Skip to main content

Neuroimmune Cross Talk and HIV-Associated Neurocognitive Disorders

  • Chapter
  • First Online:
Neural-Immune Interactions in Brain Function and Alcohol Related Disorders

Abstract

Human immunodeficiency virus (HIV) infection is a global and devastating epidemic effecting the health, well-being, and social fabric of many of the world’s populations. UNAIDS estimates that 34 million people are infected with HIV with 2.7 million new infections yearly. The majority of infections are in sub-Saharan Africa (http://www.who.int/hiv/data/en/). Viral infection is persistent despite vigorous host immune responses [1–6]. HIV enters its CD4+ T lymphocyte, and mononuclear phagocyte (MP; dendritic cells, monocytes, macrophages, and microglial cells) targets through cell surface interaction of its envelope protein, gp120, with its CD4 and chemokine receptor/co-receptors, CCR5 and CXCR4 [7–11]. Following cell entry, HIV RNA is reverse transcribed and integrated into the host cell’s genome. Transcription of viral genes is controlled by interactions between HIV-1 regulatory proteins and host cell transcription factors such as nuclear factor kappa beta (NF-κB) [12–15]. Viral assembly proceeds at the cell surface or in subcellular organelles and the viral RNA encapsulated by interactions with Gag, GagPol, and envelope proteins, with subsequent viral budding and release of mature virions [16–23]. Ongoing HIV infection results in profound CD4+ T cell losses with consequent immune impairments resulting in a range of opportunistic infections, metabolic disorders, and malignancies [3, 5, 24–26]. Less appreciated are primary manifestations of viral replication that include its effects on the central nervous system (CNS) [27–29]. Indeed, although HIV primarily affects immune function and integrity [3, 24–26], virus-associated effects on the nervous system are a significant cause of comorbidity during the course of disease [27, 29, 30]. Prior to the introduction of combination antiretroviral therapy (cART), opportunistic infections (OIs) and advanced cognitive, motor, and behavioral abnormalities commonly occurred as HIV disease advanced and was associated with virus-induced progressive immunosuppression. While cART has reduced the prevalence of OIs along with severity of virus-induced nervous system disorders, both remain active albeit less severe [27].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borrow P, Tishon A, Oldstone MB (1991) Infection of lymphocytes by a virus that aborts cytotoxic T lymphocyte activity and establishes persistent infection. J Exp Med 174:203–212

    Article  PubMed  CAS  Google Scholar 

  2. Fauci AS (1993) Multifactorial nature of human immunodeficiency virus disease: implications for therapy. Science 262:1011–1018

    Article  PubMed  CAS  Google Scholar 

  3. Haase AT (1999) Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu Rev Immunol 17:625–656. doi:10.1146/annurev.immunol.17.1.625

    Article  PubMed  CAS  Google Scholar 

  4. Pantaleo G et al (1994) Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 370:463–467. doi:10.1038/370463a0

    Article  PubMed  CAS  Google Scholar 

  5. Roy S, Devadas K, Dhawan S, Buch S (2011) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 22–35

    Google Scholar 

  6. Schmitz JE et al (1999) Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283:857–860

    Article  PubMed  CAS  Google Scholar 

  7. Alkhatib G, Broder CC, Berger EA (1996) Cell type-specific fusion cofactors determine human immunodeficiency virus type 1 tropism for T-cell lines versus primary macrophages. J Virol 70:5487–5494

    PubMed  CAS  Google Scholar 

  8. Berger EA (1997) HIV entry and tropism: the chemokine receptor connection. AIDS 11(Suppl A):S3–S16

    PubMed  Google Scholar 

  9. Berger EA (1998) HIV entry and tropism. When one receptor is not enough. Adv Exp Med Biol 452:151–157

    Article  PubMed  CAS  Google Scholar 

  10. Deng H et al (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666. doi:10.1038/381661a0

    Article  PubMed  CAS  Google Scholar 

  11. Dragic T et al (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673. doi:10.1038/381667a0

    Article  PubMed  CAS  Google Scholar 

  12. Cullen BR (1991) Regulation of HIV-1 gene expression. FASEB J 5:2361–2368

    PubMed  CAS  Google Scholar 

  13. Cullen BR, Greene WC (1989) Regulatory pathways governing HIV-1 replication. Cell 58:423–426

    Article  PubMed  CAS  Google Scholar 

  14. Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–713. doi:10.1038/326711a0

    Article  PubMed  CAS  Google Scholar 

  15. Naghavi MH, Estable MC, Schwartz S, Roeder RG, Vahlne A (2001) Upstream stimulating factor affects human immunodeficiency virus type 1 (HIV-1) long terminal repeat-directed transcription in a cell-specific manner, independently of the HIV-1 subtype and the core-negative regulatory element. J Gen Virol 82:547–559

    PubMed  CAS  Google Scholar 

  16. Bieniasz PD (2006) Late budding domains and host proteins in enveloped virus release. Virology 344:55–63. doi:10.1016/j.virol.2005.09.044

    Article  PubMed  CAS  Google Scholar 

  17. Gomez CY, Hope TJ (2006) Mobility of human immunodeficiency virus type 1 Pr55Gag in living cells. J Virol 80:8796–8806. doi:10.1128/JVI.02159-05

    Article  PubMed  CAS  Google Scholar 

  18. Gross I et al (2000) A conformational switch controlling HIV-1 morphogenesis. EMBO J 19:103–113. doi:10.1093/emboj/19.1.103

    Article  PubMed  CAS  Google Scholar 

  19. Hermida-Matsumoto L, Resh MD (2000) Localization of human immunodeficiency virus type 1 Gag and Env at the plasma membrane by confocal imaging. J Virol 74:8670–8679

    Article  PubMed  CAS  Google Scholar 

  20. Jouvenet N et al (2006) Plasma membrane is the site of productive HIV-1 particle assembly. PLoS Biol 4:e435

    Article  PubMed  CAS  Google Scholar 

  21. Klein KC, Reed JC, Lingappa JR (2007) Intracellular destinies: degradation, targeting, assembly, and endocytosis of HIV Gag. AIDS Rev 9:150–161

    PubMed  Google Scholar 

  22. Morita E, Sundquist WI (2004) Retrovirus budding. Annu Rev Cell Dev Biol 20:395–425. doi:10.1146/annurev.cellbio.20.010403.102350

    Article  PubMed  CAS  Google Scholar 

  23. Yuan X, Yu X, Lee TH, Essex M (1993) Mutations in the N-terminal region of human immunodeficiency virus type 1 matrix protein block intracellular transport of the Gag precursor. J Virol 67:6387–6394

    PubMed  CAS  Google Scholar 

  24. Gottlieb GS et al (2002) Equal plasma viral loads predict a similar rate of CD4+ T cell decline in human immunodeficiency virus (HIV) type 1- and HIV-2-infected individuals from Senegal, West Africa. J Infect Dis 185:905–914. doi:10.1086/339295

    Article  PubMed  Google Scholar 

  25. Kahn JO, Walker BD (1998) Acute human immunodeficiency virus type 1 infection. N Engl J Med 339:33–39. doi:10.1056/NEJM199807023390107

    Article  PubMed  CAS  Google Scholar 

  26. Laurence J (1993) T-cell subsets in health, infectious disease, and idiopathic CD4+ T lymphocytopenia. Ann Intern Med 119:55–62

    PubMed  CAS  Google Scholar 

  27. Heaton RK et al (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol 17:3–16. doi:10.1007/s13365-010-0006-1

    Article  PubMed  CAS  Google Scholar 

  28. Kraft-Terry SD, Stothert AR, Buch S, Gendelman HE (2010) HIV-1 neuroimmunity in the era of antiretroviral therapy. Neurobiol Dis 37:542–548. doi:10.1016/j.nbd.2009.12.015, pii: S0969-9961(09)00370-2

    Article  PubMed  CAS  Google Scholar 

  29. Yadav A, Collman RG (2009) CNS inflammation and macrophage/microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 4:430–447. doi:10.1007/s11481-009-9174-2

    Article  PubMed  Google Scholar 

  30. Kraft-Terry S et al (2010) Proteomic analyses of monocytes obtained from Hispanic women with HIV-associated dementia show depressed antioxidants. Proteomics Clin Appl 4:706–714. doi:10.1002/prca.201000010

    Article  PubMed  CAS  Google Scholar 

  31. Antinori A et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799. doi:10.1212/01.WNL.0000287431.88658.8b

    Article  PubMed  CAS  Google Scholar 

  32. Dore G, McDonald A, Li Y, Kaldor J, Brew B (2003) Marked improvement in survival following AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS (Lond, Engl) 17:1539–1545

    Article  Google Scholar 

  33. Sacktor N (2002) The epidemiology of human immunodeficiency virus-associated neurological disease in the era of highly active antiretroviral therapy. J Neurovirol 8(Suppl 2):115–121. doi:10.1080/13550280290101094

    Article  PubMed  CAS  Google Scholar 

  34. Woods SP, Moore DJ, Weber E, Grant I (2009) Cognitive neuropsychology of HIV-associated neurocognitive disorders. Neuropsychol Rev 19:152–168. doi:10.1007/s11065-009-9102-5

    Article  PubMed  Google Scholar 

  35. Boisse L, Gill MJ, Power C (2008) HIV infection of the central nervous system: clinical features and neuropathogenesis. Neurol Clin 26:799–819, x. doi:10.1016/j.ncl.2008.04.002

    Article  PubMed  Google Scholar 

  36. Grant I (2008) Neurocognitive disturbances in HIV. Int Rev Psychiatry 20:33–47. doi:10.1080/09540260701877894

    Article  PubMed  Google Scholar 

  37. Grant I, Sacktor N (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 488–503

    Google Scholar 

  38. Cole MA et al (2007) Longitudinally preserved psychomotor performance in long-term asymptomatic HIV-infected individuals. Neurology 69:2213–2220. doi:10.1212/01.WNL.0000277520.94788.82

    Article  PubMed  CAS  Google Scholar 

  39. Ellis RJ et al (2011) CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS 25:1747–1751. doi:10.1097/QAD.0b013e32834a40cd

    Article  PubMed  CAS  Google Scholar 

  40. Tozzi V et al (2007) Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr 45:174–182. doi:10.1097/QAI.0b013e318042e1ee

    Article  PubMed  Google Scholar 

  41. Gupta J et al (1985) Specific identification of human papillomavirus type in cervical smears and paraffin sections by in situ hybridization with radioactive probes: a preliminary communication. Int J Gynecol Pathol 4:211–218

    Article  PubMed  CAS  Google Scholar 

  42. Liner KJ 2nd, Hall CD, Robertson KR (2007) Impact of human immunodeficiency virus (HIV) subtypes on HIV-associated neurological disease. J Neurovirol 13:291–304. doi:10.1080/13550280701422383

    Article  PubMed  Google Scholar 

  43. Rao VR et al (2008) HIV-1 clade-specific differences in the induction of neuropathogenesis. J Neurosci 28:10010–10016. doi:10.1523/JNEUROSCI.2955-08.2008, pii: 28/40/10010

    Article  PubMed  CAS  Google Scholar 

  44. Sacktor N et al (2009) HIV subtype D is associated with dementia, compared with subtype A, in immunosuppressed individuals at risk of cognitive impairment in Kampala, Uganda. Clin Infect Dis 49:780–786. doi:10.1086/605284

    Article  PubMed  Google Scholar 

  45. Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P (2008) Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol 63:366–376. doi:10.1002/ana.21292

    Article  PubMed  CAS  Google Scholar 

  46. Hightower GK et al (2009) Select resistance-associated mutations in blood are associated with lower CSF viral loads and better neuropsychological performance. Virology 394:243–248. doi:10.1016/j.virol.2009.08.007, pii: S0042-6822(09)00487-5

    Article  PubMed  CAS  Google Scholar 

  47. Corder EH et al (1998) HIV-infected subjects with the E4 allele for APOE have excess dementia and peripheral neuropathy. Nat Med 4:1182–1184. doi:10.1038/2677

    Article  PubMed  CAS  Google Scholar 

  48. Cutler RG et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101:2070–2075. doi:10.1073/pnas.0305799101

    Article  PubMed  CAS  Google Scholar 

  49. Letendre S et al (2004) The monocyte chemotactic protein-1–2578G allele is associated with elevated MCP-1 concentrations in cerebrospinal fluid. J Neuroimmunol 157:193–196. doi:10.1016/j.jneuroim.2004.08.028

    Article  PubMed  CAS  Google Scholar 

  50. Quasney MW et al (2001) Increased frequency of the tumor necrosis factor-alpha-308 A allele in adults with human immunodeficiency virus dementia. Ann Neurol 50:157–162

    Article  PubMed  CAS  Google Scholar 

  51. Valcour V et al (2004) Higher frequency of dementia in older HIV-1 individuals: the Hawaii Aging with HIV-1 Cohort. Neurology 63:822–827

    Article  PubMed  CAS  Google Scholar 

  52. Llorente A et al (2006) Effects of polymorphisms of chemokine receptors on neurodevelopment and the onset of encephalopathy in children with perinatal HIV-1 infection. Appl Neuropsychol 13:180–189. doi:10.1207/s15324826an1303_6

    Article  PubMed  Google Scholar 

  53. Singh KK et al (2003) Genetic influence of CCR5, CCR2, and SDF1 variants on human immunodeficiency virus 1 (HIV-1)-related disease progression and neurological impairment, in children with symptomatic HIV-1 infection. J Infect Dis 188:1461–1472. doi:10.1086/379038

    Article  PubMed  CAS  Google Scholar 

  54. Applebaum AJ et al (2009) The impact of neuropsychological functioning on adherence to HAART in HIV-infected substance abuse patients. AIDS Patient Care STDS 23:455–462. doi:10.1089/apc.2008.0181

    Article  PubMed  Google Scholar 

  55. Baum MK et al (2009) Crack-cocaine use accelerates HIV disease progression in a cohort of HIV-positive drug users. J Acquir Immune Defic Syndr 50:93–99. doi:10.1097/QAI.0b013e3181900129

    Article  PubMed  Google Scholar 

  56. Chang L, Ernst T, Speck O, Grob CS (2005) Additive effects of HIV and chronic methamphetamine use on brain metabolite abnormalities. Am J Psychiatry 162:361–369. doi:10.1176/appi.ajp. 162.2.361

    Article  PubMed  Google Scholar 

  57. Cherner M et al (2004) Effects of HIV-1 infection and aging on neurobehavioral functioning: preliminary findings. AIDS 18(Suppl 1):S27–S34

    PubMed  Google Scholar 

  58. Fama R, Rosenbloom MJ, Nichols BN, Pfefferbaum A, Sullivan EV (2009) Working and episodic memory in HIV infection, alcoholism, and their comorbidity: baseline and 1-year follow-up examinations. Alcohol Clin Exp Res 33:1815–1824. doi:10.1111/j.1530-0277.2009.01020.x

    Article  PubMed  Google Scholar 

  59. Fein G, Fletcher DJ, Di Sclafani V (1998) Effect of chronic alcohol abuse on the CNS morbidity of HIV disease. Alcohol Clin Exp Res 22:196S–200S

    Article  PubMed  CAS  Google Scholar 

  60. Hinkin CH et al (2007) Drug use and medication adherence among HIV-1 infected individuals. AIDS Behav 11:185–194. doi:10.1007/s10461-006-9152-0

    Article  PubMed  Google Scholar 

  61. Rippeth JD et al (2004) Methamphetamine dependence increases risk of neuropsychological impairment in HIV infected persons. J Int Neuropsychol Soc 10:1–14. doi:10.1017/S1355617704101021

    Article  PubMed  CAS  Google Scholar 

  62. Rosenbloom MJ et al (2007) Alcoholism, HIV infection, and their comorbidity: factors affecting self-rated health-related quality of life. J Stud Alcohol Drugs 68:115–125

    PubMed  Google Scholar 

  63. Toussi SS et al (2009) Short communication: methamphetamine treatment increases in vitro and in vivo HIV replication. AIDS Res Hum Retroviruses 25:1117–1121. doi:10.1089/aid.2008.0282

    Article  PubMed  CAS  Google Scholar 

  64. Valcour VG, Shikuma CM, Watters MR, Sacktor NC (2004) Cognitive impairment in older HIV-1-seropositive individuals: prevalence and potential mechanisms. AIDS 18(Suppl 1):S79–S86, pii: 00002030-200418001-00012

    PubMed  Google Scholar 

  65. Gendelman H, Lipton S, Tardieu M, Bukrinsky M, Nottet H (1994) The neuropathogenesis of HIV-1 Infection. J Leukoc Biol 56:389–398

    PubMed  CAS  Google Scholar 

  66. Lawrence DM, Major EO (2002) HIV-1 and the brain: connections between HIV-1-associated dementia, neuropathology and neuroimmunology. Microbes Infect 4:301–308. doi:10.1016/S1286-4579(02)01542-3

    Article  PubMed  CAS  Google Scholar 

  67. Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44. doi:10.1038/nrn2040

    Article  PubMed  CAS  Google Scholar 

  68. Anthony IC, Bell JE (2008) The neuropathology of HIV/AIDS. Int Rev Psychiatry 20:15–24. doi:10.1080/09540260701862037

    Article  PubMed  CAS  Google Scholar 

  69. Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE (2005) Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol 64:529–536

    PubMed  CAS  Google Scholar 

  70. Zheng J, Gendelman HE (1997) The HIV-1 associated dementia complex: a metabolic encephalopathy fueled by viral replication in mononuclear phagocytes. Curr Opin Neurol 10:319–325

    Article  PubMed  CAS  Google Scholar 

  71. Kraft-Terry SD, Buch SJ, Fox HS, Gendelman HE (2009) A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron 64:133–145. doi:10.1016/j.neuron.2009.09.042, pii: S0896-6273(09)00753-3

    Article  PubMed  CAS  Google Scholar 

  72. Bell JE, Brettle RP, Chiswick A, Simmonds P (1998) HIV encephalitis, proviral load and dementia in drug users and homosexuals with AIDS. Effect of neocortical involvement. Brain 121:2043–2052

    Article  PubMed  Google Scholar 

  73. Clifford DB et al (2009) Effects of active HCV replication on neurologic status in HIV RNA virally suppressed patients. Neurology 73:309–314. doi:10.1212/WNL.0b013e3181af7a10

    Article  PubMed  CAS  Google Scholar 

  74. Letendre S et al (2007) Pathogenesis of hepatitis C virus coinfection in the brains of patients infected with HIV. J Infect Dis 196:361–370. doi:10.1086/519285

    Article  PubMed  CAS  Google Scholar 

  75. Hauser KF et al (2006) Impact of opiate-HIV-1 interactions on neurotoxic signaling. J Neuroimmune Pharmacol 1:98–105. doi:10.1007/s11481-005-9000-4

    Article  PubMed  Google Scholar 

  76. Hu S, Sheng WS, Lokensgard JR, Peterson PK (2005) Morphine potentiates HIV-1 gp120-induced neuronal apoptosis. J Infect Dis 191:886–889. doi:10.1086/427830, pii: JID33502

    Article  PubMed  CAS  Google Scholar 

  77. Khurdayan VK et al (2004) Preferential vulnerability of astroglia and glial precursors to combined opioid and HIV-1 Tat exposure in vitro. Eur J Neurosci 19:3171–3182. doi:10.1111/j.0953-816X.2004.03461.x

    Article  PubMed  Google Scholar 

  78. Bell JE, Arango JC, Anthony IC (2006) Neurobiology of multiple insults: HIV-1-associated brain disorders in those who use illicit drugs. J Neuroimmune Pharmacol 1:182–191. doi:10.1007/s11481-006-9018-2

    Article  PubMed  Google Scholar 

  79. Davies J et al (1998) HIV-associated brain pathology: a comparative international study. Neuropathol Appl Neurobiol 24:118–124

    Article  PubMed  CAS  Google Scholar 

  80. Arango JC, Simmonds P, Brettle RP, Bell JE (2004) Does drug abuse influence the microglial response in AIDS and HIV encephalitis? AIDS 18(Suppl 1):S69–S74

    PubMed  Google Scholar 

  81. Martinez AJ et al (1995) The neuropathology and epidemiology of AIDS. A Berlin experience. A review of 200 cases. Pathol Res Pract 191:427–443

    Article  PubMed  CAS  Google Scholar 

  82. Pitcher J, Shimizu S, Burbassi S, Meucci O (2010) Disruption of neuronal CXCR4 function by opioids: preliminary evidence of ferritin heavy chain as a potential etiological agent in neuroAIDS. J Neuroimmunol 224:66–71. doi:10.1016/j.jneuroim.2010.05.006

    Article  PubMed  CAS  Google Scholar 

  83. Nath A et al (2008) Evolution of HIV dementia with HIV infection. Int Rev Psychiatry 20:25–31. doi:10.1080/09540260701861930

    Article  PubMed  Google Scholar 

  84. Hegyi Z, Kis G, Hollo K, Ledent C, Antal M (2009) Neuronal and glial localization of the cannabinoid-1 receptor in the superficial spinal dorsal horn of the rodent spinal cord. Eur J Neurosci 30:251–262. doi:10.1111/j.1460-9568.2009.06816.x, pii: EJN6816

    Article  PubMed  Google Scholar 

  85. McDowell JA, Chittick GE, Stevens CP, Edwards KD, Stein DS (2000) Pharmacokinetic interaction of abacavir (1592U89) and ethanol in human immunodeficiency virus-infected adults. Antimicrob Agents Chemother 44:1686–1690

    Article  PubMed  CAS  Google Scholar 

  86. Bidlack JM et al (2006) Opioid receptors and signaling on cells from the immune system. J Neuroimmune Pharmacol 1:260–269. doi:10.1007/s11481-006-9026-2

    Article  PubMed  Google Scholar 

  87. Eisenstein TK, Rahim RT, Feng P, Thingalaya NK, Meissler JJ (2006) Effects of opioid tolerance and withdrawal on the immune system. J Neuroimmune Pharmacol 1:237–249. doi:10.1007/s11481-006-9019-1

    Article  PubMed  Google Scholar 

  88. Finley MJ et al (2008) Bi-directional heterologous desensitization between the major HIV-1 co-receptor CXCR4 and the kappa-opioid receptor. J Neuroimmunol 197:114–123. doi:10.1016/j.jneuroim.2008.04.021

    Article  PubMed  CAS  Google Scholar 

  89. Machelska H, Stein C (2006) Leukocyte-derived opioid peptides and inhibition of pain. J Neuroimmune Pharmacol 1:90–97. doi:10.1007/s11481-005-9002-2

    Article  PubMed  Google Scholar 

  90. Molina PE (2006) Opioids and opiates: analgesia with cardiovascular, haemodynamic and immune implications in critical illness. J Intern Med 259:138–154. doi:10.1111/j.1365-2796.2005.01569.x

    Article  PubMed  CAS  Google Scholar 

  91. Donahoe RM et al (2009) Probable deceleration of progression of Simian AIDS affected by opiate dependency: studies with a rhesus macaque/SIVsmm9 model. J Acquir Immune Defic Syndr 50:241–249. doi:10.1097/QAI.0b013e3181967354

    Article  PubMed  Google Scholar 

  92. Kumar R et al (2006) Chronic morphine exposure causes pronounced virus replication in cerebral compartment and accelerated onset of AIDS in SIV/SHIV-infected Indian rhesus macaques. Virology 354:192–206. doi:10.1016/j.virol.2006.06.020

    Article  PubMed  CAS  Google Scholar 

  93. Baldwin GC et al (1997) Marijuana and cocaine impair alveolar macrophage function and cytokine production. Am J Respir Crit Care Med 156:1606–1613

    PubMed  CAS  Google Scholar 

  94. Buch SJ, Yai H, Roy S (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 354–361

    Google Scholar 

  95. Dhillon N et al (2008) Molecular mechanism(s) involved in the synergistic induction of CXCL10 by human immunodeficiency virus type 1 Tat and interferon-gamma in macrophages. J Neurovirol 14:196–204. doi:10.1080/13550280801993648, pii: 794315853

    Article  PubMed  CAS  Google Scholar 

  96. Gan X et al (1999) Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clin Immunol 91:68–76. doi:10.1006/clim.1998.4683

    Article  PubMed  CAS  Google Scholar 

  97. Zhang L et al (1998) Cocaine opens the blood–brain barrier to HIV-1 invasion. J Neurovirol 4:619–626

    Article  PubMed  CAS  Google Scholar 

  98. Ellis RJ et al (2003) Increased human immunodeficiency virus loads in active methamphetamine users are explained by reduced effectiveness of antiretroviral therapy. J Infect Dis 188:1820–1826. doi:10.1086/379894

    Article  PubMed  Google Scholar 

  99. Halkitis PN, Kutnick AH, Slater S (2005) The social realities of adherence to protease inhibitor regimens: substance use, health care and psychological states. J Health Psychol 10:545–558. doi:10.1177/1359105305053422

    Article  PubMed  Google Scholar 

  100. King MA et al (2009) Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clin Exp Immunol 157:104–118. doi:10.1111/j.1365-2249.2009.03933.x, pii: CEI3933

    Article  PubMed  CAS  Google Scholar 

  101. Moss AR et al (2004) Adherence to highly active antiretroviral therapy in the homeless population in San Francisco: a prospective study. Clin Infect Dis 39:1190–1198. doi:10.1086/424008

    Article  PubMed  Google Scholar 

  102. Pal D et al (2011) Efflux transporters- and cytochrome P-450-mediated interactions between drugs of abuse and antiretrovirals. Life Sci 88:959–971. doi:10.1016/J.Lfs.2010.09.012

    Article  PubMed  CAS  Google Scholar 

  103. Kumar AM et al (2009) Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J Neurovirol 15:257–274. doi:10.1080/13550280902973952

    Article  PubMed  CAS  Google Scholar 

  104. Sekine Y et al (2003) Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry 160:1699–1701

    Article  PubMed  Google Scholar 

  105. Sekine Y et al (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63:90–100. doi:10.1001/archpsyc.63.1.90

    Article  PubMed  CAS  Google Scholar 

  106. Volkow ND et al (2001) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21:9414–9418

    PubMed  CAS  Google Scholar 

  107. Volkow ND et al (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    Article  PubMed  CAS  Google Scholar 

  108. Garwood ER, Bekele W, McCulloch CE, Christine CW (2006) Amphetamine exposure is elevated in Parkinson’s disease. Neurotoxicology 27:1003–1006. doi:10.1016/j.neuro.2006.03.015

    Article  PubMed  CAS  Google Scholar 

  109. Tse W et al (2004) Movement disorders and AIDS: a review. Parkinsonism Relat Disord 10:323–334. doi:10.1016/j.parkreldis.2004.03.001

    Article  PubMed  Google Scholar 

  110. Qi L et al (2011) Programmed neuronal cell death induced by HIV-1 tat and methamphetamine. Microsc Res Tech 74:1139–1144. doi:10.1002/jemt.21006

    Article  PubMed  CAS  Google Scholar 

  111. Valcour V et al (2008) Aging exacerbates extrapyramidal motor signs in the era of highly active antiretroviral therapy. J Neurovirol 14:362–367. doi:10.1080/13550280802216494

    Article  PubMed  CAS  Google Scholar 

  112. Ikezu T (2009) The aging of human-immunodeficiency-virus-associated neurocognitive disorders. J Neuroimmune Pharmacol 4:161–162. doi:10.1007/s11481-009-9155-5

    Article  PubMed  Google Scholar 

  113. Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE (2006) Accelerated Tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol 111:529–538. doi:10.1007/s00401-006-0037-0

    Article  PubMed  CAS  Google Scholar 

  114. Esiri MM, Biddolph SC, Morris CS (1998) Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65:29–33

    Article  PubMed  CAS  Google Scholar 

  115. Rempel HC, Pulliam L (2005) HIV-1 Tat inhibits neprilysin and elevates amyloid beta. AIDS 19:127–135

    Article  PubMed  CAS  Google Scholar 

  116. Ernst T, Chang L (2004) Effect of aging on brain metabolism in antiretroviral-naive HIV patients. AIDS 18(Suppl 1):S61–S67

    PubMed  CAS  Google Scholar 

  117. Daily A, Nath A, Hersh LB (2006) Tat peptides inhibit neprilysin. J Neurovirol 12:153–160. doi:10.1080/13550280600760677

    Article  PubMed  CAS  Google Scholar 

  118. Giunta B et al (2008) HIV-1 TAT inhibits microglial phagocytosis of Abeta peptide. Int J Clin Exp Pathol 1:260–275

    PubMed  CAS  Google Scholar 

  119. Hamel FG, Fawcett J, Tsui BT, Bennett RG, Duckworth WC (2006) Effect of nelfinavir on insulin metabolism, proteasome activity and protein degradation in HepG2 cells. Diabetes Obes Metab 8:661–668. doi:10.1111/j.1463-1326.2005.00546.x

    Article  PubMed  CAS  Google Scholar 

  120. Piccinini M et al (2005) The HIV protease inhibitors nelfinavir and saquinavir, but not a variety of HIV reverse transcriptase inhibitors, adversely affect human proteasome function. Antivir Ther 10:215–223

    PubMed  CAS  Google Scholar 

  121. Schweinsburg BC et al (2005) Brain mitochondrial injury in human immunodeficiency virus-seropositive (HIV+) individuals taking nucleoside reverse transcriptase inhibitors. J Neurovirol 11:356–364. doi:10.1080/13550280591002342

    Article  PubMed  CAS  Google Scholar 

  122. Valcour V, Shiramizu B (2004) HIV-associated dementia, mitochondrial dysfunction, and oxidative stress. Mitochondrion 4:119–129. doi:10.1016/j.mito.2004.05.009

    Article  PubMed  CAS  Google Scholar 

  123. Giralt M et al (2006) HIV-1 infection alters gene expression in adipose tissue, which contributes to HIV-1/HAART-associated lipodystrophy. Antivir Ther 11:729–740

    PubMed  CAS  Google Scholar 

  124. Shanley LJ, Irving AJ, Harvey J (2001) Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. J Neurosci 21:RC186

    PubMed  CAS  Google Scholar 

  125. Grunfeld C (2008) Insulin resistance in HIV infection: drugs, host responses, or restoration to health? Top HIV Med 16:89–93

    PubMed  Google Scholar 

  126. Mallewa JE et al (2008) HIV-associated lipodystrophy: a review of underlying mechanisms and therapeutic options. J Antimicrob Chemother 62:648–660. doi:10.1093/jac/dkn251

    Article  PubMed  CAS  Google Scholar 

  127. Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(Suppl 1):893–904. doi:10.1038/sj.cdd.4401577

    Article  PubMed  CAS  Google Scholar 

  128. Dreyer EB, Kaiser PK, Offermann JT, Lipton SA (1990) HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 248:364–367

    Article  PubMed  CAS  Google Scholar 

  129. Meucci O et al (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci USA 95:14500–14505

    Article  PubMed  CAS  Google Scholar 

  130. Zheng J et al (1999) Intracellular CXCR4 signaling, neuronal apoptosis and neuropathogenic mechanisms of HIV-1-associated dementia. J Neuroimmunol 98:185–200, pii: S0165572899000491

    Article  PubMed  CAS  Google Scholar 

  131. Chandra T et al (2005) Molecular interactions of the type 1 human immunodeficiency virus transregulatory protein Tat with N-methyl-d-aspartate receptor subunits. Neuroscience 134:145–153. doi:10.1016/j.neuroscience.2005.02.049

    Article  PubMed  CAS  Google Scholar 

  132. Gonzalez-Scarano F, Martin-Garcia J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81. doi:10.1038/nri1527

    Article  PubMed  CAS  Google Scholar 

  133. Erdmann NB, Whitney NP, Zheng J (2006) Potentiation of excitotoxicity in HIV-1 associated dementia and the significance of glutaminase. Clin Neurosci Res 6:315–328. doi:10.1016/j.cnr.2006.09.009

    Article  PubMed  CAS  Google Scholar 

  134. Jones GJ et al (2007) HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 27:3703–3711. doi:10.1523/JNEUROSCI.5522-06.2007, pii: 27/14/3703

    Article  PubMed  CAS  Google Scholar 

  135. Kort JJ, Jalonen TO (1998) The nef protein of the human immunodeficiency virus type 1 (HIV-1) inhibits a large-conductance potassium channel in human glial cells. Neurosci Lett 251:1–4

    Article  PubMed  CAS  Google Scholar 

  136. Piller SC, Ewart GD, Premkumar A, Cox GB, Gage PW (1996) Vpr protein of human immunodeficiency virus type 1 forms cation-selective channels in planar lipid bilayers. Proc Natl Acad Sci USA 93:111–115

    Article  PubMed  CAS  Google Scholar 

  137. Piller SC, Jans P, Gage PW, Jans DA (1998) Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proc Natl Acad Sci USA 95:4595–4600

    Article  PubMed  CAS  Google Scholar 

  138. Sabbah EN, Roques BP (2005) Critical implication of the (70–96) domain of human immunodeficiency virus type 1 Vpr protein in apoptosis of primary rat cortical and striatal neurons. J Neurovirol 11:489–502. doi:10.1080/13550280500384941

    Article  PubMed  CAS  Google Scholar 

  139. Trillo-Pazos G, McFarlane-Abdulla E, Campbell IC, Pilkington GJ, Everall IP (2000) Recombinant nef HIV-IIIB protein is toxic to human neurons in culture. Brain Res 864:315–326

    Article  PubMed  CAS  Google Scholar 

  140. Adamson DC et al (1996) Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 274:1917–1921

    Article  PubMed  CAS  Google Scholar 

  141. Bukrinsky MI et al (1995) Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J Exp Med 181:735–745

    Article  PubMed  CAS  Google Scholar 

  142. Garden GA et al (2002) Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J Neurosci 22:4015–4024. doi:20026351, pii: 22/10/4015

    PubMed  CAS  Google Scholar 

  143. Giulian D (1990) Microglia, cytokines, and cytotoxins: modulators of cellular responses after injury to the central nervous system. J Immunol Immunopharmacol 10:15–21

    Google Scholar 

  144. Giulian D, Corpuz M, Chapman S, Mansouri M, Robertson C (1993) Reactive mononuclear phagocytes release neurotoxins after ischemic and traumatic injury to the central nervous system. J Neurosci Res 36:681–693

    Article  PubMed  CAS  Google Scholar 

  145. Giulian D, Vaca K, Noonan CA (1990) Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science 250:1593–1596

    Article  PubMed  CAS  Google Scholar 

  146. Giulian D et al (1996) Study of receptor-mediated neurotoxins released by HIV-1-infected mononuclear phagocytes found in human brain. J Neurosci 16:3139–3153

    PubMed  CAS  Google Scholar 

  147. Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994

    Article  PubMed  CAS  Google Scholar 

  148. Kaul M, Lipton SA (1999) Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis [in process citation]. Proc Natl Acad Sci USA 96:8212–8216

    Article  PubMed  CAS  Google Scholar 

  149. Lipton SA, Gendelman HE (1995) Seminars in medicine of the Beth Israel Hospital, Boston. Dementia associated with the acquired immunodeficiency syndrome. N Engl J Med 332:934–940. doi:10.1056/NEJM199504063321407

    Article  PubMed  CAS  Google Scholar 

  150. Yeh MW et al (2000) Cytokine-stimulated, but not HIV-infected, human monocyte-derived macrophages produce neurotoxic levels of l-cysteine. J Immunol 164:4265–4270

    PubMed  CAS  Google Scholar 

  151. Lipton SA (1992) Models of neuronal injury in AIDS: another role for the NMDA receptor? Trends Neurosci 15:75–79

    Article  PubMed  CAS  Google Scholar 

  152. Li W, Galey D, Mattson MP, Nath A (2005) Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotox Res 8:119–134

    Article  PubMed  CAS  Google Scholar 

  153. Walsh KA et al (2004) Antioxidant protection from HIV-1 gp120-induced neuroglial toxicity. J Neuroinflammation 1:8. doi:10.1186/1742-2094-1-8

    Article  PubMed  Google Scholar 

  154. Mukerjee R et al (2008) Involvement of the p53 and p73 transcription factors in neuroAIDS. Cell Cycle 7:2682–2690

    Article  PubMed  CAS  Google Scholar 

  155. Jayadev S et al (2007) The glial response to CNS HIV infection includes p53 activation and increased expression of p53 target genes. J Neuroimmune Pharmacol 2:359–370. doi:10.1007/s11481-007-9095-x

    Article  PubMed  Google Scholar 

  156. Garden GA et al (2004) HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J 18:1141–1143. doi:10.1096/fj.04-1676fje

    PubMed  CAS  Google Scholar 

  157. Jayadev S et al (2011) Transcription factor p53 influences microglial activation phenotype. Glia 59:1402–1413. doi:10.1002/glia.21178

    Article  PubMed  Google Scholar 

  158. Acheampong EA et al (2005) Human immunodeficiency virus type 1 Nef potently induces apoptosis in primary human brain microvascular endothelial cells via the activation of caspases. J Virol 79:4257–4269. doi:10.1128/JVI.79.7.4257-4269.2005

    Article  PubMed  CAS  Google Scholar 

  159. Bergonzini V et al (2009) Nef and cell signaling transduction: a possible involvement in the pathogenesis of human immunodeficiency virus-associated dementia. J Neurovirol 15:238–248. doi:10.1080/13550280902939748

    Article  PubMed  CAS  Google Scholar 

  160. Kohleisen B et al (1999) Stable expression of HIV-1 Nef induces changes in growth properties and activation state of human astrocytes. AIDS 13:2331–2341

    Article  PubMed  CAS  Google Scholar 

  161. Ni HT et al (2004) High-level expression of functional chemokine receptor CXCR4 on human neural precursor cells. Brain Res Dev Brain Res 152:159–169. doi:10.1016/j.devbrainres.2004.06.015

    Article  PubMed  CAS  Google Scholar 

  162. Okamoto S et al (2007) HIV/gp120 decreases adult neural progenitor cell proliferation via checkpoint kinase-mediated cell-cycle withdrawal and G1 arrest. Cell Stem Cell 1:230–236. doi:10.1016/j.stem.2007.07.010

    Article  PubMed  CAS  Google Scholar 

  163. Keohane A, Ryan S, Maloney E, Sullivan AM, Nolan YM (2010) Tumour necrosis factor-alpha impairs neuronal differentiation but not proliferation of hippocampal neural precursor cells: role of Hes1. Mol Cell Neurosci 43:127–135. doi:10.1016/j.mcn.2009.10.003

    Article  PubMed  CAS  Google Scholar 

  164. Kanmogne G (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 246–254

    Google Scholar 

  165. Martinez-Skinner A, Nowacek AS, McMillan J, Gendelman HE (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 257–274

    Google Scholar 

  166. Tardieu M, Boutet A (2002) HIV-1 and the central nervous system. Curr Top Microbiol Immunol 265:183–195

    PubMed  CAS  Google Scholar 

  167. Eugenin EA et al (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci 26:1098–1106. doi:10.1523/JNEUROSCI.3863-05.2006, pii: 26/4/1098

    Article  PubMed  CAS  Google Scholar 

  168. Peng F et al (2008) Mechanisms of platelet-derived growth factor-mediated neuroprotection – implications in HIV dementia. Eur J Neurosci 28:1255–1264. doi:10.1111/j.1460-9568.2008.06444.x

    Article  PubMed  Google Scholar 

  169. Ricardo-Dukelow M et al (2007) HIV-1 infected monocyte-derived macrophages affect the human brain microvascular endothelial cell proteome: new insights into blood–brain barrier dysfunction for HIV-1-associated dementia. J Neuroimmunol 185:37–46. doi:10.1016/j.jneuroim.2007.01.004, pii: S0165-5728(07)00005-7

    Article  PubMed  CAS  Google Scholar 

  170. Brabers NA, Nottet HS (2006) Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Invest 36:447–458. doi:10.1111/j.1365-2362.2006.01657.x, pii: ECI1657

    Article  PubMed  CAS  Google Scholar 

  171. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1:223–236. doi:10.1007/s11481-006-9025-3

    Article  PubMed  Google Scholar 

  172. Kadiu I, Ricardo-Dukelow M, Ciborowski P, Gendelman HE (2007) Cytoskeletal protein transformation in HIV-1-infected macrophage giant cells. J Immunol 178:6404–6415, pii: 178/10/6404

    PubMed  CAS  Google Scholar 

  173. Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739

    PubMed  CAS  Google Scholar 

  174. Cassol E, Cassetta L, Alfano M, Poli G (2010) Macrophage polarization and HIV-1 infection. J Leukoc Biol 87:599–608. doi:10.1189/jlb.1009673

    Article  PubMed  CAS  Google Scholar 

  175. Cassol E, Cassetta L, Rizzi C, Alfano M, Poli G (2009) M1 and M2a polarization of human monocyte-derived macrophages inhibits HIV-1 replication by distinct mechanisms. J Immunol 182:6237–6246. doi:10.4049/jimmunol.0803447

    Article  PubMed  CAS  Google Scholar 

  176. Stout RD, Suttles J (2004) Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 76:509–513. doi:10.1189/jlb.0504272

    Article  PubMed  CAS  Google Scholar 

  177. Crews L, Lentz MR, Gonzalez RG, Fox HS, Masliah E (2008) Neuronal injury in simian immunodeficiency virus and other animal models of neuroAIDS. J Neurovirol 14:327–339. doi:10.1080/13550280802132840

    Article  PubMed  Google Scholar 

  178. Moore DJ et al (2006) Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS 20:879–887. doi:10.1097/01.aids.0000218552.69834.00

    Article  PubMed  Google Scholar 

  179. Krathwohl MD, Kaiser JL (2004) HIV-1 promotes quiescence in human neural progenitor cells. J Infect Dis 190:216–226. doi:10.1086/422008

    Article  PubMed  CAS  Google Scholar 

  180. Lawrence DM et al (2004) Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J Virol 78:7319–7328. doi:10.1128/JVI.78.14.7319-7328.2004

    Article  PubMed  CAS  Google Scholar 

  181. Reinecke JB, Peng H, Huang Y, Chen Q, Zheng JC (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 173–186

    Google Scholar 

  182. Tran PB, Miller RJ (2005) HIV-1, chemokines and neurogenesis. Neurotox Res 8:149–158

    Article  PubMed  CAS  Google Scholar 

  183. van Marle G, Power C (2005) Human immunodeficiency virus type 1 genetic diversity in the nervous system: evolutionary epiphenomenon or disease determinant? J Neurovirol 11:107–128. doi:10.1080/13550280590922838, pii: K306R212512Q0Q45

    Article  PubMed  CAS  Google Scholar 

  184. Mathieu P et al (2010) The more you have, the less you get: the functional role of inflammation on neuronal differentiation of endogenous and transplanted neural stem cells in the adult brain. J Neurochem 112:1368–1385. doi:10.1111/j.1471-4159.2009.06548.x

    Article  PubMed  CAS  Google Scholar 

  185. Koenig S et al (1986) Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089–1093

    Article  PubMed  CAS  Google Scholar 

  186. Churchill MJ et al (2009) Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol 66:253–258. doi:10.1002/ana.21697

    Article  PubMed  Google Scholar 

  187. Eugenin EA, Berman JW (2007) Gap junctions mediate human immunodeficiency virus-bystander killing in astrocytes. J Neurosci 27:12844–12850. doi:10.1523/JNEUROSCI.4154-07.2007

    Article  PubMed  CAS  Google Scholar 

  188. Eugenin EA, Clements JE, Zink MC, Berman JW (2011) Human immunodeficiency virus infection of human astrocytes disrupts blood–brain barrier integrity by a gap junction-dependent mechanism. J Neurosci 31:9456–9465. doi:10.1523/JNEUROSCI.1460-11.2011

    Article  PubMed  CAS  Google Scholar 

  189. Ju SM et al (2009) Extracellular HIV-1 Tat up-regulates expression of matrix metalloproteinase-9 via a MAPK-NF-kappaB dependent pathway in human astrocytes. Exp Mol Med 41:86–93, pii: 20092284

    Article  PubMed  CAS  Google Scholar 

  190. Williams R et al (2009) Proinflammatory cytokines and HIV-1 synergistically enhance CXCL10 expression in human astrocytes. Glia 57:734–743. doi:10.1002/glia.20801

    Article  PubMed  Google Scholar 

  191. Xing HQ et al (2009) In vivo expression of proinflammatory cytokines in HIV encephalitis: an analysis of 11 autopsy cases. Neuropathology 29:433–442

    Article  PubMed  Google Scholar 

  192. Bissel SJ et al (2008) Systemic and brain macrophage infections in relation to the development of simian immunodeficiency virus encephalitis. J Virol 82:5031–5042. doi:10.1128/JVI.02069-07

    Article  PubMed  CAS  Google Scholar 

  193. Hutter-Saunders JAL, Poluektova L, Dhawan S, Gendelman HE (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 131–145

    Google Scholar 

  194. Mankowski JL, Clements JE, Zink MC (2002) Searching for clues: tracking the pathogenesis of human immunodeficiency virus central nervous system disease by use of an accelerated, consistent simian immunodeficiency virus macaque model. J Infect Dis 186(Suppl 2):S199–S208. doi:10.1086/344938

    Article  PubMed  Google Scholar 

  195. Sadagopal S et al (2008) Enhancement of human immunodeficiency virus (HIV)-specific CD8+ T cells in cerebrospinal fluid compared to those in blood among antiretroviral therapy-naive HIV-positive subjects. J Virol 82:10418–10428. doi:10.1128/JVI.01190-08

    Article  PubMed  CAS  Google Scholar 

  196. Shieh TM et al (2001) Functional analyses of natural killer cells in macaques infected with neurovirulent simian immunodeficiency virus. J Neurovirol 7:11–24. doi:10.1080/135502801300069593

    Article  PubMed  CAS  Google Scholar 

  197. Aloisi F et al (1999) Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. Eur J Immunol 29:2705–2714

    Article  PubMed  CAS  Google Scholar 

  198. Pantaleo G, Koup RA (2004) Correlates of immune protection in HIV-1 infection: what we know, what we don’t know, what we should know. Nat Med 10:806–810. doi:10.1038/nm0804-806

    Article  PubMed  CAS  Google Scholar 

  199. Gong N et al (2011) Brain ingress of regulatory T cells in a murine model of HIV-1 encephalitis. J Neuroimmunol 230:33–41. doi:10.1016/j.jneuroim.2010.08.014, pii: S0165-5728(10)00378-4

    Article  PubMed  CAS  Google Scholar 

  200. Huang X, Reynolds AD, Mosley RL, Gendelman HE (2009) CD 4+ T cells in the pathobiology of neurodegenerative disorders. J Neuroimmunol 211:3–15. doi:10.1016/j.jneuroim.2009.04.006, pii: S0165-5728(09)00140-4

    Article  PubMed  CAS  Google Scholar 

  201. Liu J et al (2009) Neuromodulatory activities of CD4+ CD25+ regulatory T cells in a murine model of HIV-1-associated neurodegeneration. J Immunol 182:3855–3865. doi:10.4049/jimmunol.0803330, pii: 182/6/3855

    Article  PubMed  CAS  Google Scholar 

  202. Sakaguchi S (2000) Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101:455–458

    Article  PubMed  CAS  Google Scholar 

  203. Takahashi T et al (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310

    Article  PubMed  CAS  Google Scholar 

  204. Seddiki N, Kelleher AD (2008) Regulatory T cells in HIV infection: who’s suppressing what? Curr Infect Dis Rep 10:252–258

    Article  PubMed  Google Scholar 

  205. Tenorio AR et al (2009) The effect of aging on T-regulatory cell frequency in HIV infection. Clin Immunol 130:298–303. doi:10.1016/j.clim.2008.10.001

    Article  PubMed  CAS  Google Scholar 

  206. Ansari AA, Pattanapanyasat K, Pereira LE (2007) Autoimmunity and HIV/simian immunodeficiency virus infection: a two edged sword. Hepatol Res 37(Suppl 3):S389–S395. doi:10.1111/j.1872-034X.2007.00225.x

    Article  PubMed  CAS  Google Scholar 

  207. Klatt NR et al (2008) Availability of activated CD4+ T cells dictates the level of viremia in naturally SIV-infected sooty mangabeys. J Clin Invest 118:2039–2049. doi:10.1172/JCI33814

    PubMed  CAS  Google Scholar 

  208. O’Connell K, Siliciano RF (2008) Immune alteration fends off AIDS. Nat Med 14:1016–1018. doi:10.1038/nm1008-1016

    Article  PubMed  CAS  Google Scholar 

  209. Silvestri G, Paiardini M, Pandrea I, Lederman MM, Sodora DL (2007) Understanding the benign nature of SIV infection in natural hosts. J Clin Invest 117:3148–3154. doi:10.1172/JCI33034

    Article  PubMed  CAS  Google Scholar 

  210. French MA et al (2000) Immune restoration disease after the treatment of immunodeficient HIV-infected patients with highly active antiretroviral therapy. HIV Med 1:107–115

    Article  PubMed  CAS  Google Scholar 

  211. Sharma SK, Soneja M (2011) HIV & immune reconstitution inflammatory syndrome (IRIS). Indian J Med Res 134:866–877. doi:10.4103/0971-5916.92632

    Article  PubMed  CAS  Google Scholar 

  212. Mahnke YD et al (2012) Selective expansion of polyfunctional pathogen-specific CD4+ T cells in HIV-1-infected patients with immune reconstitution inflammatory syndrome. Blood. doi:10.1182/blood-2011-09-380840

  213. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13. doi:10.1016/j.nbd.2003.12.016

    Article  PubMed  CAS  Google Scholar 

  214. Banks WA (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 189–206

    Google Scholar 

  215. Gloor SM et al (2001) Molecular and cellular permeability control at the blood–brain barrier. Brain Res Brain Res Rev 36:258–264

    Article  PubMed  CAS  Google Scholar 

  216. Pardridge WM (1986) Blood–brain barrier transport of nutrients. Nutr Rev 44(Suppl):15–25

    PubMed  CAS  Google Scholar 

  217. Risau W (1991) Induction of blood–brain barrier endothelial cell differentiation. Ann N Y Acad Sci 633:405–419

    Article  PubMed  CAS  Google Scholar 

  218. Risau W, Wolburg H (1990) Development of the blood–brain barrier. Trends Neurosci 13:174–178

    Article  PubMed  CAS  Google Scholar 

  219. Rubin LL, Staddon JM (1999) The cell biology of the blood–brain barrier. Annu Rev Neurosci 22:11–28. doi:10.1146/annurev.neuro.22.1.11

    Article  PubMed  CAS  Google Scholar 

  220. Strelow LI, Janigro D, Nelson JA (2001) The blood–brain barrier and AIDS. Adv Virus Res 56:355–388

    Article  PubMed  CAS  Google Scholar 

  221. Goldstein GW (1988) Endothelial cell-astrocyte interactions. A cellular model of the blood–brain barrier. Ann N Y Acad Sci 529:31–39

    Article  PubMed  CAS  Google Scholar 

  222. Pardridge WM, Boado RJ, Farrell CR (1990) Brain-type glucose transporter (GLUT-1) is selectively localized to the blood–brain barrier. Studies with quantitative western blotting and in situ hybridization. J Biol Chem 265:18035–18040

    PubMed  CAS  Google Scholar 

  223. Shen SS, Zhang WD (2010) ABC transporters and drug efflux at the blood–brain barrier. Rev Neurosci 21:29–53

    PubMed  CAS  Google Scholar 

  224. Agrawal S et al (2006) Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J Exp Med 203:1007–1019

    Article  PubMed  CAS  Google Scholar 

  225. Nottet HS et al (1996) Mechanisms for the transendothelial migration of HIV-1-infected monocytes into brain. J Immunol 156:1284–1295

    PubMed  CAS  Google Scholar 

  226. Persidsky Y, Buttini M, Limoges J, Bock P, Gendelman HE (1997) An analysis of HIV-1-associated inflammatory products in brain tissue of humans and SCID mice with HIV-1 encephalitis. J Neurovirol 3:401–416

    Article  PubMed  CAS  Google Scholar 

  227. Pu H et al (2003) HIV-1 Tat protein upregulates inflammatory mediators and induces monocyte invasion into the brain. Mol Cell Neurosci 24:224–237

    Article  PubMed  CAS  Google Scholar 

  228. Liu Y et al (2004) Regulation of leukocyte transmigration: cell surface interactions and signaling events. J Immunol 172:7–13

    PubMed  CAS  Google Scholar 

  229. Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24:327–334

    PubMed  CAS  Google Scholar 

  230. van Buul JD, Hordijk PL (2004) Signaling in leukocyte transendothelial migration. Arterioscler Thromb Vasc Biol 24:824–833. doi:10.1161/01.ATV.0000122854.76267.5c

    Article  PubMed  CAS  Google Scholar 

  231. Engelhardt B (2008) Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci 274:23–26. doi:10.1016/J.Jns.2008.05.019

    Article  PubMed  CAS  Google Scholar 

  232. Engelhardt B (2008) The blood-central nervous system barriers actively control immune cell entry into the central nervous system. Curr Pharm Des 14:1555–1565

    Article  PubMed  CAS  Google Scholar 

  233. Nottet HSLM (1999) Interactions between macrophages and brain microvascular endothelial cells: role in pathogenesis of HIV-1 infection and blood–brain barrier function. J Neurovirol 5:659–669

    Article  PubMed  CAS  Google Scholar 

  234. Del Maschio A et al (1999) Leukocyte recruitment in the cerebrospinal fluid of mice with experimental meningitis is inhibited by an antibody to junctional adhesion molecule (JAM). J Exp Med 190:1351–1356

    Article  PubMed  Google Scholar 

  235. Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117:19–29. doi:10.1242/jcs.00930

    Article  PubMed  CAS  Google Scholar 

  236. Martin-Padura I et al (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142:117–127

    Article  PubMed  CAS  Google Scholar 

  237. Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3:151–158. doi:10.1038/ni755

    Article  PubMed  CAS  Google Scholar 

  238. Schenkel AR, Mamdouh Z, Chen X, Liebman RM, Muller WA (2002) CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat Immunol 3:143–150. doi:10.1038/ni749

    Article  PubMed  CAS  Google Scholar 

  239. Buckner CM, Luers AJ, Calderon TM, Eugenin EA, Berman JW (2006) Neuroimmunity and the blood–brain barrier: molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS. J Neuroimmune Pharmacol 1:160–181. doi:10.1007/s11481-006-9017-3

    Article  PubMed  Google Scholar 

  240. Seilhean D et al (1997) Astrocytic adhesion molecules are increased in HIV-1-associated cognitive/motor complex. Neuropathol Appl Neurobiol 23:83–92

    Article  PubMed  CAS  Google Scholar 

  241. Banks WA, Ercal N, Price TO (2006) The blood–brain barrier in neuroAIDS. Curr HIV Res 4:259–266

    Article  PubMed  CAS  Google Scholar 

  242. Cartier L, Hartley O, Dubois-Dauphin M, Krause KH (2005) Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 48:16–42. doi:10.1016/j.brainresrev.2004.07.021

    Article  PubMed  CAS  Google Scholar 

  243. Gendelman HE et al (1990) Regulation of HIV replication in infected monocytes by IFN-alpha. Mechanisms for viral restriction. J Immunol 145:2669–2676

    PubMed  CAS  Google Scholar 

  244. Gendelman HE, Genis P, Jett M, Zhai QH, Nottet HS (1994) An experimental model system for HIV-1-induced brain injury. Adv Neuroimmunol 4:189–193

    Article  PubMed  CAS  Google Scholar 

  245. Huang ZB et al (1993) Infection of macrophages with lymphotropic human immunodeficiency virus type 1 can be arrested after viral DNA synthesis. J Virol 67:6893–6896

    PubMed  CAS  Google Scholar 

  246. Colleton BA et al (2009) Primary human immunodeficiency virus type 1-specific CD8+ T-cell responses induced by myeloid dendritic cells. J Virol 83:6288–6299. doi:10.1128/JVI.02611-08

    Article  PubMed  CAS  Google Scholar 

  247. Lubong Sabado R et al (2009) In vitro priming recapitulates in vivo HIV-1 specific T cell responses, revealing rapid loss of virus reactive CD4 T cells in acute HIV-1 infection. PLoS One 4:e4256. doi:10.1371/journal.pone.0004256

    Article  PubMed  CAS  Google Scholar 

  248. Sabado RL et al (2007) Pathways utilized by dendritic cells for binding, uptake, processing and presentation of antigens derived from HIV-1. Eur J Immunol 37:1752–1763. doi:10.1002/eji.200636981

    Article  PubMed  CAS  Google Scholar 

  249. Malaspina A, Rinaldo CR, Sekaly RP, Flores J, D’Souza PM (2011) “In vitro systems to characterize the immune response to HIV-1 and HIV-1 vaccine candidates”, NIAID Workshop Report, Bethesda, August 4, 2010. Vaccine 29:4647–4653. http://dx.doi.org/10.1016/j.vaccine.2011.04.035

    Article  PubMed  Google Scholar 

  250. Co JG, Witwer KW, Gama L, Zink MC, Clements JE (2011) Induction of innate immune responses by SIV in vivo and in vitro: differential expression and function of RIG-I and MDA5. J Infect Dis 204:1104–1114. doi:10.1093/infdis/jir469

    Article  PubMed  CAS  Google Scholar 

  251. Kalter DC et al (1991) Enhanced HIV replication in macrophage colony-stimulating factor-treated monocytes. J Immunol 146:298–306

    PubMed  CAS  Google Scholar 

  252. Persidsky Y, Gendelman HE (1997) Development of laboratory and animal model systems for HIV-1 encephalitis and its associated dementia. J Leukoc Biol 62:100–106

    PubMed  CAS  Google Scholar 

  253. Shah A, Singh DP, Buch S, Kumar A (2011) HIV-1 envelope protein gp120 up regulates CCL5 production in astrocytes which can be circumvented by inhibitors of NF-kappaB pathway. Biochem Biophys Res Commun 414:112–117. doi:10.1016/j.bbrc.2011.09.033

    Article  PubMed  CAS  Google Scholar 

  254. Meeker RB, Poulton W, Feng WH, Hudson L, Longo FM (2011) Suppression of immunodeficiency virus-associated neural damage by the p75 neurotrophin receptor ligand, LM11A-31, in an in vitro feline model. J Neuroimmune Pharmacol 7(2):388–400. doi:10.1007/s11481-011-9325-0

    Google Scholar 

  255. Bethel-Brown C et al (2011) HIV-1 Tat-mediated induction of platelet-derived growth factor in astrocytes: role of early growth response gene 1. J Immunol 186:4119–4129. doi:10.4049/jimmunol.1002235

    Article  PubMed  CAS  Google Scholar 

  256. Overholser ED, Babas T, Zink MC, Barber SA, Clements JE (2005) CD4-independent entry and replication of simian immunodeficiency virus in primary rhesus macaque astrocytes are regulated by the transmembrane protein. J Virol 79:4944–4951. doi:10.1128/JVI.79.8.4944-4951.2005

    Article  PubMed  CAS  Google Scholar 

  257. Peng H et al (2011) HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway. PLoS One 6:e19439. doi:10.1371/journal.pone.0019439

    Article  PubMed  CAS  Google Scholar 

  258. Chen L et al (2011) HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents. PLoS One 6:e25994. doi:10.1371/journal.pone.0025994

    Article  PubMed  CAS  Google Scholar 

  259. Podhaizer EM et al (2011) Morphine and gp120 toxic interactions in striatal neurons are dependent on HIV-1 strain. J Neuroimmune Pharmacol. doi:10.1007/s11481-011-9326-z

  260. White MG et al (2011) Parallel high throughput neuronal toxicity assays demonstrate uncoupling between loss of mitochondrial membrane potential and neuronal damage in a model of HIV-induced neurodegeneration. Neurosci Res 70:220–229. doi:10.1016/j.neures.2011.01.013

    Article  PubMed  CAS  Google Scholar 

  261. Zhang Y et al (2012) Sigma-1 receptor agonists provide neuroprotection against gp120 via a change in bcl-2 expression in mouse neuronal cultures. Brain Res 1431:13–22. doi:10.1016/j.brainres.2011.10.053

    Article  PubMed  CAS  Google Scholar 

  262. Gorantla S, Che M, Gendelman HE (2005) Isolation, propagation, and HIV-1 infection of monocyte-derived macrophages and recovery of virus from brain and cerebrospinal fluid. Methods Mol Biol 304:35–48. doi:10.1385/1-59259-907-9:035

    PubMed  Google Scholar 

  263. Poluektova L et al (2004) Neuroregulatory events follow adaptive immune-mediated elimination of HIV-1-infected macrophages: studies in a murine model of viral encephalitis. J Immunol 172:7610–7617, pii: 172/12/7610

    PubMed  CAS  Google Scholar 

  264. Chapuis AG et al (2011) HIV-specific CD8+ T cells from HIV+ individuals receiving HAART can be expanded ex vivo to augment systemic and mucosal immunity in vivo. Blood 117:5391–5402. doi:10.1182/blood-2010-11-320226

    Article  PubMed  CAS  Google Scholar 

  265. Clements JE, Mankowski JL, Gama L, Zink MC (2008) The accelerated simian immunodeficiency virus macaque model of human immunodeficiency virus-associated neurological disease: from mechanism to treatment. J Neurovirol 14:309–317. doi:10.1080/13550280802132832

    Article  PubMed  CAS  Google Scholar 

  266. Fox HS (2008) Virus-host interaction in the simian immunodeficiency virus-infected brain. J Neurovirol 14:286–291. doi:10.1080/13550280802132824

    Article  PubMed  CAS  Google Scholar 

  267. Zink MC, Mankowski JL, Graham DR, Gama L, Clements JE (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 365–376

    Google Scholar 

  268. Roberts ES et al (2006) Host response and dysfunction in the CNS during chronic simian immunodeficiency virus infection. J Neurosci 26:4577–4585. doi:10.1523/JNEUROSCI.4504-05.2006

    Article  PubMed  CAS  Google Scholar 

  269. Roberts ES et al (2003) Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am J Pathol 162:2041–2057. doi:10.1016/S0002-9440(10)64336-2

    Article  PubMed  CAS  Google Scholar 

  270. Zink MC et al (2010) Simian immunodeficiency virus-infected macaques treated with highly active antiretroviral therapy have reduced central nervous system viral replication and inflammation but persistence of viral DNA. J Infect Dis 202:161–170. doi:10.1086/653213

    Article  PubMed  CAS  Google Scholar 

  271. Meeker RB (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 377–390

    Google Scholar 

  272. Fletcher NF, Meeker RB, Hudson LC, Callanan JJ (2011) The neuropathogenesis of feline immunodeficiency virus infection: barriers to overcome. Vet J 188:260–269. doi:10.1016/j.tvjl.2010.03.022

    Article  PubMed  CAS  Google Scholar 

  273. Elder JH, Lin YC, Fink E, Grant CK (2010) Feline immunodeficiency virus (FIV) as a model for study of lentivirus infections: parallels with HIV. Curr HIV Res 8:73–80

    Article  PubMed  CAS  Google Scholar 

  274. Elder JH et al (2008) Molecular mechanisms of FIV infection. Vet Immunol Immunopathol 123:3–13. doi:10.1016/j.vetimm.2008.01.007

    Article  PubMed  CAS  Google Scholar 

  275. Van Rompay KK (2010) Evaluation of antiretrovirals in animal models of HIV infection. Antiviral Res 85:159–175. doi:10.1016/j.antiviral.2009.07.008

    Article  PubMed  CAS  Google Scholar 

  276. Yamamoto JK, Sanou MP, Abbott JR, Coleman JK (2010) Feline immunodeficiency virus model for designing HIV/AIDS vaccines. Curr HIV Res 8:14–25

    Article  PubMed  CAS  Google Scholar 

  277. Poluektova L (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 414–430

    Google Scholar 

  278. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  PubMed  CAS  Google Scholar 

  279. Borkow G (2005) Mouse models for HIV-1 infection. IUBMB Life 57:819–823. doi:10.1080/15216540500459642

    Article  PubMed  CAS  Google Scholar 

  280. Stoddart CA et al (2007) Validation of the SCID-hu Thy/Liv mouse model with four classes of licensed antiretrovirals. PLoS One 2:e655. doi:10.1371/journal.pone.0000655

    Article  PubMed  CAS  Google Scholar 

  281. Tyor WR, Power C, Gendelman HE, Markham RB (1993) A model of human immunodeficiency virus encephalitis in scid mice. Proc Natl Acad Sci USA 90:8658–8662

    Article  PubMed  CAS  Google Scholar 

  282. Brainard DM et al (2009) Induction of robust cellular and humoral virus-specific adaptive immune responses in human immunodeficiency virus-infected humanized BLT mice. J Virol 83:7305–7321. doi:10.1128/JVI.02207-08

    Article  PubMed  CAS  Google Scholar 

  283. Gorantla S et al (2010) CD8+ cell depletion accelerates HIV-1 immunopathology in humanized mice. J Immunol 184:7082–7091. doi:10.4049/jimmunol.1000438

    Article  PubMed  CAS  Google Scholar 

  284. Watanabe S et al (2007) Humanized NOD/SCID/IL2R{gamma}null mice transplanted with hematopoietic stem cells under nonmyeloablative conditions show prolonged life spans and allow detailed analysis of human immunodeficiency virus type 1 pathogenesis. J Virol 81:13259–13264. doi:10.1128/jvi.01353-07

    Article  PubMed  CAS  Google Scholar 

  285. Goffinet C, Allespach I, Keppler OT (2007) HIV-susceptible transgenic rats allow rapid preclinical testing of antiviral compounds targeting virus entry or reverse transcription. Proc Natl Acad Sci USA 104:1015–1020. doi:10.1073/pnas.0607414104

    Article  PubMed  CAS  Google Scholar 

  286. Michel N et al (2009) Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo. Retrovirology 6:2. doi:10.1186/1742-4690-6-2

    Article  PubMed  CAS  Google Scholar 

  287. Anderson ER, Xiong H, Gendelman HE (2006) In: Friedman H, Specter S, Bendinelli M (eds) In vivo models of HIV disease and control. Springer, New York, pp 19–43

    Google Scholar 

  288. Chang L, Feger U, Ernst TM (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 763–797

    Google Scholar 

  289. Tate DF, Khedraki R, McCaffrey D, Branson D, Dewey J (2011) The role of medical imaging in defining CNS abnormalities associated with HIV-infection and opportunistic infections. Neurotherapeutics 8:103–116. doi:10.1007/s13311-010-0010-4

    Article  PubMed  Google Scholar 

  290. Whiteman ML et al (1993) Progressive multifocal leukoencephalopathy in 47 HIV-seropositive patients: neuroimaging with clinical and pathologic correlation. Radiology 187:233–240

    PubMed  CAS  Google Scholar 

  291. Brass LM et al (1994) The role of single photon emission computed tomography brain imaging with 99mTc-bicisate in the localization and definition of mechanism of ischemic stroke. J Cereb Blood Flow Metab 14(Suppl 1):S91–S98

    PubMed  Google Scholar 

  292. Rosci MA et al (1992) Methods for detecting early signs of AIDS dementia complex in asymptomatic HIV-1-infected subjects. AIDS 6:1309–1316

    Article  PubMed  CAS  Google Scholar 

  293. Schwartz RB et al (1994) SPECT imaging of the brain: comparison of findings in patients with chronic fatigue syndrome, AIDS dementia complex, and major unipolar depression. AJR Am J Roentgenol 162:943–951

    PubMed  CAS  Google Scholar 

  294. Chang L et al (2008) Greater than age-related changes in brain diffusion of HIV patients after 1 year. J Neuroimmune Pharmacol 3:265–274. doi:10.1007/s11481-008-9120-8

    Article  PubMed  Google Scholar 

  295. Hammoud DA et al (2005) Imaging glial cell activation with [11C]-R-PK11195 in patients with AIDS. J Neurovirol 11:346–355. doi:10.1080/13550280500187351

    Article  PubMed  CAS  Google Scholar 

  296. Wang GJ et al (2004) Decreased brain dopaminergic transporters in HIV-associated dementia patients. Brain 127:2452–2458. doi:10.1093/brain/awh269

    Article  PubMed  Google Scholar 

  297. Georgiou MF et al (2008) Analysis of the effects of injecting drug use and HIV-1 infection on 18F-FDG PET brain metabolism. J Nucl Med 49:1999–2005. doi:10.2967/jnumed.108.052688

    Article  PubMed  Google Scholar 

  298. von Giesen HJ et al (2000) Potential time course of human immunodeficiency virus type 1-associated minor motor deficits: electrophysiologic and positron emission tomography findings. Arch Neurol 57:1601–1607

    Article  Google Scholar 

  299. Hinkin CH et al (1995) Cerebral metabolic change in patients with AIDS: report of a six-month follow-up using positron-emission tomography. J Neuropsychiatry Clin Neurosci 7:180–187

    PubMed  CAS  Google Scholar 

  300. Castelo JM, Sherman SJ, Courtney MG, Melrose RJ, Stern CE (2006) Altered hippocampal-prefrontal activation in HIV patients during episodic memory encoding. Neurology 66:1688–1695. doi:10.1212/01.wnl.0000218305.09183.70

    Article  PubMed  CAS  Google Scholar 

  301. Chang L et al (2001) Neural correlates of attention and working memory deficits in HIV patients. Neurology 57:1001–1007

    Article  PubMed  CAS  Google Scholar 

  302. Melrose RJ, Tinaz S, Castelo JM, Courtney MG, Stern CE (2008) Compromised fronto-striatal functioning in HIV: an fMRI investigation of semantic event sequencing. Behav Brain Res 188:337–347. doi:10.1016/j.bbr.2007.11.021

    Article  PubMed  Google Scholar 

  303. Chang L et al (2004) Adaptation of the attention network in human immunodeficiency virus brain injury. Ann Neurol 56:259–272. doi:10.1002/ana.20190

    Article  PubMed  Google Scholar 

  304. Chang L et al (1999) Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 53:782–789

    Article  PubMed  CAS  Google Scholar 

  305. Chang L, Ernst T, Leonido-Yee M, Walot I, Singer E (1999) Cerebral metabolite abnormalities correlate with clinical severity of HIV-1 cognitive motor complex. Neurology 52:100–108

    Article  PubMed  CAS  Google Scholar 

  306. Chang L et al (2004) A multicenter in vivo proton-MRS study of HIV-associated dementia and its relationship to age. Neuroimage 23:1336–1347. doi:10.1016/j.neuroimage.2004.07.067

    Article  PubMed  CAS  Google Scholar 

  307. Harezlak J et al (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25:625–633. doi:10.1097/QAD.0b013e3283427da7

    Article  PubMed  CAS  Google Scholar 

  308. Letendre S, McCutchan JA, Ellis RJ, Best BM, Capparelli EV (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 962–977

    Google Scholar 

  309. Price RW et al (2007) Biomarkers of HIV-1 CNS infection and injury. Neurology 69:1781–1788. doi:10.1212/01.wnl.0000278457.55877.eb

    Article  PubMed  CAS  Google Scholar 

  310. Canestri A et al (2010) Discordance between cerebral spinal fluid and plasma HIV replication in patients with neurological symptoms who are receiving suppressive antiretroviral therapy. Clin Infect Dis 50:773–778. doi:10.1086/650538

    Article  PubMed  Google Scholar 

  311. Gendelman HE et al (1998) Suppression of inflammatory neurotoxins by highly active antiretroviral therapy in human immunodeficiency virus-associated dementia. J Infect Dis 178:1000–1007

    Article  PubMed  CAS  Google Scholar 

  312. Letendre S, Ellis RJ (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 825–846

    Google Scholar 

  313. Letendre SL, Lanier ER, McCutchan JA (1999) Cerebrospinal fluid beta chemokine concentrations in neurocognitively impaired individuals infected with human immunodeficiency virus type 1. J Infect Dis 180:310–319. doi:10.1086/314866

    Article  PubMed  CAS  Google Scholar 

  314. Abdulle S et al (2007) CSF neurofilament protein (NFL) – a marker of active HIV-related neurodegeneration. J Neurol 254:1026–1032. doi:10.1007/s00415-006-0481-8

    Article  PubMed  CAS  Google Scholar 

  315. Mellgren A et al (2007) Antiretroviral treatment reduces increased CSF neurofilament protein (NFL) in HIV-1 infection. Neurology 69:1536–1541. doi:10.1212/01.wnl.0000277635.05973.55

    Article  PubMed  CAS  Google Scholar 

  316. Gisslen M, Rosengren L, Hagberg L, Deeks SG, Price RW (2005) Cerebrospinal fluid signs of neuronal damage after antiretroviral treatment interruption in HIV-1 infection. AIDS Res Ther 2:6. doi:10.1186/1742-6405-2-6

    Article  PubMed  CAS  Google Scholar 

  317. Swindells S, Sandkovsky U (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 945–961

    Google Scholar 

  318. Enting RH et al (1998) Antiretroviral drugs and the central nervous system. AIDS 12:1941–1955

    Article  PubMed  CAS  Google Scholar 

  319. Lee CG et al (1998) HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry 37:3594–3601. doi:10.1021/bi972709x

    Article  PubMed  CAS  Google Scholar 

  320. Rao VV et al (1999) Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier. Proc Natl Acad Sci USA 96:3900–3905

    Article  PubMed  CAS  Google Scholar 

  321. Spitzenberger TJ et al (2007) Novel delivery system enhances efficacy of antiretroviral therapy in animal model for HIV-1 encephalitis. J Cereb Blood Flow Metab 27:1033–1042. doi:10.1038/sj.jcbfm.9600414, pii: 9600414

    PubMed  CAS  Google Scholar 

  322. Roy U, Balkundi S, McMillan J, Gendelman HE (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 987–998

    Google Scholar 

  323. Wong HL, Wu XY, Bendayan R (2011) Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev 64(7):686–700. doi:10.1016/j.addr.2011.10.007

  324. Nowacek A, Gendelman HE (2009) NanoART, neuroAIDS and CNS drug delivery. Nanomedicine (Lond) 4:557–574. doi:10.2217/nnm.09.38

    Article  CAS  Google Scholar 

  325. Rao KS, Reddy MK, Horning JL, Labhasetwar V (2008) TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials 29:4429–4438. doi:10.1016/j.biomaterials.2008.08.004, pii: S0142-9612(08)00567-X

    Article  PubMed  CAS  Google Scholar 

  326. Dou H et al (2006) Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108:2827–2835. doi:10.1182/blood-2006-03-012534

    Article  PubMed  CAS  Google Scholar 

  327. Dou H et al (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669. doi:10.4049/jimmunol.0900274

    Article  PubMed  CAS  Google Scholar 

  328. Kadiu I, Gendelman HE (2011) Human immunodeficiency virus type 1 endocytic trafficking through macrophage bridging conduits facilitates spread of infection. J Neuroimmune Pharmacol 6(4):658–675. doi:10.1007/s11481-011-9298-z

    Google Scholar 

  329. Lipton SA (1993) Prospects for clinically tolerated NMDA antagonists: open-channel blockers and alternative redox states of nitric oxide. Trends Neurosci 16:527–532

    Article  PubMed  CAS  Google Scholar 

  330. Schifitto G et al (2007) Memantine and HIV-associated cognitive impairment: a neuropsychological and proton magnetic resonance spectroscopy study. AIDS 21:1877–1886. doi:10.1097/QAD.0b013e32813384e8

    Article  PubMed  CAS  Google Scholar 

  331. Zhao Y et al (2010) Memantine for AIDS dementia complex: open-label report of ACTG 301. HIV Clin Trials 11:59–67. doi:10.1310/hct1101-59

    Article  PubMed  CAS  Google Scholar 

  332. Clifford DB et al (2002) A randomized clinical trial of CPI-1189 for HIV-associated cognitive-motor impairment. Neurology 59:1568–1573

    Article  PubMed  CAS  Google Scholar 

  333. Kagan VE et al (1992) Dihydrolipoic acid – a universal antioxidant both in the membrane and in the aqueous phase. Reduction of peroxyl, ascorbyl and chromanoxyl radicals. Biochem Pharmacol 44:1637–1649

    Article  PubMed  CAS  Google Scholar 

  334. Sacktor N et al (2000) Transdermal selegiline in HIV-associated cognitive impairment: pilot, placebo-controlled study. Neurology 54:233–235

    Article  PubMed  CAS  Google Scholar 

  335. Schifitto G et al (1999) Randomized trial of the platelet-activating factor antagonist lexipafant in HIV-associated cognitive impairment. Neurological AIDS Research Consortium. Neurology 53:391–396

    Article  PubMed  CAS  Google Scholar 

  336. Schifitto G et al (2009) Lithium therapy for human immunodeficiency virus type 1-associated neurocognitive impairment. J Neurovirol 15:176–186. doi:10.1080/13550280902758973, pii: 909764548

    Article  PubMed  CAS  Google Scholar 

  337. Tang LH, Aizenman E (1993) Allosteric modulation of the NMDA receptor by dihydrolipoic and lipoic acid in rat cortical neurons in vitro. Neuron 11:857–863

    Article  PubMed  CAS  Google Scholar 

  338. Gelbard HA et al (1994) Platelet-activating factor: a candidate human immunodeficiency virus type 1-induced neurotoxin. J Virol 68:4628–4635

    PubMed  CAS  Google Scholar 

  339. Perry SW et al (1998) Platelet-activating factor receptor activation. An initiator step in HIV-1 neuropathogenesis. J Biol Chem 273:17660–17664

    Article  PubMed  CAS  Google Scholar 

  340. Maggirwar SB, Tong N, Ramirez S, Gelbard HA, Dewhurst S (1999) HIV-1 Tat-mediated activation of glycogen synthase kinase-3beta contributes to Tat-mediated neurotoxicity. J Neurochem 73:578–586

    Article  PubMed  CAS  Google Scholar 

  341. Peng F et al (2008) Platelet-derived growth factor protects neurons against gp120-mediated toxicity. J Neurovirol 14:62–72. doi:10.1080/13550280701809084

    Article  PubMed  CAS  Google Scholar 

  342. Mofenson LM (2000) Technical report: perinatal human immunodeficiency virus testing and prevention of transmission. Committee on Pediatric Aids. Pediatrics 106:E88

    Article  PubMed  CAS  Google Scholar 

  343. Mofenson LM, Fowler MG (1999) Interruption of materno-fetal transmission. AIDS 13(Suppl A):S205–S214

    PubMed  CAS  Google Scholar 

  344. Gibb DM et al (2003) Decline in mortality, AIDS, and hospital admissions in perinatally HIV-1 infected children in the United Kingdom and Ireland. BMJ 327:1019. doi:10.1136/bmj.327.7422.1019

    Article  PubMed  CAS  Google Scholar 

  345. Judd A et al (2007) Morbidity, mortality, and response to treatment by children in the United Kingdom and Ireland with perinatally acquired HIV infection during 1996–2006: planning for teenage and adult care. Clin Infect Dis 45:918–924. doi:10.1086/521167

    Article  PubMed  Google Scholar 

  346. McConnell MS et al (2005) Trends in antiretroviral therapy use and survival rates for a large cohort of HIV-infected children and adolescents in the United States, 1989–2001. J Acquir Immune Defic Syndr 38:488–494

    Article  PubMed  Google Scholar 

  347. Selik RM, Lindegren ML (2003) Changes in deaths reported with human immunodeficiency virus infection among United States children less than thirteen years old, 1987 through 1999. Pediatr Infect Dis J 22:635–641. doi:10.1097/01.inf.0000073241.01043.9c

    PubMed  Google Scholar 

  348. Mintz M et al (1995) Pediatric HIV infection in Elista, Russia: interventional strategies. Am J Public Health 85:586–588

    PubMed  CAS  Google Scholar 

  349. Mintz M, Sharer LR, Civitello LA (2012) In: Gendelman HE et al (eds) The neurology of AIDS. Oxford University Press, New York, pp 875–906

    Google Scholar 

  350. Belman AL et al (1988) Pediatric acquired immunodeficiency syndrome. Neurologic syndromes. Am J Dis Child 142:29–35

    PubMed  CAS  Google Scholar 

  351. Blanche S et al (1990) Longitudinal study of 94 symptomatic infants with perinatally acquired human immunodeficiency virus infection. Evidence for a bimodal expression of clinical and biological symptoms. Am J Dis Child 144:1210–1215

    PubMed  CAS  Google Scholar 

  352. Epstein LG et al (1986) Neurologic manifestations of human immunodeficiency virus infection in children. Pediatrics 78:678–687

    PubMed  CAS  Google Scholar 

  353. Mintz M (1994) Clinical comparison of adult and pediatric NeuroAIDS. Adv Neuroimmunol 4:207–221

    Article  PubMed  CAS  Google Scholar 

  354. Mintz M (1999) Clinical features and treatment interventions for human immunodeficiency virus-associated neurologic disease in children. Semin Neurol 19:165–176. doi:10.1055/s-2008-1040834

    Article  PubMed  CAS  Google Scholar 

  355. Mintz M, Epstein LG (1992) Neurologic manifestations of pediatric acquired immunodeficiency syndrome: clinical features and therapeutic approaches. Semin Neurol 12:51–56. doi:10.1055/s-2008-1041157

    Article  PubMed  CAS  Google Scholar 

  356. Tardieu M et al (2000) HIV-1-related encephalopathy in infants compared with children and adults. French Pediatric HIV Infection Study and the SEROCO Group. Neurology 54:1089–1095

    Article  PubMed  CAS  Google Scholar 

  357. Brouwers P et al (1994) Interrelations among patterns of change in neurocognitive, CT brain imaging and CD4 measures associated with anti-retroviral therapy in children with symptomatic HIV infection. Adv Neuroimmunol 4:223–231

    Article  PubMed  CAS  Google Scholar 

  358. Pollack H et al (1997) Impaired early growth of infants perinatally infected with human immunodeficiency virus: correlation with viral load. J Pediatr 130:915–922

    Article  PubMed  CAS  Google Scholar 

  359. Schneider E et al (2008) Revised surveillance case definitions for HIV infection among adults, adolescents, and children aged <18 months and for HIV infection and AIDS among children aged 18 months to <13 years – United States, 2008. MMWR Recomm Rep 57:1–12

    PubMed  Google Scholar 

  360. Epstein LG et al (1987) Expression of human immunodeficiency virus in cerebrospinal fluid of children with progressive encephalopathy. Ann Neurol 21:397–401. doi:10.1002/ana.410210413

    Article  PubMed  CAS  Google Scholar 

  361. Sharer LR et al (1986) Pathologic features of AIDS encephalopathy in children: evidence for LAV/HTLV-III infection of brain. Hum Pathol 17:271–284

    Article  PubMed  CAS  Google Scholar 

  362. Chiriboga CA, Fleishman S, Champion S, Gaye-Robinson L, Abrams EJ (2005) Incidence and prevalence of HIV encephalopathy in children with HIV infection receiving highly active anti-retroviral therapy (HAART). J Pediatr 146:402–407. doi:10.1016/j.jpeds.2004.10.021

    Article  PubMed  Google Scholar 

  363. McCoig C et al (2002) Effect of combination antiretroviral therapy on cerebrospinal fluid HIV RNA, HIV resistance, and clinical manifestations of encephalopathy. J Pediatr 141:36–44. doi:10.1067/mpd.2002.125007

    Article  PubMed  CAS  Google Scholar 

  364. Shanbhag MC et al (2005) Neurocognitive functioning in pediatric human immunodeficiency virus infection: effects of combined therapy. Arch Pediatr Adolesc Med 159:651–656. doi:10.1001/archpedi.159.7.651

    Article  PubMed  Google Scholar 

  365. Lindsey JC, Malee KM, Brouwers P, Hughes MD (2007) Neurodevelopmental functioning in HIV-infected infants and young children before and after the introduction of protease inhibitor-based highly active antiretroviral therapy. Pediatrics 119:e681–e693. doi:10.1542/peds.2006-1145

    Article  PubMed  Google Scholar 

  366. Tamula MA, Wolters PL, Walsek C, Zeichner S, Civitello L (2003) Cognitive decline with immunologic and virologic stability in four children with human immunodeficiency virus disease. Pediatrics 112:679–684

    Article  PubMed  Google Scholar 

  367. Koekkoek S et al (2006) Effects of highly active antiretroviral therapy (HAART) on psychomotor performance in children with HIV disease. J Neurol 253:1615–1624. doi:10.1007/s00415-006-0277-x

    Article  PubMed  CAS  Google Scholar 

  368. Nozyce ML et al (2006) A behavioral and cognitive profile of clinically stable HIV-infected children. Pediatrics 117:763–770. doi:10.1542/peds.2005-0451

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard E. Gendelman M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

McMillan, J., Gendelman, H.E. (2013). Neuroimmune Cross Talk and HIV-Associated Neurocognitive Disorders. In: Cui, C., Grandison, L., Noronha, A. (eds) Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4729-0_7

Download citation

Publish with us

Policies and ethics