Skip to main content

Miscellaneous Approaches and Considerations: TLR Agonists and Other Inflammatory Agents, Anti-Chemokine Agents, Infectious Agents, Tumor Stroma Targeting, Age and Sex Effects, and Miscellaneous Small Molecules

  • Chapter
  • First Online:
  • 2457 Accesses

Abstract

The field of tumor immunotherapy is evolving rapidly. Many promising areas are discussed in depth in various chapters in this book. This chapter provides a broad overview of additional approaches not covered in specific book chapters. Some areas are nonetheless quite advanced, such as the use of TLR agonists in clinical trials, and some have received FDA approvals such as BCG to treat bladder cancer and the IMiD lenalidomide to treat multiple myeloma. Other areas are of great interest but lack sufficient information to require a dedicated chapter. These miscellaneous areas hold great promise to further the development of effective cancer immunotherapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Feng Z, Hu W, Rajagopal G, Levine AJ (2008) The tumor suppressor p53: cancer and aging. Cell Cycle 7:842–847

    PubMed  CAS  Google Scholar 

  2. Jemal A et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    PubMed  Google Scholar 

  3. Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G (2011) Aging, immunity, and cancer. Discov Med 11:537–550

    PubMed  Google Scholar 

  4. Vallejo AN (2011) Immunological hurdles of ageing: indispensable research of the human model. Ageing Res Rev 10:315–318

    PubMed  Google Scholar 

  5. Haynes L, Eaton SM, Burns EM, Rincon M, Swain SL (2004) Inflammatory cytokines overcome age-related defects in CD4 T cell responses in vivo. J Immunol 172:5194–5199

    PubMed  CAS  Google Scholar 

  6. Rosenkranz D et al (2007) Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 188:117–127

    PubMed  CAS  Google Scholar 

  7. Zhang H, Podojil JR, Luo X, Miller SD (2008) Intrinsic and induced regulation of the age-associated onset of spontaneous experimental autoimmune encephalomyelitis. J Immunol 181:4638–4647

    PubMed  CAS  Google Scholar 

  8. Ruby CE, Weinberg AD (2009) OX40-enhanced tumor rejection and effector T cell differentiation decreases with age. J Immunol 182:1481–1489

    PubMed  CAS  Google Scholar 

  9. Lustgarten J, Dominguez AL, Thoman M (2004) Aged mice develop protective antitumor immune responses with appropriate costimulation. J Immunol 173:4510–4515

    PubMed  CAS  Google Scholar 

  10. Bansal-Pakala P, Croft M (2002) Defective T cell priming associated with aging can be rescued by signaling through 4-1BB (CD137). J Immunol 169:5005–5009

    PubMed  Google Scholar 

  11. Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Invest 117:1167–1174

    PubMed  CAS  Google Scholar 

  12. Curiel TJ (2008) Regulatory T cells and treatment of cancer. Curr Opin Immunol 20:241–246

    PubMed  CAS  Google Scholar 

  13. Curiel TJ et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    PubMed  CAS  Google Scholar 

  14. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    PubMed  CAS  Google Scholar 

  15. Zhao L et al (2007) Changes of CD4 + CD25 + Foxp3+ regulatory T cells in aged Balb/c mice. J Leukoc Biol 81:1386–1394

    PubMed  CAS  Google Scholar 

  16. Kryczek I et al (2009) FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res 69:3995–4000

    PubMed  CAS  Google Scholar 

  17. Kozlowska E, Biernacka M, Ciechomska M, Drela N (2007) Age-related changes in the occurrence and characteristics of thymic CD4(+) CD25(+) T cells in mice. Immunology 122:445–453

    PubMed  CAS  Google Scholar 

  18. Thomas DC, Mellanby RJ, Phillips JM, Cooke A (2007) An early age-related increase in the frequency of CD4+ Foxp3+ cells in BDC2.5NOD mice. Immunology 121:565–576

    PubMed  CAS  Google Scholar 

  19. Dominguez AL, Lustgarten J (2008) Implications of aging and self-tolerance on the generation of immune and antitumor immune responses. Cancer Res 68:5423–5431

    PubMed  CAS  Google Scholar 

  20. Sharma S, Dominguez AL, Lustgarten J (2006) High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J Immunol 177:8348–8355

    PubMed  CAS  Google Scholar 

  21. Ostrand-Rosenberg S, Sinha P (2009) Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 182:4499–4506

    PubMed  CAS  Google Scholar 

  22. Li H, Han Y, Guo Q, Zhang M, Cao X (2009) Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. J Immunol 182:240–249

    PubMed  CAS  Google Scholar 

  23. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181:5791–5802

    PubMed  CAS  Google Scholar 

  24. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179

    PubMed  CAS  Google Scholar 

  25. Huang B et al (2006) Gr-1 + CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66:1123–1131

    PubMed  CAS  Google Scholar 

  26. Grizzle WE et al (2007) Age-related increase of tumor susceptibility is associated with myeloid-derived suppressor cell mediated suppression of T cell cytotoxicity in recombinant inbred BXD12 mice. Mech Ageing Dev 128:672–680

    PubMed  CAS  Google Scholar 

  27. Enioutina EY, Bareyan D, Daynes RA (2011) A role for immature myeloid cells in immune senescence. J Immunol 186:697–707

    PubMed  CAS  Google Scholar 

  28. Hurez V et al (2012) Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res 72:2089–2099

    PubMed  CAS  Google Scholar 

  29. Kresowik TP, Griffith TS (2009) Bacillus Calmette–Guerin immunotherapy for urothelial carcinoma of the bladder. Immunotherapy 1:281–288

    PubMed  CAS  Google Scholar 

  30. Ratliff TL (1991) Bacillus Calmette–Guerin (BCG): mechanism of action in superficial bladder cancer. Urology 37:8–11

    PubMed  CAS  Google Scholar 

  31. Shelley MD et al (2001) A systematic review of intravesical bacillus Calmette–Guerin plus transurethral resection vs. transurethral resection alone in Ta and T1 bladder cancer. BJU Int 88:209–216

    PubMed  CAS  Google Scholar 

  32. Takeuchi A et al (2011) IL-17 production by gammadelta T cells is important for the antitumor effect of Mycobacterium bovis bacillus Calmette–Guerin treatment against bladder cancer. Eur J Immunol 41:246–251

    PubMed  CAS  Google Scholar 

  33. Biot C et al (2012) Preexisting BCG-specific T cells improve intravesical immunotherapy for bladder cancer. Sci Transl Med 4:137ra172

    Google Scholar 

  34. Inman BA et al (2007) PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109:1499–1505

    PubMed  CAS  Google Scholar 

  35. Boorjian SA et al (2008) T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin Cancer Res 14:4800–4808

    PubMed  CAS  Google Scholar 

  36. Nakanishi J et al (2007) Overexpression of B7-H1 (PD-L1) significantly associates with tumor grade and postoperative prognosis in human urothelial cancers. Cancer Immunol Immunother 56:1173–1182

    PubMed  CAS  Google Scholar 

  37. Stewart JH 4th, Levine EA (2011) Role of bacillus Calmette–Guerin in the treatment of advanced melanoma. Expert Rev Anticancer Ther 11:1671–1676

    PubMed  Google Scholar 

  38. Triozzi PL, Tuthill RJ, Borden E (2011) Re-inventing intratumoral immunotherapy for melanoma. Immunotherapy 3:653–671

    PubMed  CAS  Google Scholar 

  39. Garnett CT et al (2006) TRICOM vector based cancer vaccines. Curr Pharm Des 12:351–361

    PubMed  CAS  Google Scholar 

  40. Kim JW, Gulley JL (2012) Poxviral vectors for cancer immunotherapy. Expert Opin Biol Ther 12:463–478

    PubMed  CAS  Google Scholar 

  41. Dent P et al (2010) MDA-7/IL-24 as a cancer therapeutic: from bench to bedside. Anticancer Drugs 21:725–731

    PubMed  CAS  Google Scholar 

  42. Sterman DH et al (2012) A trial of intrapleural adenoviral-mediated Interferon-alpha2b gene transfer for malignant pleural mesothelioma. Am J Respir Crit Care Med 184:1395–1399

    Google Scholar 

  43. Mantovani A (2010) La mala educacion of tumor-associated macrophages: diverse pathways and new players. Cancer Cell 17:111–112

    PubMed  CAS  Google Scholar 

  44. Sica A et al (2012) Macrophage polarization in tumour progression. Semin Cancer Biol, In Press, Corrected Proof

    Google Scholar 

  45. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11:519–531

    PubMed  CAS  Google Scholar 

  46. Kraman M et al (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–830

    PubMed  CAS  Google Scholar 

  47. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081

    PubMed  CAS  Google Scholar 

  48. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444

    PubMed  CAS  Google Scholar 

  49. Beatty GL et al (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331:1612–1616

    PubMed  CAS  Google Scholar 

  50. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361–371

    PubMed  CAS  Google Scholar 

  51. Naugler WE, Karin M (2008) The wolf in sheep’s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med 14:109–119

    PubMed  CAS  Google Scholar 

  52. Brown ER et al (2008) A clinical study assessing the tolerability and biological effects of infliximab, a TNF-alpha inhibitor, in patients with advanced cancer. Ann Oncol 19:1340–1346

    PubMed  CAS  Google Scholar 

  53. Harrison ML et al (2007) Tumor necrosis factor alpha as a new target for renal cell carcinoma: two sequential phase II trials of infliximab at standard and high dose. J Clin Oncol 25:4542–4549

    PubMed  CAS  Google Scholar 

  54. Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22:33–40

    PubMed  CAS  Google Scholar 

  55. Lust JA et al (2009) Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1{beta}-induced interleukin 6 production and the myeloma proliferative component. Mayo Clin Proc 84:114–122

    PubMed  CAS  Google Scholar 

  56. Kitagawa D et al (2012) Characterization of kinase inhibitors using different phosphorylation states of colony stimulating factor-1 receptor tyrosine kinase. J Biochem 151:47–55

    PubMed  CAS  Google Scholar 

  57. Rothwell PM et al (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377:31–41

    PubMed  CAS  Google Scholar 

  58. Dodson S et al (2010) Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies. Annu Rev Med 62:265–279

    Google Scholar 

  59. Maccio A et al (2012) A randomized phase III clinical trial of a combined treatment for cachexia in patients with gynecological cancers: evaluating the impact on metabolic and inflammatory profiles and quality of life. Gynecol Oncol 124:417–425

    PubMed  CAS  Google Scholar 

  60. Madeddu C et al (2012) Randomized phase III clinical trial of a combined treatment with carnitine + celecoxib +/− megestrol acetate for patients with cancer-related anorexia/cachexia syndrome. Clin Nutr 31:176–182

    PubMed  CAS  Google Scholar 

  61. Sutmuller RP, Morgan ME, Netea MG, Grauer O, Adema GJ (2006) Toll-like receptors on regulatory T cells: expanding immune regulation. Trends Immunol 27:387–393

    PubMed  CAS  Google Scholar 

  62. Schon MP, Schon M (2008) TLR7 and TLR8 as targets in cancer therapy. Oncogene 27:190–199

    PubMed  CAS  Google Scholar 

  63. Schon MP, Schon M (2007) Imiquimod: mode of action. Br J Dermatol 157(Suppl 2):8–13

    PubMed  Google Scholar 

  64. Vidal D (2006) Topical imiquimod: mechanism of action and clinical applications. Mini Rev Med Chem 6:499–503

    PubMed  CAS  Google Scholar 

  65. Geller MA et al (2010) Toll-like receptor-7 agonist administered subcutaneously in a prolonged dosing schedule in heavily pretreated recurrent breast, ovarian, and cervix cancers. Cancer Immunol Immunother 59:1877–1884

    PubMed  CAS  Google Scholar 

  66. Carpentier A et al (2006) Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol 8:60–66

    PubMed  CAS  Google Scholar 

  67. Link BK et al (2006) Oligodeoxynucleotide CpG 7909 delivered as intravenous infusion demonstrates immunologic modulation in patients with previously treated non-Hodgkin lymphoma. J Immunother 29:558–568

    PubMed  CAS  Google Scholar 

  68. Molenkamp BG et al (2007) Intradermal CpG-B activates both plasmacytoid and myeloid dendritic cells in the sentinel lymph node of melanoma patients. Clin Cancer Res 13:2961–2969

    PubMed  CAS  Google Scholar 

  69. Brody JD et al (2010) In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 28:4324–4332

    PubMed  Google Scholar 

  70. Goldstein MJ et al (2011) A CpG-loaded tumor cell vaccine induces antitumor CD4+ T cells that are effective in adoptive therapy for large and established tumors. Blood 117:118–127

    PubMed  CAS  Google Scholar 

  71. Weber JS et al (2009) Randomized phase 2/3 trial of CpG oligodeoxynucleotide PF-3512676 alone or with dacarbazine for patients with unresectable stage III and IV melanoma. Cancer 115:3944–3954

    PubMed  CAS  Google Scholar 

  72. Friedberg JW et al (2009) Phase II study of a TLR-9 agonist (1018 ISS) with rituximab in patients with relapsed or refractory follicular lymphoma. Br J Haematol 146:282–291

    PubMed  CAS  Google Scholar 

  73. Oberg HH, Juricke M, Kabelitz D, Wesch D (2011) Regulation of T cell activation by TLR ligands. Eur J Cell Biol 90:582–592

    PubMed  CAS  Google Scholar 

  74. Liu H, Komai-Koma M, Xu D, Liew FY (2006) Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci USA 103:7048–7053

    PubMed  CAS  Google Scholar 

  75. Zhang Y et al (2011) TLR1/TLR2 agonist induces tumor regression by reciprocal modulation of effector and regulatory T cells. J Immunol 186:1963–1969

    PubMed  CAS  Google Scholar 

  76. Peng G et al (2005) Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309:1380–1384

    PubMed  CAS  Google Scholar 

  77. Morse MA et al (2011) Phase I study utilizing a novel antigen-presenting cell-targeted vaccine with Toll-like receptor stimulation to induce immunity to self-antigens in cancer patients. Clin Cancer Res 17:4844–4853

    PubMed  CAS  Google Scholar 

  78. Vanderlocht J et al (2010) Increased tumor-specific CD8+ T cell induction by dendritic cells matured with a clinical grade TLR-agonist in combination with IFN-gamma. Int J Immunopathol Pharmacol 23:35–50

    PubMed  CAS  Google Scholar 

  79. Hennessy EJ, Parker AE, O'Neill LA (2010) Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 9:293–307

    PubMed  CAS  Google Scholar 

  80. Zlotnik A, Burkhardt AM, Homey B (2011) Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol 11:597–606

    PubMed  CAS  Google Scholar 

  81. Wu X, Lee VC, Chevalier E, Hwang ST (2009) Chemokine receptors as targets for cancer therapy. Curr Pharm Des 15:742–757

    PubMed  CAS  Google Scholar 

  82. Zlotnik A, Yoshie O (2012) The chemokine superfamily revisited. Immunity 36:705–716

    PubMed  CAS  Google Scholar 

  83. Zlotnik A (2006) Chemokines and cancer. Int J Cancer 119:2026–2029

    PubMed  CAS  Google Scholar 

  84. Correale P et al (2012) Tumor infiltration by T lymphocytes expressing chemokine receptor 7 (CCR7) is predictive of favorable outcome in patients with advanced colorectal carcinoma. Clin Cancer Res 18:850–857

    PubMed  Google Scholar 

  85. Zou W et al (2001) Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7:1339–1346

    PubMed  CAS  Google Scholar 

  86. Muller A et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56

    PubMed  CAS  Google Scholar 

  87. Keating GM (2011) Plerixafor: a review of its use in stem-cell mobilization in patients with lymphoma or multiple myeloma. Drugs 71:1623–1647

    PubMed  CAS  Google Scholar 

  88. Porvasnik S et al (2009) Effects of CXCR4 antagonist CTCE-9908 on prostate tumor growth. Prostate 69:1460–1469

    PubMed  CAS  Google Scholar 

  89. Kim SY et al (2008) Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 25:201–211

    PubMed  CAS  Google Scholar 

  90. Zou L et al (2004) Bone marrow is a reservoir for CD4 + CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64:8451–8455

    PubMed  CAS  Google Scholar 

  91. Righi E et al (2011) CXCL12/CXCR4 blockade induces multimodal antitumor effects that prolong survival in an immunocompetent mouse model of ovarian cancer. Cancer Res 71:5522–5534

    PubMed  CAS  Google Scholar 

  92. Azab AK et al (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 113:4341–4351

    PubMed  CAS  Google Scholar 

  93. Rhodes LV et al (2011) Cytokine receptor CXCR4 mediates estrogen-independent tumorigenesis, metastasis, and resistance to endocrine therapy in human breast cancer. Cancer Res 71:603–613

    PubMed  CAS  Google Scholar 

  94. Yamamoto K et al (2010) Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol 28:1591–1598

    PubMed  CAS  Google Scholar 

  95. Antoniu SA (2010) Mogamulizumab, a humanized mAb against C-C chemokine receptor 4 for the potential treatment of T-cell lymphomas and asthma. Curr Opin Mol Ther 12:770–779

    PubMed  CAS  Google Scholar 

  96. Ishida T et al (2012) Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol 30:837–842

    PubMed  CAS  Google Scholar 

  97. Zhang J, Patel L, Pienta KJ (2010) CC chemokine ligand 2 (CCL2) promotes prostate cancer tumorigenesis and metastasis. Cytokine Growth Factor Rev 21:41–48

    PubMed  CAS  Google Scholar 

  98. Rozel S et al (2009) Synergy between anti-CCL2 and docetaxel as determined by DW-MRI in a metastatic bone cancer model. J Cell Biochem 107:58–64

    PubMed  CAS  Google Scholar 

  99. Qian BZ et al (2011) CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475:222–225

    PubMed  CAS  Google Scholar 

  100. Garber K (2009) First results for agents targeting cancer-related inflammation. J Natl Cancer Inst 101:1110–1112

    PubMed  Google Scholar 

  101. Bayry J et al (2008) In silico identified CCR4 antagonists target regulatory T cells and exert adjuvant activity in vaccination. Proc Natl Acad Sci USA 105:10221–10226

    PubMed  CAS  Google Scholar 

  102. Duda DG et al (2011) CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin Cancer Res 17:2074–2080

    PubMed  CAS  Google Scholar 

  103. Wijtmans M et al (2012) Synthesis, modeling and functional activity of substituted styrene-amides as small-molecule CXCR7 agonists. Eur J Med Chem 51:184–192

    PubMed  CAS  Google Scholar 

  104. Schiller JT, Lowy DR (2010) Vaccines to prevent infections by oncoviruses. Annu Rev Microbiol 64:23–41

    PubMed  CAS  Google Scholar 

  105. Kew MC (2010) Prevention of hepatocellular carcinoma. Ann Hepatol 9:120–132

    PubMed  Google Scholar 

  106. McCormack PL, Joura EA (2011) Spotlight on quadrivalent human papillomavirus (types 6, 11, 16, 18) recombinant vaccine(Gardasil(R)) in the prevention of premalignant genital lesions, genital cancer, and genital warts in women. BioDrugs 25:339–343

    PubMed  CAS  Google Scholar 

  107. Jenkins M et al (2012) Perspective for prophylaxis and treatment of cervical cancer: an immunological approach. Int Rev Immunol 31:3–21

    PubMed  CAS  Google Scholar 

  108. Proctor LM (2011) The Human Microbiome Project in 2011 and beyond. Cell Host Microbe 10:287–291

    PubMed  CAS  Google Scholar 

  109. Plottel CS, Blaser MJ (2011) Microbiome and malignancy. Cell Host Microbe 10:324–335

    PubMed  CAS  Google Scholar 

  110. Chow J, Tang H, Mazmanian SK (2011) Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol 23:473–480

    PubMed  CAS  Google Scholar 

  111. Jarchum I, Pamer EG (2011) Regulation of innate and adaptive immunity by the commensal microbiota. Curr Opin Immunol 23:353–360

    PubMed  CAS  Google Scholar 

  112. Tlaskalova-Hogenova H et al (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8:110–120

    PubMed  CAS  Google Scholar 

  113. Saleh M, Trinchieri G (2010) Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 11:9–20

    PubMed  Google Scholar 

  114. Fung KY, Cosgrove L, Lockett T, Head R, Topping DL (2012) A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr, 108(5):820–831

    Google Scholar 

  115. Macdonald RS, Wagner K (2012) Influence of dietary phytochemicals and microbiota on colon cancer risk. J Agric Food Chem in press

    Google Scholar 

  116. Wu S et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–1022

    PubMed  CAS  Google Scholar 

  117. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464

    PubMed  CAS  Google Scholar 

  118. Hirschhaeuser F, Sattler UG, Mueller-Klieser W (2011) Lactate: a metabolic key player in cancer. Cancer Res 71:6921–6925

    PubMed  CAS  Google Scholar 

  119. Calcinotto A et al (2011) Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Res 72:2746–2756

    Google Scholar 

  120. Eleftheriadis T et al (2012) The indoleamine 2,3-dioxygenase inhibitor 1-methyl-tryptophan suppresses mitochondrial function, induces aerobic glycolysis and decreases interleukin-10 production in human lymphocytes. Immunol Invest 41:507–520

    PubMed  CAS  Google Scholar 

  121. Singer K et al (2010) Warburg phenotype in renal cell carcinoma: high expression of glucose-transporter 1 (GLUT-1) correlates with low CD8(+) T-cell infiltration in the tumor. Int J Cancer 128:2085–2095

    Google Scholar 

  122. Michalek RD et al (2012) Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci USA 108(45):18348–18353

    Google Scholar 

  123. Jin D et al (2010) CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 70:2245–2255

    PubMed  CAS  Google Scholar 

  124. Wang L et al (2011) CD73 has distinct roles in nonhematopoietic and hematopoietic cells to promote tumor growth in mice. J Clin Invest 121:2371–2382

    PubMed  CAS  Google Scholar 

  125. Li B et al (2006) Vascular endothelial growth factor blockade reduces intratumoral regulatory t cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 12:6808–6816

    PubMed  CAS  Google Scholar 

  126. Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM (2006) FOXP3 + CD4 + CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol 177:246–254

    PubMed  CAS  Google Scholar 

  127. Polanczyk MJ et al (2004) Cutting edge: estrogen drives expansion of the CD4 + CD25+ regulatory T cell compartment. J Immunol 173:2227–2230

    PubMed  CAS  Google Scholar 

  128. Desar IM et al (2010) Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int J Cancer 129:507–512

    PubMed  Google Scholar 

  129. Tisdale JF, Dunn DE, Maciejewski J (2000) Cyclophosphamide and other new agents for the treatment of severe aplastic anemia. Semin Hematol 37:102–109

    PubMed  CAS  Google Scholar 

  130. Berd D, Mastrangelo MJ (1987) Effect of low dose cyclophosphamide on the immune system of cancer patients: reduction of T-suppressor function without depletion of the CD8+ subset. Cancer Res 47:3317–3321

    PubMed  CAS  Google Scholar 

  131. Ghiringhelli F et al (2007) Metronomic cyclophosphamide regimen selectively depletes CD4(+)CD25 (+) regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56(5):641–648

    PubMed  CAS  Google Scholar 

  132. Apetoh L, Vegran F, Ladoire S, Ghiringhelli F (2011) Restoration of antitumor immunity through selective inhibition of myeloid derived suppressor cells by anticancer therapies. Curr Mol Med 11(5):365–372

    PubMed  CAS  Google Scholar 

  133. Vincent J et al (2010) 5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061

    PubMed  CAS  Google Scholar 

  134. Fernandez A et al (2011) Inhibition of tumor-induced myeloid-derived suppressor cell function by a nanoparticulated adjuvant. J Immunol 186:264–274

    PubMed  CAS  Google Scholar 

  135. Ko JS et al (2009) Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 15:2148–2157

    PubMed  CAS  Google Scholar 

  136. Obeid M et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    PubMed  CAS  Google Scholar 

  137. Zitvogel L et al (2010) Immunogenic tumor cell death for optimal anticancer therapy: the calreticulin exposure pathway. Clin Cancer Res 16:3100–3104

    PubMed  CAS  Google Scholar 

  138. Dinarello CA (2010) Anti-inflammatory agents: present and future. Cell 140:935–950

    PubMed  CAS  Google Scholar 

  139. Marriott I, Huet-Hudson YM (2006) Sexual dimorphism in innate immune responses to infectious organisms. Immunol Res 34:177–192

    PubMed  CAS  Google Scholar 

  140. Crandall BG et al (1988) Increased cardiac allograft rejection in female heart transplant recipients. J Heart Transplant 7:419–423

    PubMed  CAS  Google Scholar 

  141. Fish EN (2008) The X-files in immunity: sex-based differences predispose immune responses. Nat Rev Immunol 8:737–744

    PubMed  CAS  Google Scholar 

  142. Lin PY et al (2010) B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol 185:2747–2753

    PubMed  CAS  Google Scholar 

  143. Murthy, K., et al. Novel cancer immunotherapy using rational combinations of B7-H1 blockade, Treg depletion and estrogen receptor beta signaling. American Association of Immunologists Annual Meeting. Boston MA Abstract Number: 1340001(2012).

    Google Scholar 

  144. Naugler WE et al (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317:121–124

    PubMed  CAS  Google Scholar 

  145. Meier A et al (2009) Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med 15:955–959

    PubMed  CAS  Google Scholar 

  146. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21:309–322

    PubMed  CAS  Google Scholar 

  147. Swartz MA et al (2012) Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 72:2473–2480

    PubMed  CAS  Google Scholar 

  148. DeNardo DG, Andreu P, Coussens LM (2010) Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. Cancer Metastasis Rev 29:309–316

    PubMed  Google Scholar 

  149. Andreu P et al (2010) FcRgamma activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17:121–134

    PubMed  CAS  Google Scholar 

  150. Ruffell B, DeNardo DG, Affara NI, Coussens LM (2010) Lymphocytes in cancer development: polarization towards pro-tumor immunity. Cytokine Growth Factor Rev 21:3–10

    PubMed  CAS  Google Scholar 

  151. Ammirante M, Luo JL, Grivennikov S, Nedospasov S, Karin M (2010) B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464:302–305

    PubMed  CAS  Google Scholar 

  152. Labelle M, Begum S, Hynes RO (2011) Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 20:576–590

    PubMed  CAS  Google Scholar 

  153. Denardo DG et al (2011) Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov 1:54–67

    PubMed  CAS  Google Scholar 

  154. Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147

    PubMed  CAS  Google Scholar 

  155. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    PubMed  CAS  Google Scholar 

  156. Zhang B et al (2007) Induced sensitization of tumor stroma leads to eradication of established cancer by T cells. J Exp Med 204:49–55

    PubMed  CAS  Google Scholar 

  157. Zhang B, Karrison T, Rowley DA, Schreiber H (2008) IFN-gamma- and TNF-dependent bystander eradication of antigen-loss variants in established mouse cancers. J Clin Invest 118:1398–1404

    PubMed  CAS  Google Scholar 

  158. Zhang B et al (2008) Equilibrium between host and cancer caused by effector T cells killing tumor stroma. Cancer Res 68:1563–1571

    PubMed  CAS  Google Scholar 

  159. Curiel TJ (2012) Immunotherapy: a useful strategy to help combat multidrug resistance. Drug Resist Updat 15(1–2):106–113

    PubMed  CAS  Google Scholar 

  160. Campisi J, Andersen JK, Kapahi P, Melov S (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21:354–359

    PubMed  CAS  Google Scholar 

  161. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    PubMed  CAS  Google Scholar 

  162. Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21:107–112

    PubMed  CAS  Google Scholar 

  163. Frikeche J et al (2011) Impact of the hypomethylating agent 5-azacytidine on dendritic cells function. Exp Hematol 39:1056–1063

    PubMed  CAS  Google Scholar 

  164. Dubovsky JA et al (2011) Epigenetic repolarization of T lymphocytes from chronic lymphocytic leukemia patients using 5-aza-2′-deoxycytidine. Leuk Res 35:1193–1199

    PubMed  CAS  Google Scholar 

  165. Schmiedel BJ et al (2010) Azacytidine impairs NK cell reactivity while decitabine augments NK cell responsiveness toward stimulation. Int J Cancer 128:2911–2922

    PubMed  Google Scholar 

  166. Gupta PB, Chaffer CL, Weinberg RA (2009) Cancer stem cells: mirage or reality? Nat Med 15:1010–1012

    PubMed  CAS  Google Scholar 

  167. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    PubMed  CAS  Google Scholar 

  168. Ji J, Black KL, Yu JS (2009) Glioma stem cell research for the development of immunotherapy. Neurosurg Clin N Am 21:159–166

    Google Scholar 

  169. Folkins C et al (2007) Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. Cancer Res 67:3560–3564

    PubMed  CAS  Google Scholar 

  170. Gupta PB et al (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    PubMed  CAS  Google Scholar 

  171. Visus C et al (2011) Targeting ALDHbright human carcinoma initiating cells with ALDH1A1- specific CD8+ T cells. Clin Cancer Res 17(19):6174–6184

    PubMed  CAS  Google Scholar 

  172. Ashwell JD (2006) The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6:532–540

    PubMed  CAS  Google Scholar 

  173. Wang S et al (2006) Optimizing immunotherapy in multiple myeloma: restoring the function of patients’ monocyte-derived dendritic cells by inhibiting p38 or activating MEK/ERK MAPK and neutralizing interleukin-6 in progenitor cells. Blood 108:4071–4077

    PubMed  CAS  Google Scholar 

  174. Yong HY, Koh MS, Moon A (2009) The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opin Investig Drugs 18:1893–1905

    PubMed  CAS  Google Scholar 

  175. Reinis M (2008) BiovaxID, a personalized therapeutic vaccine against B-cell lymphomas. Curr Opin Mol Ther 10:526–534

    PubMed  CAS  Google Scholar 

  176. Morse MA, Whelan M (2010) A year of successful cancer vaccines points to a path forward. Curr Opin Mol Ther 12:11–13

    PubMed  Google Scholar 

  177. Castelli R, Cannavo A, Conforti F, Grava G, Cortelezzi A (2012) Immunomodulatory drugs in multiple myeloma: from molecular mechanisms of action to clinical practice. Immunopharmacol Immunotoxicol 34(5):740–753

    Google Scholar 

  178. Carballido E, Veliz M, Komrokji R, Pinilla-Ibarz J (2012) Immunomodulatory drugs and active immunotherapy for chronic lymphocytic leukemia. Cancer Control 19:54–67

    PubMed  Google Scholar 

  179. Nabhan C, Petrylak DP (2012) The role of IMiDs alone or in combination in prostate cancer. Clin Genitourin Cancer 10(3):141– 146

    Google Scholar 

  180. Ohta A et al (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci USA 103:13132–13137

    PubMed  CAS  Google Scholar 

  181. Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605

    PubMed  CAS  Google Scholar 

  182. Resta R, Yamashita Y, Thompson LF (1998) Ecto-enzyme and signaling functions of lymphocyte CD73. Immunol Rev 161:95–109

    PubMed  CAS  Google Scholar 

  183. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2:351–360

    PubMed  CAS  Google Scholar 

  184. Stagg J et al (2011) CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis. Cancer Res 71:2892–2900

    PubMed  CAS  Google Scholar 

  185. Zhang B (2012) Opportunities and challenges for anti-CD73 cancer therapy. Bin Zhang Immunotherapy 2012, in press

    Google Scholar 

  186. Verma S et al (2006) Systematic review of systemic adjuvant therapy for patients at high risk for recurrent melanoma. Cancer 106:1431–1442

    PubMed  CAS  Google Scholar 

  187. Sajid MS, Iqbal Z, Muhammad G, Iqbal MU (2006) Immunomodulatory effect of various anti-parasitics: a review. Parasitology 132:301–313

    PubMed  CAS  Google Scholar 

  188. Chao MP et al (2010) Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci Transl Med 2:63ra94

    PubMed  CAS  Google Scholar 

  189. Willingham, S. Efficacy of anti-CD47 antibody therapy for human solid tumors. Keystone Symposium on Dendritic Cells and Tumor Immunology, Santa Fe, New Mexico, USA abstract J8 335(2011).

    Google Scholar 

Download references

Acknowledgements

Thanks to our colleagues for many informative discussions. This work was supported by CA105207, CA054174, FD003118, the Fanny Rippel Foundation, the Voelcker Trust, the Hayes Endowment, The Holly Beach Public Library Association, The Owens Foundation, The Hogg Foundation, A UTHSCSA KL2 award, and UTHSCSA endowments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler J. Curiel M.D., M.P.H .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Svatek, R.S., Curiel, T.J. (2013). Miscellaneous Approaches and Considerations: TLR Agonists and Other Inflammatory Agents, Anti-Chemokine Agents, Infectious Agents, Tumor Stroma Targeting, Age and Sex Effects, and Miscellaneous Small Molecules. In: Curiel, T. (eds) Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4732-0_13

Download citation

Publish with us

Policies and ethics