Skip to main content

Important Roles of ERCC1 in DNA Repair and Targeted Therapy

  • Chapter
  • First Online:
Advances in DNA Repair in Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 72))

  • 1215 Accesses

Abstract

The ERCC1 protein (excision repair cross-complementing rodent repair deficiency, complementation group 1) forms a heterodimer with the Xeroderma pigmentosum group F (XPF) endonuclease (also known as ERCC4), and the heterodimeric endonuclease catalyzes the 5′ incision in the process of excising the DNA lesion. The ERCC1–XPF heterodimer has an important role in genome maintenance. While most of the DNA repair proteins function only in a specific repair pathway, ERCC1–XPF is involved in multiple DNA repair pathways and telomere maintenance, making this heterodimer not only an attractive therapeutic target, but also a biomarker to predict treatment outcome (Fig. 2.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tripsianes K et al (2005) The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair. Structure 13(12):1849–1858

    Article  PubMed  CAS  Google Scholar 

  2. Tsodikov OV et al (2005) Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc Natl Acad Sci USA 102(32):11236–11241

    Article  PubMed  CAS  Google Scholar 

  3. Enzlin JH, Scharer OD (2002) The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J 21(8):2045–2053

    Article  PubMed  CAS  Google Scholar 

  4. de Boer J, Hoeijmakers JH (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21(3):453–460

    Article  PubMed  Google Scholar 

  5. Cleaver JE, Lam ET, Revet I (2009) Disorders of nucleotide excision repair: the genetic and molecular basis of heterogeneity. Nat Rev Genet 10(11):756–768

    Article  PubMed  CAS  Google Scholar 

  6. Sargent RG et al (1997) Recombination-dependent deletion formation in mammalian cells deficient in the nucleotide excision repair gene ERCC1. Proc Natl Acad Sci USA 94(24):13122–13127

    Article  PubMed  CAS  Google Scholar 

  7. Adair GM et al (2000) Role of ERCC1 in removal of long non-homologous tails during targeted homologous recombination. EMBO J 19(20):5552–5561

    Article  PubMed  CAS  Google Scholar 

  8. Kuraoka I et al (2000) Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J Biol Chem 275(34):26632–26636

    Article  PubMed  CAS  Google Scholar 

  9. Fisher LA, Bessho M, Bessho T (2008) Processing of a psoralen DNA interstrand cross-link by XPF-ERCC1 complex in vitro. J Biol Chem 283(3):1275–1281

    Article  PubMed  CAS  Google Scholar 

  10. Zhu XD et al (2003) ERCC1/XPF removes the 3′ overhang from uncapped telomeres and represses formation of telomeric DNA-containing double minute chromosomes. Mol Cell 12(6):1489–1498

    Article  PubMed  CAS  Google Scholar 

  11. Munoz P et al (2005) XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 37(10):1063–1071

    Article  PubMed  CAS  Google Scholar 

  12. Siegel R et al (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61(4):212–236

    Article  PubMed  Google Scholar 

  13. Li F et al (2010) Association between polymorphisms of ERCC1 and XPD and clinical response to platinum-based chemotherapy in advanced non-small cell lung cancer. Am J Clin Oncol 33(5):489–494

    Article  PubMed  CAS  Google Scholar 

  14. Han JY et al (2011) DNA repair gene polymorphisms and benefit from gefitinib in never-smokers with lung adenocarcinoma. Cancer 117(14):3201–3208

    Article  PubMed  CAS  Google Scholar 

  15. Ren S et al (2010) High-level mRNA of excision repair cross-complementation group 1 gene is associated with poor outcome of platinum-based doublet chemotherapy of advanced nonsmall cell lung cancer patients. Cancer Invest 28(10):1078–1083

    Article  PubMed  CAS  Google Scholar 

  16. Holm B et al (2009) Different impact of excision repair cross-complementation group 1 on survival in male and female patients with inoperable non-small-cell lung cancer treated with carboplatin and gemcitabine. J Clin Oncol 27(26):4254–4259

    Article  PubMed  CAS  Google Scholar 

  17. Bepler G et al (2011) ERCC1 and RRM1 in the international adjuvant lung trial by automated quantitative in situ analysis. Am J Pathol 178(1):69–78

    Article  PubMed  Google Scholar 

  18. Reynolds C et al (2009) Randomized phase III trial of gemcitabine-based chemotherapy with in situ RRM1 and ERCC1 protein levels for response prediction in non-small-cell lung cancer. J Clin Oncol 27(34):5808–5815

    Article  PubMed  CAS  Google Scholar 

  19. Vilmar AC, Santoni-Rugiu E, Sorensen JB (2010) ERCC1 and histopathology in advanced NSCLC patients randomized in a large multicenter phase III trial. Ann Oncol 21(9):1817–1824

    Article  PubMed  CAS  Google Scholar 

  20. Knez L et al (2011) Predictive value of multidrug resistance proteins, topoisomerases II and ERCC1 in small cell lung cancer: a systematic review. Lung Cancer 72(3):271–279

    Article  PubMed  Google Scholar 

  21. Hoskins WJ et al (1994) The effect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol 170(4):974–979, discussion 979–980

    PubMed  CAS  Google Scholar 

  22. Ozols RF et al (2003) Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol 21(17):3194–3200

    Article  PubMed  CAS  Google Scholar 

  23. Krivak TC et al (2011) Single nucleotide polypmorphisms in ERCC1 are associated with disease progression, and survival in patients with advanced stage ovarian and primary peritoneal carcinoma; a Gynecologic Oncology Group study. Gynecol Oncol 122(1):121–126

    Article  PubMed  CAS  Google Scholar 

  24. Kang S et al (2006) Association between excision repair cross-complementation group 1 polymorphism and clinical outcome of platinum-based chemotherapy in patients with epithelial ovarian cancer. Exp Mol Med 38(3):320–324

    PubMed  CAS  Google Scholar 

  25. Smith S et al (2007) ERCC1 genotype and phenotype in epithelial ovarian cancer identify patients likely to benefit from paclitaxel treatment in addition to platinum-based therapy. J Clin Oncol 25(33):5172–5179

    Article  PubMed  CAS  Google Scholar 

  26. Krivak TC et al (2008) Relationship between ERCC1 polymorphisms, disease progression, and survival in the Gynecologic Oncology Group Phase III Trial of intraperitoneal versus intravenous cisplatin and paclitaxel for stage III epithelial ovarian cancer. J Clin Oncol 26(21):3598–3606

    Article  PubMed  CAS  Google Scholar 

  27. Darcy KM, Tian C, Reed E (2007) A Gynecologic Oncology Group study of platinum-DNA adducts and excision repair cross-complementation group 1 expression in optimal, stage III epithelial ovarian cancer treated with platinum-taxane chemotherapy. Cancer Res 67(9):4474–4481

    Article  PubMed  CAS  Google Scholar 

  28. Scheil-Bertram S et al (2010) Excision repair cross-complementation group 1 protein overexpression as a predictor of poor survival for high-grade serous ovarian adenocarcinoma. Gynecol Oncol 119(2):325–331

    Article  PubMed  CAS  Google Scholar 

  29. Steffensen KD, Waldstrom M, Jakobsen A (2009) The relationship of platinum resistance and ERCC1 protein expression in epithelial ovarian cancer. Int J Gynecol Cancer 19(5):820–825

    Article  PubMed  Google Scholar 

  30. Chua W et al (2009) Molecular markers of response and toxicity to FOLFOX chemotherapy in metastatic colorectal cancer. Br J Cancer 101(6):998–1004

    Article  PubMed  CAS  Google Scholar 

  31. Liang J et al (2010) The combination of ERCC1 and XRCC1 gene polymorphisms better predicts clinical outcome to oxaliplatin-based chemotherapy in metastatic colorectal cancer. Cancer Chemother Pharmacol 66(3):493–500

    Article  PubMed  CAS  Google Scholar 

  32. Fareed KR et al (2010) Tumour regression and ERCC1 nuclear protein expression predict clinical outcome in patients with gastro-oesophageal cancer treated with neoadjuvant chemotherapy. Br J Cancer 102(11):1600–1607

    Article  PubMed  CAS  Google Scholar 

  33. Maithel SK et al (2011) Differential expression of ERCC1 in pancreas adenocarcinoma: high tumor expression is associated with earlier recurrence and shortened survival after resection. Ann Surg Oncol 18:2699–2705

    Article  PubMed  Google Scholar 

  34. Hoffmann AC et al (2010) MDR1 and ERCC1 expression predict outcome of patients with locally advanced bladder cancer receiving adjuvant chemotherapy. Neoplasia 12(8):628–636

    PubMed  CAS  Google Scholar 

  35. Ko JC et al (2010) Emodin enhances cisplatin-induced cytotoxicity via down-regulation of ERCC1 and inactivation of ERK1/2. Lung Cancer 69(2):155–164

    Article  PubMed  Google Scholar 

  36. Ko JC et al (2011) Modulation of Rad51, ERCC1, and thymidine phosphorylase by emodin result in synergistic cytotoxic effect in combination with capecitabine. Biochem Pharmacol 81(5):680–690

    Article  PubMed  CAS  Google Scholar 

  37. Chen YY et al (2010) Emodin, aloe-emodin and rhein induced DNA damage and inhibited DNA repair gene expression in SCC-4 human tongue cancer cells. Anticancer Res 30(3):945–951

    PubMed  Google Scholar 

  38. Yacoub A et al (2003) Epidermal growth factor and ionizing radiation up-regulate the DNA repair genes XRCC1 and ERCC1 in DU145 and LNCaP prostate carcinoma through MAPK signaling. Radiat Res 159(4):439–452

    Article  PubMed  CAS  Google Scholar 

  39. Li XL et al (2010) The sequence-dependent cytotoxic effect of trastuzumab in combination with 5-Fluorouracil or cisplatin on gastric cancer cell lines. Cancer Invest 28(10):1038–1047

    Article  PubMed  CAS  Google Scholar 

  40. Guirouilh-Barbat J, Antony S, Pommier Y (2009) Zalypsis (PM00104) is a potent inducer of gamma-H2AX foci and reveals the importance of the C ring of trabectedin for transcription-coupled repair inhibition. Mol Cancer Ther 8(7):2007–2014

    Article  PubMed  CAS  Google Scholar 

  41. Soares DG et al (2011) Trabectedin and its C subunit modified analogue PM01183 attenuate nucleotide excision repair and show activity toward platinum-resistant cells. Mol Cancer Ther 10(8):1481–1489

    Article  PubMed  CAS  Google Scholar 

  42. Barakat KH et al (2009) Characterization of an inhibitory dynamic pharmacophore for the ERCC1-XPA interaction using a combined molecular dynamics and virtual screening approach. J Mol Graph Model 28(2):113–130

    Article  PubMed  CAS  Google Scholar 

  43. Orelli B et al (2010) The XPA-binding domain of ERCC1 is required for nucleotide excision repair but not other DNA repair pathways. J Biol Chem 285(6):3705–3712

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hu, J.J., de la Garza, J., Srinivasan, S.K., Kurian, A.A., Gong, F. (2013). Important Roles of ERCC1 in DNA Repair and Targeted Therapy. In: Panasci, L., Aloyz, R., Alaoui-Jamali, M. (eds) Advances in DNA Repair in Cancer Therapy. Cancer Drug Discovery and Development, vol 72. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4741-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4741-2_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4740-5

  • Online ISBN: 978-1-4614-4741-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics