Skip to main content

Telomeres, Telomerase, and DNA Damage Response in Cancer Therapy

  • Chapter
  • First Online:
  • 1299 Accesses

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 72))

Abstract

Faithful genome maintenance is essential to an organism’s growth and survival. To preserve genome fidelity, the DNA Damage Response (DDR) pathway has evolved to coordinate the surveillance and repair of genomic DNA, damaged by normal metabolic or environmental insults [1]. DDR surveillance mechanisms scan for discontinuities and structural changes in the DNA double helix. Upon detection of any damage to the DNA molecule, these surveillance sensors activate signal transduction cascades to amplify the damage signal, and coordinate the arrest of proliferation for proper DNA repair [1–4]. Alternatively, apoptosis may be initiated if repair is not possible. The abrupt termini of linear eukaryotic chromosomes pose specific challenges to DDR surveillance, as these natural ends are indistinguishable from damaged double-stranded DNA. In most eukaryotic organisms with linear chromosomes, phylogenetically conserved nucleoprotein structures, known as telomeres, differentiate chromosome ends from nonspecific DNA breaks [5–7]. Telomeres mask the ends of chromosomes from DDR surveillance sensors and protect the chromosome ends from inappropriate repair by DDR mechanisms [8].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461:1071–1078

    Article  PubMed  CAS  Google Scholar 

  2. You Z, Bailis JM (2010) DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol 20:402–409

    Article  PubMed  CAS  Google Scholar 

  3. Morrison C, Sonoda E, Takao N, Shinohara A, Yamamoto K, Takeda S (2000) The controlling role of ATM in homologous recombinational repair of DNA damage. EMBO J 19:463–471

    Article  PubMed  CAS  Google Scholar 

  4. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895

    Article  PubMed  CAS  Google Scholar 

  5. de Lange T (2002) Protection of mammalian telomeres. Oncogene 21:532–540

    Article  PubMed  Google Scholar 

  6. de Lange T (2004) T-loops and the origin of telomeres. Nat Rev Mol Cell Biol 5:323–329

    Article  PubMed  CAS  Google Scholar 

  7. de Lange T (2005) Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev 19:2100–2110

    Article  PubMed  CAS  Google Scholar 

  8. Blackburn EH (2001) Switching and signaling at the telomere. Cell 106:661–673

    Article  PubMed  CAS  Google Scholar 

  9. Chan CS, Tye BK (1983) Organization of DNA sequences and replication origins at yeast telomeres. Cell 33:563–573

    Article  PubMed  CAS  Google Scholar 

  10. Kipling D, Cooke HJ (1990) Hypervariable ultra-long telomeres in mice. Nature 347:400–402

    Article  PubMed  CAS  Google Scholar 

  11. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    Article  PubMed  CAS  Google Scholar 

  12. de Lange T, Shiue L, Myers RM, Cox DR, Naylor SL, Killery AM et al (1990) Structure and variability of human chromosome ends. Mol Cell Biol 10:518–527

    PubMed  Google Scholar 

  13. Moyzis RK, Buckingham JM, Cram LS, Dani M, Deaven LL, Jones MD et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85:6622–6626

    Article  PubMed  CAS  Google Scholar 

  14. Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666

    Article  PubMed  CAS  Google Scholar 

  15. McElligott R, Wellinger RJ (1997) The terminal DNA structure of mammalian chromosomes. EMBO J 16:3705–3714

    Article  PubMed  CAS  Google Scholar 

  16. Greider CW (1999) Telomeres do D-loop-T-loop. Cell 97:419–422

    Article  PubMed  CAS  Google Scholar 

  17. Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    Article  PubMed  CAS  Google Scholar 

  18. Klobutcher LA, Swanton MT, Donini P, Prescott DM (1981) All gene-sized DNA molecules in four species of hypotrichs have the same terminal sequence and an unusual 3′ terminus. Proc Natl Acad Sci USA 78:3015–3019

    Article  PubMed  CAS  Google Scholar 

  19. Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334

    Article  PubMed  CAS  Google Scholar 

  20. Bianchi A, Stansel RM, Fairall L, Griffith JD, Rhodes D, de Lange T (1999) TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J 18:5735–5744

    Article  PubMed  CAS  Google Scholar 

  21. Court R, Chapman L, Fairall L, Rhodes D (2005) How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures. EMBO Rep 6:39–45

    Article  PubMed  CAS  Google Scholar 

  22. Shay JW (1999) At the end of the millennium, a view of the end. Nat Genet 23:382–383

    Article  PubMed  CAS  Google Scholar 

  23. van Steensel B, de Lange T (1997) Control of telomere length by the human telomeric protein TRF1. Nature 385:740–743

    Article  PubMed  Google Scholar 

  24. Smogorzewska A, van Steensel B, Bianchi A, Oelmann S, Schaefer MR, Schnapp G et al (2000) Control of human telomere length by TRF1 and TRF2. Mol Cell Biol 20:1659–1668

    Article  PubMed  CAS  Google Scholar 

  25. Broccoli D, Smogorzewska A, Chong L, de Lange T (1997) Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet 17:231–235

    Article  PubMed  CAS  Google Scholar 

  26. Karlseder J, Broccoli D, Dai Y, Hardy S, de Lange T (1999) p53- and ATM- dependent apoptosis induced by telomeres lacking TRF2. Science 283:1321–1325

    Article  PubMed  CAS  Google Scholar 

  27. Stansel RM, de Lange T, Griffith JD (2001) T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J 20:5532–5540

    Article  PubMed  CAS  Google Scholar 

  28. Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–2449

    Article  PubMed  CAS  Google Scholar 

  29. Lei M, Podell ER, Cech TR (2004) Structure of human POT1 bound to telomeric single-stranded DNA provides a model for chromosome end-protection. Nat Struct Mol Biol 11:1223–1229

    Article  PubMed  CAS  Google Scholar 

  30. Loayza D, Parsons H, Donigian J, Hoke K, de Lange T (2004) DNA binding features of human POT1: a nonamer 5′-TAGGGTTAG-3′ minimal binding site, sequence specificity, and internal binding to multimeric sites. J Biol Chem 279:13241–13248

    Article  PubMed  CAS  Google Scholar 

  31. Flynn RL, Centore RC, O’Sullivan RJ, Rai R, Tse A, Songyang Z et al (2011) TERRA and hnRNPA1 orchestrate an RPA-to-POT1 switch on telomeric single-stranded DNA. Nature 471:532–536

    Article  PubMed  CAS  Google Scholar 

  32. Loayza D, De Lange T (2003) POT1 as a terminal transducer of TRF1 telomere length control. Nature 423:1013–1018

    Article  PubMed  CAS  Google Scholar 

  33. Colgin LM, Baran K, Baumann P, Cech TR, Reddel RR (2003) Human POT1 facilitates telomere elongation by telomerase. Curr Biol 13:942–946

    Article  PubMed  CAS  Google Scholar 

  34. Armbruster BN, Linardic CM, Veldman T, Bansal NP, Downie DL, Counter CM (2004) Rescue of an hTERT mutant defective in telomere elongation by fusion with hPot1. Mol Cell Biol 24:3552–3561

    Article  PubMed  CAS  Google Scholar 

  35. Wang F, Podell ER, Zaug AJ, Yang Y, Baciu P, Cech TR et al (2007) The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature 445:506–510

    Article  PubMed  CAS  Google Scholar 

  36. Xin H, Liu D, Wan M, Safari A, Kim H, Sun W et al (2007) TPP1 is a homologue of ciliate TEBP-beta and interacts with POT1 to recruit telomerase. Nature 445:559–562

    Article  PubMed  CAS  Google Scholar 

  37. O’Connor MS, Safari A, Xin H, Liu D, Songyang Z (2006) A critical role for TPP1 and TIN2 interaction in high-order telomeric complex assembly. Proc Natl Acad Sci USA 103: 11874–11879

    Article  PubMed  CAS  Google Scholar 

  38. Kim SH, Kaminker P, Campisi J (1999) TIN2, a new regulator of telomere length in human cells. Nat Genet 23:405–412

    Article  PubMed  CAS  Google Scholar 

  39. Liu D, O’Connor MS, Qin J, Songyang Z (2004) Telosome, a mammalian ­telomere-associated complex formed by multiple telomeric proteins. J Biol Chem 279:51338–51342

    Article  PubMed  CAS  Google Scholar 

  40. Ye JZ, de Lange T (2004) TIN2 is a tankyrase 1 PARP modulator in the TRF1 telomere length control complex. Nat Genet 36:618–623

    Article  PubMed  CAS  Google Scholar 

  41. Savage SA, Giri N, Baerlocher GM, Orr N, Lansdorp PM, Alter BP (2008) TINF2, a component of the shelterin telomere protection complex, is mutated in dyskeratosis congenita. Am J Hum Genet 82:501–509

    Article  PubMed  CAS  Google Scholar 

  42. Li B, Oestreich S, de Lange T (2000) Identification of human Rap1: implications for telomere evolution. Cell 101:471–483

    Article  PubMed  CAS  Google Scholar 

  43. Li B, de Lange T (2003) Rap1 affects the length and heterogeneity of human telomeres. Mol Biol Cell 14:5060–5068

    Article  PubMed  CAS  Google Scholar 

  44. Martinez P, Blasco MA (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11:161–176

    Article  PubMed  CAS  Google Scholar 

  45. Surovtseva YV, Churikov D, Boltz KA, Song X, Lamb JC, Warrington R et al (2009) Conserved telomere maintenance component 1 interacts with STN1 and maintains chromosome ends in higher eukaryotes. Mol Cell 36:207–218

    Article  PubMed  CAS  Google Scholar 

  46. Wellinger RJ, The CST (2009) complex and telomere maintenance: the exception becomes the rule. Mol Cell 36:168–169

    Article  PubMed  CAS  Google Scholar 

  47. Miyake Y, Nakamura M, Nabetani A, Shimamura S, Tamura M, Yonehara S et al (2009) RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol Cell 36:193–206

    Article  PubMed  CAS  Google Scholar 

  48. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M et al (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424

    Article  PubMed  CAS  Google Scholar 

  49. Garcia-Cao M, O’Sullivan R, Peters AH, Jenuwein T, Blasco MA (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat Genet 36:94–99

    Article  PubMed  CAS  Google Scholar 

  50. Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8: 299–309

    Article  PubMed  CAS  Google Scholar 

  51. Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38:5797–5806

    Article  PubMed  CAS  Google Scholar 

  52. Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28:2503–2510

    Article  PubMed  CAS  Google Scholar 

  53. Feuerhahn S, Iglesias N, Panza A, Porro A, Lingner J (2010) TERRA biogenesis, turnover and implications for function. FEBS Lett 584:3812–3818

    Article  PubMed  CAS  Google Scholar 

  54. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    Article  PubMed  CAS  Google Scholar 

  55. Smogorzewska A, de Lange T (2002) Different telomere damage signaling pathways in human and mouse cells. EMBO J 21:4338–4348

    Article  PubMed  CAS  Google Scholar 

  56. Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556

    Article  PubMed  CAS  Google Scholar 

  57. Wright WE, Shay JW (1992) The two-stage mechanism controlling cellular senescence and immortalization. Exp Gerontol 27:383–389

    Article  PubMed  CAS  Google Scholar 

  58. Hayflick L (1965) The limited in vitro lifetime of human diploid strains. Exptl Cell Res 37:614–636

    Article  PubMed  CAS  Google Scholar 

  59. Effros RB, Pawelec G (1997) Replicative senescence of T cells: does the Hayflick limit lead to immune exhaustion? Immunol Today 18:450–454

    Article  PubMed  CAS  Google Scholar 

  60. Shay JW, Wright WE (2000) Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1:72–76

    Article  PubMed  CAS  Google Scholar 

  61. Fleisig HB, Wong JM (2007) Telomerase as a clinical target: current strategies and potential applications. Exp Gerontol 42:102–112

    Article  PubMed  CAS  Google Scholar 

  62. Rajaraman S, Choi J, Cheung P, Beaudry V, Moore H, Artandi SE (2007) Telomere uncapping in progenitor cells with critical telomere shortening is coupled to S-phase progression in vivo. Proc Natl Acad Sci USA 104:17747–17752

    Article  PubMed  CAS  Google Scholar 

  63. Wright WE, Shay JW (1992) Telomere positional effects and the regulation of cellular senescence. Trends Genet 8:193–197

    Article  PubMed  CAS  Google Scholar 

  64. Chan SS, Chang S (2010) Defending the end zone: studying the players involved in protecting chromosome ends. FEBS Lett 584:3773–3778

    Article  PubMed  CAS  Google Scholar 

  65. Tejera AM, Alcontres M, Thanasoula M, Marion RM, Martinez P, Liao C et al (2010) TPP1 is required for TERT recruitment, telomere elongation during nuclear reprogramming, and normal skin development in mice. Dev Cell 18:775–789

    Article  PubMed  CAS  Google Scholar 

  66. Sfeir A, Kabir S, van Overbeek M, Celli GB, de Lange T (2010) Loss of Rap1 induces telomere recombination in the absence of NHEJ or a DNA damage signal. Science 327:1657–1661

    Article  PubMed  CAS  Google Scholar 

  67. Hockemeyer D, Daniels JP, Takai H, de Lange T (2006) Recent expansion of the telomeric complex in rodents: two distinct POT1 proteins protect mouse telomeres. Cell 126:63–77

    Article  PubMed  CAS  Google Scholar 

  68. Hockemeyer D, Sfeir AJ, Shay JW, Wright WE, de Lange T (2005) POT1 protects telomeres from a transient DNA damage response and determines how human chromosomes end. EMBO J 24:2667–2678

    Article  PubMed  CAS  Google Scholar 

  69. Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448:1068–1071

    Article  PubMed  CAS  Google Scholar 

  70. Lavin MF (2008) Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol 9:759–769

    Article  PubMed  CAS  Google Scholar 

  71. He H, Wang Y, Guo X, Ramchandani S, Ma J, Shen MF et al (2009) Pot1b deletion and telomerase haploinsufficiency in mice initiate an ATR-dependent DNA damage response and elicit phenotypes resembling dyskeratosis congenita. Mol Cell Biol 29:229–240

    Article  PubMed  CAS  Google Scholar 

  72. Cimprich KA, Cortez D (2008) ATR: an essential regulator of genome integrity. Nat Rev Mol Cell Biol 9:616–627

    Article  PubMed  CAS  Google Scholar 

  73. Pandita TK (2001) The role of ATM in telomere structure and function. Radiat Res 156: 642–647

    Article  PubMed  CAS  Google Scholar 

  74. Pandita TK (2002) ATM function and telomere stability. Oncogene 21:611–618

    Article  PubMed  CAS  Google Scholar 

  75. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI et al (2004) Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res 64:9152–9159

    Article  PubMed  CAS  Google Scholar 

  76. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D et al (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36:877–882

    Article  PubMed  CAS  Google Scholar 

  77. Crabbe L, Jauch A, Naeger CM, Holtgreve-Grez H, Karlseder J (2007) Telomere dysfunction as a cause of genomic instability in Werner syndrome. Proc Natl Acad Sci USA 104:2205–2210

    Article  PubMed  CAS  Google Scholar 

  78. Verdun RE, Crabbe L, Haggblom C, Karlseder J (2005) Functional human telomeres are recognized as DNA damage in G2 of the cell cycle. Mol Cell 20:551–561

    Article  PubMed  CAS  Google Scholar 

  79. Verdun RE, Karlseder J (2006) The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127:709–720

    Article  PubMed  CAS  Google Scholar 

  80. Mitchell JR, Cheng J, Collins K (1999) A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol 19:567–576

    PubMed  CAS  Google Scholar 

  81. Dragon F, Pogacic V, Filipowicz W (2000) In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol Cell Biol 20:3037–3048

    Article  PubMed  CAS  Google Scholar 

  82. Wang C, Meier UT (2004) Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J 23:1857–1867

    Article  PubMed  CAS  Google Scholar 

  83. Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE et al (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17:498–502

    Article  PubMed  CAS  Google Scholar 

  84. Harrington L (2003) Biochemical aspects of telomerase function. Cancer Lett 194:139–154

    Article  PubMed  CAS  Google Scholar 

  85. Wong JM, Kusdra L, Collins K (2002) Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nat Cell Biol 4:731–736

    Article  PubMed  CAS  Google Scholar 

  86. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Chiu CP et al (1995) The RNA component of human telomerase. Science 269:1236–1241

    Article  PubMed  CAS  Google Scholar 

  87. Zaug AJ, Linger J, Cech TR (1996) Method for determining RNA 3′ ends and application to human telomerase RNA. Nucleic Acids Res 24:532–533

    Article  PubMed  CAS  Google Scholar 

  88. Zhao JQ, Hoare SF, McFarlane R, Muir S, Parkinson EK, Black DM et al (1998) Cloning and characterization of human and mouse telomerase RNA gene promoter sequences. Oncogene 16:1345–1350

    Article  PubMed  CAS  Google Scholar 

  89. Fu D, Collins K (2003) Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol Cell 11:1361–1372

    Article  PubMed  CAS  Google Scholar 

  90. Chen JL, Blasco MA, Greider CW (2000) Secondary structure of vertebrate telomerase RNA. Cell 100:503–514

    Article  PubMed  CAS  Google Scholar 

  91. Dez C, Henras A, Faucon B, Lafontaine DLJ, Caizergues-Ferrer M, Henry Y (2001) Stable expression in yeast of the mature form of human telomerase RNA depends of its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucleic Acids Res 29:598–603

    Article  PubMed  CAS  Google Scholar 

  92. Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007) Protein composition of catalytically active human telomerase from immortal cells. Science 315: 1850–1853

    Article  PubMed  CAS  Google Scholar 

  93. Fu D, Collins K (2007) Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell 28:773–785

    Article  PubMed  CAS  Google Scholar 

  94. Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21:564–579

    Article  PubMed  CAS  Google Scholar 

  95. Heiss NS, Knight SW, Vulliamy TJ, Klauck SM, Wiemann S, Mason PJ et al (1998) X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat Genet 19:32–38

    Article  PubMed  CAS  Google Scholar 

  96. Mitchell JR, Wood E, Collins K (1999) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402:551–555

    Article  PubMed  CAS  Google Scholar 

  97. Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ et al (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413:432–435

    Article  PubMed  CAS  Google Scholar 

  98. Wong JM, Collins K (2003) Telomere maintenance and disease. Lancet 362:983–988

    Article  PubMed  CAS  Google Scholar 

  99. Le S, Sternglanz R, Greider CW (2000) Identification of two RNA-binding proteins associated with human telomerase RNA. Mol Biol Cell 11:999–1010

    PubMed  CAS  Google Scholar 

  100. Fu D, Collins K (2006) Human telomerase and Cajal body ribonucleoproteins share a unique specificity of Sm protein association. Genes Dev 20:531–536

    Article  PubMed  CAS  Google Scholar 

  101. Jady BE, Bertrand E, Kiss T (2004) Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J Cell Biol 164:647–652

    Article  PubMed  CAS  Google Scholar 

  102. Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD et al (2009) A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis. Science 323:644–648

    Article  PubMed  CAS  Google Scholar 

  103. Cong YS, Wen J, Bacchetti S (1999) The human telomerase catalytic subunit hTERT: organization of the gene and characterization of the promoter. Hum Mol Genet 8:137–142

    Article  PubMed  CAS  Google Scholar 

  104. Wick M, Zubov D, Hagen G (1999) Genomic organization and promoter characterization of the gene encoding the human telomerase reverse transcriptase (hTERT). Gene 232:97–106

    Article  PubMed  CAS  Google Scholar 

  105. Horikawa I, Cable PL, Afshari C, Barrett JC (1999) Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 59:826–830

    PubMed  CAS  Google Scholar 

  106. Wu KJ, Grandori C, Amacker M, Simon-Vermot N, Polack A, Lingner J et al (1999) Direct activation of TERT transcription by c-MYC. Nat Genet 21:220–224

    Article  PubMed  CAS  Google Scholar 

  107. Yi X, White DM, Aisner DL, Baur JA, Wright WE, Shay JW (2000) An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia 2:433–440

    Article  PubMed  CAS  Google Scholar 

  108. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Caddle SD et al (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90:785–795

    Article  PubMed  CAS  Google Scholar 

  109. Yang J, Chang E, Cherry AM, Bangs CD, Oei Y, Bodnar A et al (1999) Human endothelial cell life extension by telomerase expression. J Biol Chem 274:26141–26148

    Article  PubMed  CAS  Google Scholar 

  110. Holt SE, Aisner DL, Baur J, Tesmer VM, Dy M, Ouellette M et al (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 13:817–826

    Article  PubMed  CAS  Google Scholar 

  111. Kelleher C, Teixeira MT, Forstemann K, Lingner J (2002) Telomerase: biochemical considerations for enzyme and substrate. Trends Biochem Sci 27:572–579

    Article  PubMed  CAS  Google Scholar 

  112. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    PubMed  CAS  Google Scholar 

  113. Harrington L, Zhou W, McPhail T, Oulton R, Yeung DS, Mar V et al (1997) Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev 11:3109–3115

    Article  PubMed  CAS  Google Scholar 

  114. Lingner J, Hughes TR, Shevchenko A, Mann M, Lundblad V, Cech TR (1997) Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567

    Article  PubMed  CAS  Google Scholar 

  115. Beattie TL, Zhou W, Robinson MO, Harrington L (1998) Reconstitution of human telomerase activity in vitro. Curr Biol 8:177–180

    Article  PubMed  CAS  Google Scholar 

  116. Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Nakamura H et al (1998) Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet 18:65–68

    Article  PubMed  CAS  Google Scholar 

  117. Xia J, Peng Y, Mian IS, Lue NF (2000) Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol Cell Biol 20:5196–5207

    Article  PubMed  CAS  Google Scholar 

  118. Bryan TM, Goodrich KJ, Cech TR (2000) A mutant of Tetrahymena telomerase reverse transcriptase with increased processivity. J Biol Chem 275:24199–24207

    Article  PubMed  CAS  Google Scholar 

  119. Bosoy D, Peng Y, Mian IS, Lue NF (2003) Conserved N-terminal motifs of telomerase reverse transcriptase required for ribonucleoprotein assembly in vivo. J Biol Chem 278: 3882–3890

    Article  PubMed  CAS  Google Scholar 

  120. Lai CK, Mitchell JR, Collins K (2001) RNA binding domain of telomerase reverse transcriptase. Mol Cell Biol 21:990–1000

    Article  PubMed  CAS  Google Scholar 

  121. Moriarty TJ, Huard S, Dupuis S, Autexier C (2002) Functional multimerization of human telomerase requires an RNA interaction domain in the N terminus of the catalytic subunit. Mol Cell Biol 22:1253–1265

    Article  PubMed  CAS  Google Scholar 

  122. Lue NF (2004) Adding to the ends: what makes telomerase processive and how important is it? Bioessays 26:955–962

    Article  PubMed  CAS  Google Scholar 

  123. Armbruster BN, Banik SS, Guo C, Smith AC, Counter CM (2001) N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol Cell Biol 21: 7775–7786

    Article  PubMed  CAS  Google Scholar 

  124. Lee SR, Wong JM, Collins K (2003) Human telomerase reverse transcriptase motifs required for elongation of a telomeric substrate. J Biol Chem 278:52531–52536

    Article  PubMed  CAS  Google Scholar 

  125. Moriarty TJ, Ward RJ, Taboski MA, Autexier C (2005) An anchor site-type defect in human telomerase that disrupts telomere length maintenance and cellular immortalization. Mol Biol Cell 16:3152–3161

    Article  PubMed  CAS  Google Scholar 

  126. Bachand F, Autexier C (2001) Functional regions of human telomerase reverse transcriptase and human telomerase RNA required for telomerase activity and RNA-protein interactions. Mol Cell Biol 21:1888–1897

    Article  PubMed  CAS  Google Scholar 

  127. Hossain S, Singh S, Lue NF (2002) Functional analysis of the C-terminal extension of telomerase reverse transcriptase. A putative “thumb” domain. J Biol Chem 277:36174–36180

    Article  PubMed  CAS  Google Scholar 

  128. Huard S, Moriarty TJ, Autexier C (2003) The C terminus of the human telomerase reverse transcriptase is a determinant of enzyme processivity. Nucleic Acids Res 31:4059–4070

    Article  PubMed  CAS  Google Scholar 

  129. Aitken A (2006) 14-3-3 proteins: a historic overview. Semin Cancer Biol 16:162–172

    Article  PubMed  CAS  Google Scholar 

  130. Khurts S, Masutomi K, Delgermaa L, Arai K, Oishi N, Mizuno H et al (2004) Nucleolin interacts with telomerase. J Biol Chem 279:51508–51515

    Article  PubMed  CAS  Google Scholar 

  131. Zhou XZ, Lu KP (2001) The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107:347–359

    Article  PubMed  CAS  Google Scholar 

  132. Banik SS, Counter CM (2004) Characterization of interactions between PinX1 and human telomerase subunits hTERT and hTR. J Biol Chem 279:51745–51748

    Article  PubMed  CAS  Google Scholar 

  133. Li H, Zhao L, Yang Z, Funder JW, Liu JP (1998) Telomerase is controlled by protein kinase Calpha in human breast cancer cells. J Biol Chem 273:33436–33442

    Article  PubMed  CAS  Google Scholar 

  134. Kang SS, Kwon T, Kwon DY, Do SI (1999) Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 274:13085–13090

    Article  PubMed  CAS  Google Scholar 

  135. Breitschopf K, Zeiher AM, Dimmeler S (2001) Pro-atherogenic factors induce telomerase inactivation in endothelial cells through an Akt-dependent mechanism. FEBS Lett 493:21–25

    Article  PubMed  CAS  Google Scholar 

  136. Haendeler J, Hoffmann J, Rahman S, Zeiher AM, Dimmeler S (2003) Regulation of telomerase activity and anti-apoptotic function by protein-protein interaction and phosphorylation. FEBS Lett 536:180–186

    Article  PubMed  CAS  Google Scholar 

  137. Li H, Zhao LL, Funder JW, Liu JP (1997) Protein phosphatase 2A inhibits nuclear telomerase activity in human breast cancer cells. J Biol Chem 272:16729–16732

    Article  PubMed  CAS  Google Scholar 

  138. Kharbanda S, Kumar V, Dhar S, Pandey P, Chen C, Majumder P et al (2000) Regulation of the hTERT telomerase catalytic subunit by the c-Abl tyrosine kinase. Curr Biol 10: 568–575

    Article  PubMed  CAS  Google Scholar 

  139. Kim JH, Park SM, Kang MR, Oh SY, Lee TH, Muller MT et al (2005) Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes Dev 19:776–781

    Article  PubMed  CAS  Google Scholar 

  140. Huber O, Menard L, Haurie V, Nicou A, Taras D, Rosenbaum J (2008) Pontin and reptin, two related ATPases with multiple roles in cancer. Cancer Res 68:6873–6876

    Article  PubMed  CAS  Google Scholar 

  141. Venteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE (2008) Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 132: 945–957

    Article  PubMed  CAS  Google Scholar 

  142. Zhu Y, Tomlinson RL, Lukowiak AA, Terns RM, Terns MP (2004) Telomerase RNA accumulates in Cajal bodies in human cancer cells. Mol Biol Cell 15:81–90

    Article  PubMed  CAS  Google Scholar 

  143. Tomlinson RL, Ziegler TD, Supakorndej T, Terns RM, Terns MP (2006) Cell cycle-regulated trafficking of human telomerase to telomeres. Mol Biol Cell 17:955–965

    Article  PubMed  CAS  Google Scholar 

  144. Cristofari G, Adolf E, Reichenbach P, Sikora K, Terns RM, Terns MP et al (2007) Human telomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeres and telomere elongation. Mol Cell 27:882–889

    Article  PubMed  CAS  Google Scholar 

  145. Zhong F, Savage SA, Shkreli M, Giri N, Jessop L, Myers T et al (2011) Disruption of telomerase trafficking by TCAB1 mutation causes dyskeratosis congenita. Genes Dev 25:11–16

    Article  PubMed  CAS  Google Scholar 

  146. Tomlinson RL, Abreu EB, Ziegler T, Ly H, Counter CM, Terns RM et al (2008) Telomerase reverse transcriptase is required for the localization of telomerase RNA to cajal bodies and telomeres in human cancer cells. Mol Biol Cell 19:3793–3800

    Article  PubMed  CAS  Google Scholar 

  147. Jady BE, Richard P, Bertrand E, Kiss T (2006) Cell cycle-dependent recruitment of telomerase RNA and Cajal bodies to human telomeres. Mol Biol Cell 17:944–954

    Article  PubMed  CAS  Google Scholar 

  148. Pennock E, Buckley K, Lundblad V (2001) Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104:387–396

    Article  PubMed  CAS  Google Scholar 

  149. Evans SK, Lundblad V (2002) The Est1 subunit of Saccharomyces cerevisiae telomerase makes multiple contributions to telomere length maintenance. Genetics 162:1101–1115

    PubMed  CAS  Google Scholar 

  150. Snow BE, Erdmann N, Cruickshank J, Goldman H, Gill RM, Robinson MO et al (2003) Functional conservation of the telomerase protein Est1p in humans. Curr Biol 13:698–704

    Article  PubMed  CAS  Google Scholar 

  151. Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  PubMed  CAS  Google Scholar 

  152. Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu R (1999) Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev 13:1102–1115

    Article  PubMed  CAS  Google Scholar 

  153. Eversole A, Maizels N (2000) In vitro properties of the conserved mammalian protein hnRNP D suggest a role in telomere maintenance. Mol Cell Biol 20:5425–5432

    Article  PubMed  CAS  Google Scholar 

  154. Ford LP, Suh JM, Wright WE, Shay JW (2000) Heterogeneous nuclear ribonucleoproteins C1 and C2 associate with the RNA component of human telomerase. Mol Cell Biol 20:9084–9091

    Article  PubMed  CAS  Google Scholar 

  155. Fiset S, Chabot B (2001) hnRNP A1 may interact simultaneously with telomeric DNA and the human telomerase RNA in vitro. Nucleic Acids Res 29:2268–2275

    Article  PubMed  CAS  Google Scholar 

  156. Dallaire F, Dupuis S, Fiset S, Chabot B (2000) Heterogeneous nuclear ribonucleoprotein A1 and UP1 protect mammalian telomeric repeats and modulate telomere replication in vitro. J Biol Chem 275:14509–14516

    Article  PubMed  CAS  Google Scholar 

  157. Zhang DH, Zhou B, Huang Y, Xu LX, Zhou JQ (2006) The human Pif1 helicase, a potential Escherichia coli RecD homologue, inhibits telomerase activity. Nucleic Acids Res 34: 1393–1404

    Article  PubMed  CAS  Google Scholar 

  158. Mateyak MK, Zakian VA (2006) Human PIF helicase is cell cycle regulated and associates with telomerase. Cell Cycle 5:2796–2804

    Article  PubMed  CAS  Google Scholar 

  159. Shippen-Lentz D, Blackburn EH (1990) Functional evidence for an RNA template in telomerase. Science 247:546–552

    Article  PubMed  CAS  Google Scholar 

  160. Blackburn EH (1992) Telomerases. Annu Rev Biochem 61:113–129

    Article  PubMed  CAS  Google Scholar 

  161. Fulton TB, Blackburn EH (1998) Identification of Kluyveromyces lactis telomerase: discontinuous synthesis along the 30-nucleotide-long templating domain. Mol Cell Biol 18:4961–4970

    PubMed  CAS  Google Scholar 

  162. Wyatt HD, Lobb DA, Beattie TL (2007) Characterization of physical and functional anchor site interactions in human telomerase. Mol Cell Biol 27:3226–3240

    Article  PubMed  CAS  Google Scholar 

  163. Reddel RR, Bryan TM, Colgin LM, Perrem KT, Yeager TR (2001) Alternative lengthening of telomeres in human cells. Radiat Res 155:194–200

    Article  PubMed  CAS  Google Scholar 

  164. Henson JD, Neumann AA, Yeager TR, Reddel RR (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21:598–610

    Article  PubMed  CAS  Google Scholar 

  165. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR (1995) Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J 14:4240–4248

    PubMed  CAS  Google Scholar 

  166. Cerone MA, Londono-Vallejo JA, Bacchetti S (2001) Telomere maintenance by telomerase and by recombination can coexist in human cells. Hum Mol Genet 10:1945–1952

    Article  PubMed  CAS  Google Scholar 

  167. Bechter OE, Zou Y, Shay JW, Wright WE (2003) Homologous recombination in human telomerase-positive and ALT cells occurs with the same frequency. EMBO Rep 4:1138–1143

    Article  PubMed  CAS  Google Scholar 

  168. Jiang WQ, Zhong ZH, Henson JD, Neumann AA, Chang AC, Reddel RR (2005) Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol Cell Biol 25:2708–2721

    Article  PubMed  CAS  Google Scholar 

  169. Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR (1999) Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res 59:4175–4179

    PubMed  CAS  Google Scholar 

  170. Grobelny JV, Godwin AK, Broccoli D (2000) ALT-associated PML bodies are present in viable cells and are enriched in cells in the G(2)/M phase of the cell cycle. J Cell Sci 113(Pt 24):4577–4585

    PubMed  CAS  Google Scholar 

  171. Wu G, Lee WH, Chen PL (2000) NBS1 and TRF1 colocalize at promyelocytic leukemia bodies during late S/G2 phases in immortalized telomerase-negative cells. Implication of NBS1 in alternative lengthening of telomeres. J Biol Chem 275:30618–30622

    Article  PubMed  CAS  Google Scholar 

  172. Fan Q, Zhang F, Barrett B, Ren K, Andreassen PR (2009) A role for monoubiquitinated FANCD2 at telomeres in ALT cells. Nucleic Acids Res 37:1740–1754

    Article  PubMed  CAS  Google Scholar 

  173. Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C et al (2011) Altered telomeres in tumors with ATRX and DAXX mutations. Science 333:425

    Article  PubMed  CAS  Google Scholar 

  174. Heaphy CM, Subhawong AP, Hong SM, Goggins MG, Montgomery EA, Gabrielson E et al (2011) Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol 179:1608–1615

    Article  PubMed  CAS  Google Scholar 

  175. Hu J, Hwang SS, Liesa M, Gan B, Sahin E, Jaskelioff M et al (2012) Antitelomerase therapy provokes ALT and mitochondrial adaptive mechanisms in cancer. Cell 148:651–663

    Article  PubMed  CAS  Google Scholar 

  176. Stewart SA, Hahn WC, O’Connor BF, Banner EN, Lundberg AS, Modha P et al (2002) Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 99:12606–12611

    Article  PubMed  CAS  Google Scholar 

  177. Fleisig HB, Wong JM (2012) Telomerase promotes efficient cell cycle kinetics and confers growth advantage to telomerase-negative transformed human cells. Oncogene 31: 954–965

    Article  PubMed  CAS  Google Scholar 

  178. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18:173–179

    Article  PubMed  CAS  Google Scholar 

  179. Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791

    Article  PubMed  CAS  Google Scholar 

  180. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011–2015

    Article  PubMed  CAS  Google Scholar 

  181. Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A et al (1999) Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5:1164–1170

    Article  PubMed  CAS  Google Scholar 

  182. Zhang X, Mar V, Zhou W, Harrington L, Robinson MO (1999) Telomere shortening and apoptosis in telomerase-inhibited human tumor cells. Genes Dev 13:2388–2399

    Article  PubMed  CAS  Google Scholar 

  183. Harley CB (2002) Telomerase is not an oncogene. Oncogene 21:494–502

    Article  PubMed  CAS  Google Scholar 

  184. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88

    Article  PubMed  CAS  Google Scholar 

  185. Berger R, Febbo PG, Majumder PK, Zhao JJ, Mukherjee S, Signoretti S et al (2004) Androgen-induced differentiation and tumorigenicity of human prostate epithelial cells. Cancer Res 64:8867–8875

    Article  PubMed  CAS  Google Scholar 

  186. Lundberg AS, Randell SH, Stewart SA, Elenbaas B, Hartwell KA, Brooks MW et al (2002) Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21:4577–4586

    Article  PubMed  CAS  Google Scholar 

  187. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400:464–468

    Article  PubMed  CAS  Google Scholar 

  188. Chadeneau C, Hay K, Hirte HW, Gallinger S, Bacchetti S (1995) Telomerase activity associated with acquisition of malignancy in human colorectal cancer. Cancer Res 55: 2533–2536

    PubMed  CAS  Google Scholar 

  189. Engelhardt M, Drullinsky P, Guillem J, Moore MA (1997) Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin Cancer Res 3:1931–1941

    PubMed  CAS  Google Scholar 

  190. Miura N, Horikawa I, Nishimoto A, Ohmura H, Ito H, Hirohashi S et al (1997) Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet Cytogenet 93:56–62

    Article  PubMed  CAS  Google Scholar 

  191. Rudolph KL, Millard M, Bosenberg MW, DePinho RA (2001) Telomere dysfunction and evolution of intestinal carcinoma in mice and humans. Nat Genet 28:155–159

    Article  PubMed  CAS  Google Scholar 

  192. Lantuejoul S, Soria JC, Morat L, Lorimier P, Moro-Sibilot D, Sabatier L et al (2005) Telomere shortening and telomerase reverse transcriptase expression in preinvasive bronchial lesions. Clin Cancer Res 11:2074–2082

    Article  PubMed  CAS  Google Scholar 

  193. Meeker AK, Hicks JL, Gabrielson E, Strauss WM, De Marzo AM, Argani P (2004) Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol 164:925–935

    Article  PubMed  Google Scholar 

  194. van Heek NT, Meeker AK, Kern SE, Yeo CJ, Lillemoe KD, Cameron JL et al (2002) Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 161: 1541–1547

    Article  PubMed  Google Scholar 

  195. Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ et al (2002) Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res 62:6405–6409

    PubMed  CAS  Google Scholar 

  196. Gisselsson D, Jonson T, Petersen A, Strombeck B, Dal Cin P, Hoglund M et al (2001) Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci USA 98:12683–12688

    Article  PubMed  CAS  Google Scholar 

  197. DePinho RA (2000) The age of cancer. Nature 408:248–254

    Article  PubMed  CAS  Google Scholar 

  198. Sharma GG, Gupta A, Wang H, Scherthan H, Dhar S, Gandhi V et al (2003) hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22:131–146

    Article  PubMed  CAS  Google Scholar 

  199. Smith LL, Coller HA, Roberts JM (2003) Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat Cell Biol 5:474–479

    Article  PubMed  CAS  Google Scholar 

  200. Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M et al (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460:66–72

    Article  PubMed  CAS  Google Scholar 

  201. Choi J, Southworth LK, Sarin KY, Venteicher AS, Ma W, Chang W et al (2008) TERT promotes epithelial proliferation through transcriptional control of a Myc- and Wnt-related developmental program. PLoS Genet 4:e10

    Article  PubMed  CAS  Google Scholar 

  202. Okamoto N, Yasukawa M, Nguyen C, Kasim V, Maida Y, Possemato R et al (2011) Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc Natl Acad Sci USA 108:20388–20393

    Article  PubMed  CAS  Google Scholar 

  203. Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N et al (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461:230–235

    Article  PubMed  CAS  Google Scholar 

  204. Rosenbluh J, Nijhawan D, Chen Z, Wong KK, Masutomi K, Hahn WC (2011) RMRP is a non-coding RNA essential for early murine development. PLoS One 6:e26270

    Article  PubMed  CAS  Google Scholar 

  205. Gorbunova V, Seluanov A, Pereira-Smith OM (2002) Expression of human telomerase (hTERT) does not prevent stress-induced senescence in normal human fibroblasts but protects the cells from stress-induced apoptosis and necrosis. J Biol Chem 277:38540–38549

    Article  PubMed  CAS  Google Scholar 

  206. Masutomi K, Possemato R, Wong JM, Currier JL, Tothova Z, Manola JB et al (2005) The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA 102:8222–8227

    Article  PubMed  CAS  Google Scholar 

  207. Tamakawa RA, Fleisig HB, Wong JM (2010) Telomerase inhibition potentiates the effects of genotoxic agents in breast and colorectal cancer cells in a cell cycle-specific manner. Cancer Res 70:8684–8694

    Article  PubMed  CAS  Google Scholar 

  208. Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I et al (2002) Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 277:15566–15572

    Article  PubMed  CAS  Google Scholar 

  209. Ward RJ, Autexier C (2005) Pharmacological telomerase inhibition can sensitize drug-resistant and drug-sensitive cells to chemotherapeutic treatment. Mol Pharmacol 68:779–786

    PubMed  CAS  Google Scholar 

  210. El Daly H, Martens UM (2007) Telomerase inhibition and telomere targeting in hematopoietic cancer cell lines with small non-nucleosidic synthetic compounds (BIBR1532). Methods Mol Biol 405:47–60

    Article  PubMed  CAS  Google Scholar 

  211. El-Daly H, Kull M, Zimmermann S, Pantic M, Waller CF, Martens UM (2005) Selective cytotoxicity and telomere damage in leukemia cells using the telomerase inhibitor BIBR1532. Blood 105:1742–1749

    Article  PubMed  CAS  Google Scholar 

  212. Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman GA et al (1986) Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA 83:8333–8337

    Article  PubMed  CAS  Google Scholar 

  213. Mitsuya H, Weinhold KJ, Furman PA, St Clair MH, Lehrman SN, Gallo RC et al (1985) 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci USA 82:7096–7100

    Article  PubMed  CAS  Google Scholar 

  214. Datta A, Bellon M, Sinha-Datta U, Bazarbachi A, Lepelletier Y, Canioni D et al (2006) Persistent inhibition of telomerase reprograms adult T-cell leukemia to p53-dependent senescence. Blood 108:1021–1029

    Article  PubMed  CAS  Google Scholar 

  215. Geary RS, Yu RZ, Levin AA (2001) Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr Opin Investig Drugs 2:562–573

    PubMed  CAS  Google Scholar 

  216. Folini M, Brambilla C, Villa R, Gandellini P, Vignati S, Paduano F et al (2005) Antisense oligonucleotide-mediated inhibition of hTERT, but not hTERC, induces rapid cell growth decline and apoptosis in the absence of telomere shortening in human prostate cancer cells. Eur J Cancer 41:624–634

    Article  PubMed  CAS  Google Scholar 

  217. Akiyama M, Hideshima T, Shammas MA, Hayashi T, Hamasaki M, Tai YT et al (2003) Effects of oligonucleotide N3′–>P5′ thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res 63:6187–6194

    PubMed  CAS  Google Scholar 

  218. Asai A, Oshima Y, Yamamoto Y, Uochi TA, Kusaka H, Akinaga S et al (2003) A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res 63:3931–3939

    PubMed  CAS  Google Scholar 

  219. Herbert BS, Gellert GC, Hochreiter A, Pongracz K, Wright WE, Zielinska D et al (2005) Lipid modification of GRN163, an N3′–>P5′ thio-phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene 24:5262–5268

    Article  PubMed  CAS  Google Scholar 

  220. Dikmen ZG, Gellert GC, Jackson S, Gryaznov S, Tressler R, Dogan P et al (2005) In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res 65:7866–7873

    PubMed  CAS  Google Scholar 

  221. Gellert GC, Dikmen ZG, Wright WE, Gryaznov S, Shay JW (2006) Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat 96:73–81

    Article  PubMed  CAS  Google Scholar 

  222. Hochreiter AE, Xiao H, Goldblatt EM, Gryaznov SM, Miller KD, Badve S et al (2006) Telomerase template antagonist GRN163L disrupts telomere maintenance, tumor growth, and metastasis of breast cancer. Clin Cancer Res 12:3184–3192

    Article  PubMed  CAS  Google Scholar 

  223. Djojosubroto MW, Chin AC, Go N, Schaetzlein S, Manns MP, Gryaznov S et al (2005) Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 42:1127–1136

    Article  PubMed  CAS  Google Scholar 

  224. Brower V (2010) Telomerase-based therapies emerging slowly. J Natl Cancer Inst 102:520–521

    Article  PubMed  CAS  Google Scholar 

  225. Chen HC, Chou CK, Lee SD, Wang JC, Yeh SF (1995) Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells. Antiviral Res 27:99–109

    Article  PubMed  CAS  Google Scholar 

  226. Kang JS, Yoon YD, Lee KH, Park SK, Kim HM (2004) Costunolide inhibits interleukin-1beta expression by down-regulation of AP-1 and MAPK activity in LPS-stimulated RAW 264.7 cells. Biochem Biophys Res Commun 313:171–177

    Article  PubMed  CAS  Google Scholar 

  227. Park HJ, Jung WT, Basnet P, Kadota S, Namba T (1996) Syringin 4-O-beta-glucoside, a new phenylpropanoid glycoside, and costunolide, a nitric oxide synthase inhibitor, from the stem bark of Magnolia sieboldii. J Nat Prod 59:1128–1130

    Article  PubMed  CAS  Google Scholar 

  228. Wedge DE, Galindo JC, Macias FA (2000) Fungicidal activity of natural and synthetic ­sesquiterpene lactone analogs. Phytochemistry 53:747–757

    Article  PubMed  CAS  Google Scholar 

  229. Choi SH, Im E, Kang HK, Lee JH, Kwak HS, Bae YT et al (2005) Inhibitory effects of costunolide on the telomerase activity in human breast carcinoma cells. Cancer Lett 227:153–162

    Article  PubMed  CAS  Google Scholar 

  230. Kanno S, Kitajima Y, Kakuta M, Osanai Y, Kurauchi K, Ujibe M et al (2008) Costunolide-induced apoptosis is caused by receptor-mediated pathway and inhibition of telomerase activity in NALM-6 cells. Biol Pharm Bull 31:1024–1028

    Article  PubMed  CAS  Google Scholar 

  231. Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E et al (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850

    Article  PubMed  CAS  Google Scholar 

  232. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  PubMed  CAS  Google Scholar 

  233. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CL (2002) BCR-ABL point mutants isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive to inhibitors of the BCR-ABL chaperone heat shock protein 90. Blood 100:3041–3044

    Article  PubMed  CAS  Google Scholar 

  234. Hartson SD, Matts RL (1994) Association of Hsp90 with cellular Src-family kinases in a cell-free system correlates with altered kinase structure and function. Biochemistry 33:8912–8920

    Article  PubMed  CAS  Google Scholar 

  235. Solit DB, Basso AD, Olshen AB, Scher HI, Rosen N (2003) Inhibition of heat shock protein 90 function down-regulates Akt kinase and sensitizes tumors to Taxol. Cancer Res 63: 2139–2144

    PubMed  CAS  Google Scholar 

  236. Stancato LF, Chow YH, Hutchison KA, Perdew GH, Jove R, Pratt WB (1993) Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J Biol Chem 268:21711–21716

    PubMed  CAS  Google Scholar 

  237. Vonderheide RH, Hahn WC, Schultze JL, Nadler LM (1999) The telomerase catalytic subunit is a widely expressed tumor-associated antigen recognized by cytotoxic T lymphocytes. Immunity 10:673–679

    Article  PubMed  CAS  Google Scholar 

  238. Minev B, Hipp J, Firat H, Schmidt JD, Langlade-Demoyen P, Zanetti M (2000) Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci USA 97:4796–4801

    Article  PubMed  CAS  Google Scholar 

  239. Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS et al (2000) Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 6:1011–1017

    Article  PubMed  CAS  Google Scholar 

  240. Su Z, Dannull J, Yang BK, Dahm P, Coleman D, Yancey D et al (2005) Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer. J Immunol 174:3798–3807

    PubMed  CAS  Google Scholar 

  241. Bernhardt SL, Gjertsen MK, Trachsel S, Moller M, Eriksen JA, Meo M et al (2006) Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study. Br J Cancer 95:1474–1482

    Article  PubMed  CAS  Google Scholar 

  242. Shay JW, Keith WN (2008) Targeting telomerase for cancer therapeutics. Br J Cancer 98:677–683

    Article  PubMed  CAS  Google Scholar 

  243. Cook BD, Dynek JN, Chang W, Shostak G, Smith S (2002) Role for the related poly(ADP-Ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 22:332–342

    Article  PubMed  CAS  Google Scholar 

  244. Smith S, de Lange T (2000) Tankyrase promotes telomere elongation in human cells. Curr Biol 10:1299–1302

    Article  PubMed  CAS  Google Scholar 

  245. Smith S, Giriat I, Schmitt A, de Lange T (1998) Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282:1484–1487

    Article  PubMed  CAS  Google Scholar 

  246. Chang W, Dynek JN, Smith S (2003) TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev 17:1328–1333

    Article  PubMed  CAS  Google Scholar 

  247. Dynek JN, Smith S (2004) Resolution of sister telomere association is required for progression through mitosis. Science 304:97–100

    Article  PubMed  CAS  Google Scholar 

  248. Seimiya H, Muramatsu Y, Ohishi T, Tsuruo T (2005) Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell 7:25–37

    Article  PubMed  CAS  Google Scholar 

  249. Mergny JL, Duval-Valentin G, Nguyen CH, Perrouault L, Faucon B, Rougee M et al (1992) Triple helix-specific ligands. Science 256:1681–1684

    Article  PubMed  CAS  Google Scholar 

  250. Escude C, Nguyen CH, Kukreti S, Janin Y, Sun JS, Bisagni E et al (1998) Rational design of a triple helix-specific intercalating ligand. Proc Natl Acad Sci USA 95:3591–3596

    Article  PubMed  CAS  Google Scholar 

  251. Shi DF, Wheelhouse RT, Sun D, Hurley LH (2001) Quadruplex-interactive agents as telomerase inhibitors: synthesis of porphyrins and structure-activity relationship for the inhibition of telomerase. J Med Chem 44:4509–4523

    Article  PubMed  CAS  Google Scholar 

  252. Bertrand H, Bombard S, Monchaud D, Teulade-Fichou MP (2008) New platinum(II) complexes targeting the loops of the human telomeric G-quadruplex. Nucleic Acids Symp Ser (Oxf) 52:163–164

    Google Scholar 

  253. Sun D, Thompson B, Cathers BE, Salazar M, Kerwin SM, Trent JO et al (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 40:2113–2116

    Article  PubMed  CAS  Google Scholar 

  254. Perry PJ, Gowan SM, Reszka AP, Polucci P, Jenkins TC, Kelland LR et al (1998) 1,4- and 2,6-disubstituted amidoanthracene-9,10-dione derivatives as inhibitors of human telomerase. J Med Chem 41:3253–3260

    Article  PubMed  CAS  Google Scholar 

  255. Perry PJ, Gowan SM, Read MA, Kelland LR, Neidle S (1999) Design, synthesis and evaluation of human telomerase inhibitors based upon a tetracyclic structural motif. Anticancer Drug Des 14:373–382

    PubMed  CAS  Google Scholar 

  256. Perry PJ, Read MA, Davies RT, Gowan SM, Reszka AP, Wood AA et al (1999) 2,7-Disubstituted amidofluorenone derivatives as inhibitors of human telomerase. J Med Chem 42:2679–2684

    Article  PubMed  CAS  Google Scholar 

  257. Gowan SM, Heald R, Stevens MF, Kelland LR (2001) Potent inhibition of telomerase by small-molecule pentacyclic acridines capable of interacting with G-quadruplexes. Mol Pharmacol 60:981–988

    PubMed  CAS  Google Scholar 

  258. Simonsson T, Pecinka P, Kubista M (1998) DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res 26:1167–1172

    Article  PubMed  CAS  Google Scholar 

  259. Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH (2002) Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci USA 99:11593–11598

    Article  PubMed  CAS  Google Scholar 

  260. Guiducci C, Cerone MA, Bacchetti S (2001) Expression of mutant telomerase in immortal telomerase-negative human cells results in cell cycle deregulation, nuclear and chromosomal abnormalities and rapid loss of viability. Oncogene 20:714–725

    Article  PubMed  CAS  Google Scholar 

  261. Kim MM, Rivera MA, Botchkina IL, Shalaby R, Thor AD, Blackburn EH (2001) A low threshold level of expression of mutant-template telomerase RNA inhibits human tumor cell proliferation. Proc Natl Acad Sci USA 98:7982–7987

    Article  PubMed  CAS  Google Scholar 

  262. Li S, Rosenberg JE, Donjacour AA, Botchkina IL, Hom YK, Cunha GR et al (2004) Rapid inhibition of cancer cell growth induced by lentiviral delivery and expression of ­mutant-template telomerase RNA and anti-telomerase short-interfering RNA. Cancer Res 64:4833–4840

    Article  PubMed  CAS  Google Scholar 

  263. Abdul-Ghani R, Ohana P, Matouk I, Ayesh S, Ayesh B, Laster M et al (2000) Use of transcriptional regulatory sequences of telomerase (hTER and hTERT) for selective killing of cancer cells. Mol Ther 2:539–544

    Article  PubMed  CAS  Google Scholar 

  264. Gu J, Kagawa S, Takakura M, Kyo S, Inoue M, Roth JA et al (2000) Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res 60:5359–5364

    PubMed  CAS  Google Scholar 

  265. Koga S, Hirohata S, Kondo Y, Komata T, Takakura M, Inoue M et al (2000) A novel telomerase-specific gene therapy: gene transfer of caspase-8 utilizing the human telomerase catalytic subunit gene promoter. Hum Gene Ther 11:1397–1406

    Article  PubMed  CAS  Google Scholar 

  266. Boyd M, Mairs RJ, Mairs SC, Wilson L, Livingstone A, Cunningham SH et al (2001) Expression in UVW glioma cells of the noradrenaline transporter gene, driven by the telomerase RNA promoter, induces active uptake of [131I]MIBG and clonogenic cell kill. Oncogene 20:7804–7808

    Article  PubMed  CAS  Google Scholar 

  267. Komata T, Kondo Y, Kanzawa T, Hirohata S, Koga S, Sumiyoshi H et al (2001) Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Res 61:5796–5802

    PubMed  CAS  Google Scholar 

  268. Koga S, Hirohata S, Kondo Y, Komata T, Takakura M, Inoue M et al (2001) FADD gene therapy using the human telomerase catalytic subunit (hTERT) gene promoter to restrict induction of apoptosis to tumors in vitro and in vivo. Anticancer Res 21:1937–1943

    PubMed  CAS  Google Scholar 

  269. Koga S, Kondo Y, Komata T, Kondo S (2001) Treatment of bladder cancer cells in vitro and in vivo with 2-5A antisense telomerase RNA. Gene Ther 8:654–658

    Article  PubMed  CAS  Google Scholar 

  270. Majumdar AS, Hughes DE, Lichtsteiner SP, Wang Z, Lebkowski JS, Vasserot AP (2001) The telomerase reverse transcriptase promoter drives efficacious tumor suicide gene therapy while preventing hepatotoxicity encountered with constitutive promoters. Gene Ther 8:568–578

    Article  PubMed  CAS  Google Scholar 

  271. Plumb JA, Bilsland A, Kakani R, Zhao J, Glasspool RM, Knox RJ et al (2001) Telomerase-specific suicide gene therapy vectors expressing bacterial nitroreductase sensitize human cancer cells to the pro-drug CB1954. Oncogene 20:7797–7803

    Article  PubMed  CAS  Google Scholar 

  272. Hao ZM, Luo JY, Cheng J, Li L, He D, Wang QY et al (2005) Intensive inhibition of hTERT expression by a ribozyme induces rapid apoptosis of cancer cells through a telomere length-independent pathway. Cancer Biol Ther 4:1098–1103

    Article  PubMed  CAS  Google Scholar 

  273. Kanazawa Y, Ohkawa K, Ueda K, Mita E, Takehara T, Sasaki Y et al (1996) Hammerhead ribozyme-mediated inhibition of telomerase activity in extracts of human hepatocellular carcinoma cells. Biochem Biophys Res Commun 225:570–576

    Article  PubMed  CAS  Google Scholar 

  274. Yokoyama Y, Takahashi Y, Shinohara A, Lian Z, Wan X, Niwa K et al (1998) Attenuation of telomerase activity by a hammerhead ribozyme targeting the template region of telomerase RNA in endometrial carcinoma cells. Cancer Res 58:5406–5410

    PubMed  CAS  Google Scholar 

  275. Lin SY, Elledge SJ (2003) Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113:881–889

    Article  PubMed  CAS  Google Scholar 

  276. Takakura M, Kyo S, Kanaya T, Hirano H, Takeda J, Yutsudo M et al (1999) Cloning of human telomerase catalytic subunit (hTERT) gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res 59:551–557

    PubMed  CAS  Google Scholar 

  277. Sohn JH, Yeh BI, Choi JW, Yoon J, Namkung J, Park KK et al (2010) Repression of human telomerase reverse transcriptase using artificial zinc finger transcription factors. Mol Cancer Res 8:246–253

    Article  PubMed  CAS  Google Scholar 

  278. Wong KK, Chang S, Weiler SR, Ganesan S, Chaudhuri J, Zhu C et al (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 26:85–88

    Article  PubMed  CAS  Google Scholar 

  279. Ludwig A, Saretzki G, Holm PS, Tiemann F, Lorenz M, Emrich T et al (2001) Ribozyme cleavage of telomerase mRNA sensitizes breast epithelial cells to inhibitors of topoisomerase. Cancer Res 61:3053–3061

    PubMed  CAS  Google Scholar 

  280. Tauchi T, Nakajima A, Sashida G, Shimamoto T, Ohyashiki JH, Abe K et al (2002) Inhibition of human telomerase enhances the effect of the tyrosine kinase inhibitor, imatinib, in BCR-ABL-positive leukemia cells. Clin Cancer Res 8:3341–3347

    PubMed  CAS  Google Scholar 

  281. Multani AS, Li C, Ozen M, Imam AS, Wallace S, Pathak S (1999) Cell-killing by paclitaxel in a metastatic murine melanoma cell line is mediated by extensive telomere erosion with no decrease in telomerase activity. Oncol Rep 6:39–44

    PubMed  CAS  Google Scholar 

  282. Mo Y, Gan Y, Song S, Johnston J, Xiao X, Wientjes MG et al (2003) Simultaneous targeting of telomeres and telomerase as a cancer therapeutic approach. Cancer Res 63:579–585

    PubMed  CAS  Google Scholar 

  283. Nakamura M, Masutomi K, Kyo S, Hashimoto M, Maida Y, Kanaya T et al (2005) Efficient inhibition of human telomerase reverse transcriptase expression by RNA interference sensitizes cancer cells to ionizing radiation and chemotherapy. Hum Gene Ther 16:859–868

    Article  PubMed  CAS  Google Scholar 

  284. Guo X, Wang W, Zhou F, Lu Z, Fang R, Jia F et al (2008) siRNA-mediated inhibition of hTERT enhances chemosensitivity of hepatocellular carcinoma. Cancer Biol Ther 7:1555–1560

    Article  PubMed  CAS  Google Scholar 

  285. Damm K, Hemmann U, Garin-Chesa P, Hauel N, Kauffmann I, Priepke H et al (2001) A highly selective telomerase inhibitor limiting human cancer cell proliferation. EMBO J 20:6958–6968

    Article  PubMed  CAS  Google Scholar 

  286. Gomez-Millan J, Goldblatt EM, Gryaznov SM, Mendonca MS, Herbert BS (2007) Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int J Radiat Oncol Biol Phys 67:897–905

    Article  PubMed  CAS  Google Scholar 

  287. Goldblatt EM, Gentry ER, Fox MJ, Gryaznov SM, Shen C, Herbert BS (2009) The telomerase template antagonist GRN163L alters MDA-MB-231 breast cancer cell morphology, inhibits growth, and augments the effects of paclitaxel. Mol Cancer Ther 8:2027–2035

    Article  PubMed  CAS  Google Scholar 

  288. Goldblatt EM, Erickson PA, Gentry ER, Gryaznov SM, Herbert BS (2009) Lipid-conjugated telomerase template antagonists sensitize resistant HER2-positive breast cancer cells to trastuzumab. Breast Cancer Res Treat 118:21–32

    Article  PubMed  CAS  Google Scholar 

  289. Trudeau M, Wong J (2010) Genetic variations in telomere maintenance, with implications on tissue renewal capacity and chronic disease pathologies. Curr Pharmacogenomics Person Med 8:7–24

    Article  PubMed  CAS  Google Scholar 

  290. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  PubMed  CAS  Google Scholar 

  291. Fauce SR, Jamieson BD, Chin AC, Mitsuyasu RT, Parish ST, Ng HL et al (2008) Telomerase-based pharmacologic enhancement of antiviral function of human CD8+ T lymphocytes. J Immunol 181:7400–7406

    PubMed  CAS  Google Scholar 

  292. Zhu J, Lee S, Ho MK, Hu Y, Pang H, Ip FC et al (2010) In vitro intestinal absorption and first-pass intestinal and hepatic metabolism of cycloastragenol, a potent small molecule telomerase activator. Drug Metab Pharmacokinet 25:477–486

    Article  PubMed  CAS  Google Scholar 

  293. Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J et al (2001) Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 37:381–385

    Article  PubMed  CAS  Google Scholar 

  294. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    Article  PubMed  CAS  Google Scholar 

  295. Harley CB, Liu W, Blasco M, Vera E, Andrews WH, Briggs LA et al (2011) A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res 14:45–56

    Article  PubMed  CAS  Google Scholar 

  296. Calado RT, Regal JA, Hills M, Yewdell WT, Dalmazzo LF, Zago MA et al (2009) Constitutional hypomorphic telomerase mutations in patients with acute myeloid leukemia. Proc Natl Acad Sci USA 106:1187–1192

    Article  PubMed  CAS  Google Scholar 

  297. Gryaznov SM (2010) Oligonucleotide n3′–>p5′ phosphoramidates and thio-phoshoramidates as potential therapeutic agents. Chem Biodivers 7:477–493

    Article  PubMed  CAS  Google Scholar 

  298. Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8:167–179

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Dragony Fu, Suzanne Lee, and Naresh Thumati for reading this chapter and for their helpful comments. Research in Judy Wong’s laboratory is supported by the Canadian Institutes of Health Research, the Canadian Cancer Society, and the Leukemia and Lymphoma Society of Canada. JMYW is supported by the Canada Research Chair and Michael Smith Foundation of Health Research career development programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy M. Y. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tamakawa, R.A., Fleisig, H.B., Wong, J.M.Y. (2013). Telomeres, Telomerase, and DNA Damage Response in Cancer Therapy. In: Panasci, L., Aloyz, R., Alaoui-Jamali, M. (eds) Advances in DNA Repair in Cancer Therapy. Cancer Drug Discovery and Development, vol 72. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4741-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4741-2_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4740-5

  • Online ISBN: 978-1-4614-4741-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics