM (1985) Identification of a Tn5 determinant conferring resistance to phleomycins, bleomycins, and tallysomycins. Plasmid 14:143–151

    Article  PubMed  CAS  Google Scholar 

  104. Blot M, Meyer J, Arber W (1991) Bleomycin-resistance gene derived from the transposon Tn5 confers selective advantage to Escherichia coli K-12. Proc Natl Acad Sci USA 88:9112–9116

    Article  PubMed  CAS  Google Scholar 

  105. Semon D, Movva NR, Smith TF, el Alama M, Davies J (1987) Plasmid-determined bleomycin resistance in Staphylococcus aureus. Plasmid 17:46–53

    Article  PubMed  CAS  Google Scholar 

  106. Drocourt D, Calmels T, Reynes JP, Baron M, Tiraby G (1990) Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res 18:4009

    Article  PubMed  CAS  Google Scholar 

  107. Gennimata D, Davies J, Tsiftsoglou AS (1996) Bleomycin resistance in Staphylococcus aureus clinical isolates. J Antimicrob Chemother 37:65–75

    Article  PubMed  CAS  Google Scholar 

  108. Gatignol A, Baron M, Tiraby G (1987) Phleomycin resistance encoded by the ble gene from transposon Tn 5 as a dominant selectable marker in Saccharomyces cerevisiae. Mol Gen Genet 207:342–348

    Article  PubMed  CAS  Google Scholar 

  109. Dumas P, Bergdoll M, Cagnon C, Masson JM (1994) Crystal structure and site-directed mutagenesis of a bleomycin resistance protein and their significance for drug sequestering. EMBO J 13:2483–2492

    PubMed  CAS  Google Scholar 

  110. Hayes JD, Wolf CR (1990) Molecular mechanisms of drug resistance. Biochem J 272:281–295

    PubMed  CAS  Google Scholar 

  111. Maruyama M, Kumagai T, Matoba Y, Hayashida M, Fujii T, Hata Y, Sugiyama M (2001) Crystal structures of the transposon Tn5-carried bleomycin resistance determinant uncomplexed and complexed with bleomycin. J Biol Chem 276:9992–9999

    Article  PubMed  CAS  Google Scholar 

  112. Blot M, Heitman J, Arber W (1993) Tn5-mediated bleomycin resistance in Escherichia coli requires the expression of host genes. Mol Microbiol 8:1017–1024

    Article  PubMed  CAS  Google Scholar 

  113. Calcutt MJ, Schmidt FJ (1994) Bleomycin biosynthesis: structure of the resistance genes of the producer organism. Ann N Y Acad Sci 721:133–137

    Article  PubMed  CAS  Google Scholar 

  114. Sugiyama M, Kumagai T, Matsuo H, Bhuiyan MZ, Ueda K, Mochizuki H, Nakamura N, Davies JE (1995) Overproduction of the bleomycin-binding proteins from bleomycin-producing Streptomyces verticillus and a methicillin-resistant Staphylococcus aureus in Escherichia coli and their immunological characterisation. FEBS Lett 362:80–84

    Article  PubMed  CAS  Google Scholar 

  115. Umezawa H, Hori S, Sawa T, Yoshioka T, Takeuchi T (1974) A bleomycin-inactivating enzyme in mouse liver. J Antibiot (Tokyo) 27:419–424

    Article  CAS  Google Scholar 

  116. Sebti SM, Lazo JS (1988) Metabolic inactivation of bleomycin analogs by bleomycin hydrolase. Pharmacol Ther 38:321–329

    Article  PubMed  CAS  Google Scholar 

  117. Nishimura C, Suzuki H, Tanaka N, Yamaguchi H (1989) Bleomycin hydrolase is a unique thiol aminopeptidase. Biochem Biophys Res Commun 163:788–796

    Article  PubMed  CAS  Google Scholar 

  118. Lazo JS, Humphreys CJ (1983) Lack of metabolism as the biochemical basis of bleomycin-induced pulmonary toxicity. Proc Natl Acad Sci USA 80:3064–3068

    Article  PubMed  CAS  Google Scholar 

  119. Ferrando AA, Velasco G, Campo E, Lopez-Otin C (1996) Cloning and expression analysis of human bleomycin hydrolase, a cysteine proteinase involved in chemotherapy resistance. Cancer Res 56:1746–1750

    PubMed  CAS  Google Scholar 

  120. Jani JP, Mistry JS, Morris G, Lazo JS, Sebti SM (1992) In vivo sensitization of human lung carcinoma to bleomycin by the cysteine proteinase inhibitor E-64. Oncol Res 4:59–63

    PubMed  CAS  Google Scholar 

  121. Enenkel C, Wolf DH (1993) BLH1 codes for a yeast thiol aminopeptidase, the equivalent of mammalian bleomycin hydrolase. J Biol Chem 268:7036–7043

    PubMed  CAS  Google Scholar 

  122. Magdolen U, Muller G, Magdolen V, Bandlow W (1993) A yeast gene (BLH1) encodes a polypeptide with high homology to vertebrate bleomycin hydrolase, a family member of thiol proteinases. Biochim Biophys Acta 1171:299–303

    Article  PubMed  CAS  Google Scholar 

  123. Bromme D, Rossi AB, Smeekens SP, Anderson DC, Payan DG (1996) Human bleomycin hydrolase: molecular cloning, sequencing, functional expression, and enzymatic characterization. Biochemistry 35:6706–6714

    Article  PubMed  CAS  Google Scholar 

  124. O’Farrell PA, Gonzalez F, Zheng W, Johnston SA, Joshua-Tor L (1999) Crystal structure of human bleomycin hydrolase, a self-compartmentalizing cysteine protease. Structure 7:619–627

    Article  PubMed  Google Scholar 

  125. Pei Z, Calmels TP, Creutz CE, Sebti SM (1995) Yeast cysteine proteinase gene ycp1 induces resistance to bleomycin in mammalian cells. Mol Pharmacol 48:676–681

    PubMed  CAS  Google Scholar 

  126. Wang H, Ramotar D (2002) Cellular resistance to bleomycin in Saccharomyces cerevisiae is not affected by changes in bleomycin hydrolase levels. Biochem Cell Biol 80:789–796

    Article  PubMed  CAS  Google Scholar 

  127. Zheng W, Xu HE, Johnston SA (1997) The cysteine-peptidase bleomycin hydrolase is a member of the galactose regulon in yeast. J Biol Chem 272:30350–30355

    Article  PubMed  CAS  Google Scholar 

  128. Xu HE, Johnston SA (1994) Yeast bleomycin hydrolase is a DNA-binding cysteine protease. Identification, purification, biochemical characterization. J Biol Chem 269:21177–21183

    PubMed  CAS  Google Scholar 

  129. Joshua-Tor L, Xu HE, Johnston SA, Rees DC (1995) Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science 269:945–950

    Article  PubMed  CAS  Google Scholar 

  130. Zheng W, Johnston SA, Joshua-Tor L (1998) The unusual active site of Gal6/bleomycin hydrolase can act as a carboxypeptidase, aminopeptidase, and peptide ligase. Cell 93:103–109

    Article  PubMed  CAS  Google Scholar 

  131. Koldamova RP, Lefterov IM, DiSabella MT, Almonte C, Watkins SC, Lazo JS (1999) Human bleomycin hydrolase binds ribosomal proteins. Biochemistry 38:7111–7117

    Article  PubMed  CAS  Google Scholar 

  132. Schwartz DR, Homanics GE, Hoyt DG, Klein E, Abernethy J, Lazo JS (1999) The neutral cysteine protease bleomycin hydrolase is essential for epidermal integrity and bleomycin resistance. Proc Natl Acad Sci USA 96:4680–4685

    Article  PubMed  CAS  Google Scholar 

  133. Ratovitski T, Chighladze E, Waldron E, Hirschhorn RR, Ross CA (2011) Cysteine proteases bleomycin hydrolase and cathepsin Z mediate N-terminal proteolysis and toxicity of mutant huntingtin. J Biol Chem 286:12578–12589

    Article  PubMed  CAS  Google Scholar 

  134. Zimny J, Sikora M, Guranowski A, Jakubowski H (2006) Protective mechanisms against homocysteine toxicity: the role of bleomycin hydrolase. J Biol Chem 281:22485–22492

    Article  PubMed  CAS  Google Scholar 

  135. Suszynska J, Tisonczyk J, Lee HG, Smith MA, Jakubowski H (2010) Reduced homocysteine-thiolactonase activity in Alzheimer’s disease. J Alzheimers Dis 19:1177–1183

    PubMed  CAS  Google Scholar 

  136. Demple B, Harrison L (1994) Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem 63:915–948

    Article  PubMed  CAS  Google Scholar 

  137. Ramotar D, Popoff SC, Demple B (1991) Complementation of DNA repair-deficient Escherichia coli by the yeast Apn1 apurinic/apyrimidinic endonuclease gene. Mol Microbiol 5:149–155

    Article  PubMed  CAS  Google Scholar 

  138. Demple B, Johnson A, Fung D (1986) Exonuclease III and endonuclease IV remove 3′ blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc Natl Acad Sci USA 83:7731–7735

    Article  PubMed  CAS  Google Scholar 

  139. Levin JD, Johnson AW, Demple B (1988) Homogeneous Escherichia coli endonuclease IV. Characterization of an enzyme that recognizes oxidative damage in DNA. J Biol Chem 263:8066–8071

    PubMed  CAS  Google Scholar 

  140. Levin JD, Demple B (1996) In vitro detection of endonuclease IV-specific DNA damage formed by bleomycin in vivo. Nucleic Acids Res 24:885–889

    Article  PubMed  CAS  Google Scholar 

  141. Cunningham RP, Saporito SM, Spitzer SG, Weiss B (1986) Endonuclease IV (nfo) mutant of Escherichia coli. J Bacteriol 168:1120–1127

    PubMed  CAS  Google Scholar 

  142. Popoff SC, Spira AI, Johnson AW, Demple B (1990) Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proc Natl Acad Sci USA 87:4193–4197

    Article  PubMed  CAS  Google Scholar 

  143. Ramotar D, Popoff SC, Gralla EB, Demple B (1991) Cellular role of yeast Apn1 apurinic endonuclease/3′-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol Cell Biol 11:4537–4544

    PubMed  CAS  Google Scholar 

  144. Masson JY, Ramotar D (1996) The Saccharomyces cerevisiae IMP2 gene encodes a transcriptional activator that mediates protection against DNA damage caused by bleomycin and other oxidants. Mol Cell Biol 16:2091–2100

    PubMed  CAS  Google Scholar 

  145. Sander M, Ramotar D (1997) Partial purification of Pde1 from Saccharomyces cerevisiae: enzymatic redundancy for the repair of 3′-terminal DNA lesions and abasic sites in yeast. Biochemistry 36:6100–6106

    Article  PubMed  CAS  Google Scholar 

  146. Bennett RA (1999) The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis. Mol Cell Biol 19:1800–1809

    PubMed  CAS  Google Scholar 

  147. Johnson RE, Torres-Ramos CA, Izumi T, Mitra S, Prakash S, Prakash L (1998) Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev 12:3137–3143

    Article  PubMed  CAS  Google Scholar 

  148. Jilani A, Ramotar D, Slack C, Ong C, Yang XM, Scherer SW, Lasko DD (1999) Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem 274:24176–24186

    Article  PubMed  CAS  Google Scholar 

  149. Yang X, Tellier P, Masson JY, Vu T, Ramotar D (1999) Characterization of amino acid ­substitutions that severely alter the DNA repair functions of Escherichia coli endonuclease IV. Biochemistry 38:3615–3623

    Article  PubMed  CAS  Google Scholar 

  150. Vance JR, Wilson TE (2001) Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3′ phosphatases. Mol Cell Biol 21:7191–7198

    Article  PubMed  CAS  Google Scholar 

  151. Abe H, Wada M, Kohno K, Kuwano M (1994) Altered drug sensitivities to anticancer agents in radiation-sensitive DNA repair deficient yeast mutants. Anticancer Res 14:1807–1810

    PubMed  CAS  Google Scholar 

  152. Keszenman DJ, Salvo VA, Nunes E (1992) Effects of bleomycin on growth kinetics and survival of Saccharomyces cerevisiae: a model of repair pathways. J Bacteriol 174:3125–3132

    PubMed  CAS  Google Scholar 

  153. Resnick MA, Martin P (1976) The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet 143:119–129

    Article  PubMed  CAS  Google Scholar 

  154. Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329:131–134

    Article  PubMed  CAS  Google Scholar 

  155. Madura K, Prakash S, Prakash L (1990) Expression of the Saccharomyces cerevisiae DNA repair gene RAD6 that encodes a ubiquitin conjugating enzyme, increases in response to DNA damage and in meiosis but remains constant during the mitotic cell cycle. Nucleic Acids Res 18:771–778

    Article  PubMed  CAS  Google Scholar 

  156. He CH, Masson JY, Ramotar D (1996) A Saccharomyces cerevisiae phleomycin-sensitive mutant, ph140, is defective in the RAD6 DNA repair gene. Can J Microbiol 42:1263–1266

    Article  PubMed  CAS  Google Scholar 

  157. Mages GJ, Feldmann HM, Winnacker EL (1996) Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J Biol Chem 271:7910–7915

    Article  PubMed  CAS  Google Scholar 

  158. Feldmann H, Driller L, Meier B, Mages G, Kellermann J, Winnacker EL (1996) HDF2, the second subunit of the Ku homologue from Saccharomyces cerevisiae. J Biol Chem 271: 27765–27769

    Article  PubMed  CAS  Google Scholar 

  159. Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004

    Article  PubMed  CAS  Google Scholar 

  160. Aouida M, Leduc A, Wang H, Ramotar D (2004) Characterization of a transport and detoxification pathway for the antitumour drug bleomycin in Saccharomyces cerevisiae. Biochem J 384:47–58

    Article  PubMed  CAS  Google Scholar 

  161. Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, Chu AM, Giaever G, Prokisch H, Oefner PJ, Davis RW (2002) Systematic screen for human disease genes in yeast. Nat Genet 31:400–404

    PubMed  CAS  Google Scholar 

  162. Chang M, Bellaoui M, Boone C, Brown GW (2002) A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc Natl Acad Sci USA 99:16934–16939

    Article  PubMed  CAS  Google Scholar 

  163. Aouida M, Page N, Leduc A, Peter M, Ramotar D (2004) A genome-wide screen in Saccharomyces cerevisiae reveals altered transport as a mechanism of resistance to the anticancer drug bleomycin. Cancer Res 64:1102–1109

    Article  PubMed  CAS  Google Scholar 

  164. Berg K, Dietze A, Kaalhus O, Hogset A (2005) Site-specific drug delivery by photochemical internalization enhances the antitumor effect of bleomycin. Clin Cancer Res 11:8476–8485

    Article  PubMed  CAS  Google Scholar 

  165. van Roermund CW, Hettema EH, van den Berg M, Tabak HF, Wanders RJ (1999) Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. EMBO J 18:5843–5852

    Article  PubMed  Google Scholar 

  166. Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H (2002) Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem 277:36262–36271

    Article  PubMed  CAS  Google Scholar 

  167. Tamai I, Ohashi R, Nezu J, Yabuuchi H, Oku A, Shimane M, Sai Y, Tsuji A (1998) Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273:20378–20382

    Article  PubMed  CAS  Google Scholar 

  168. Einhorn LH (2002) Curing metastatic testicular cancer. Proc Natl Acad Sci USA 99: 4592–4595

    Article  PubMed  CAS  Google Scholar 

  169. Aouida M, Poulin R, Ramotar D (2010) The human carnitine transporter SLC22A16 mediates high affinity uptake of the anticancer polyamine analogue bleomycin-A5. J Biol Chem 285:6275–6284

    Article  PubMed  CAS  Google Scholar 

  170. Canellos GP (2004) Lymphoma: present and future challenges. Semin Hematol 41:26–31

    Article  PubMed  Google Scholar 

  171. Sato N, Ito K, Onogawa T, Akahira J, Unno M, Abe T, Niikura H, Yaegashi N (2007) Expression of organic cation transporter SLC22A16 in human endometria. Int J Gynecol Pathol 26:53–60

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dindial Ramotar Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ramotar, D., Aouida, M. (2013). Cellular Protection Against the Antitumor Drug Bleomycin. In: Panasci, L., Aloyz, R., Alaoui-Jamali, M. (eds) Advances in DNA Repair in Cancer Therapy. Cancer Drug Discovery and Development, vol 72. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4741-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4741-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4740-5

  • Online ISBN: 978-1-4614-4741-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics