Skip to main content

Neuroimmune Modulation of Synaptic Function

  • Chapter
  • First Online:

Abstract

It is becoming increasingly clear that molecules classically associated with the peripheral immune system participate in the modulation of synaptic function. These molecules are from both the innate and adaptive immune systems, including cytokines, class I major histocompatibility complex (MHCI), and complement cascade components, and are used constitutively by the nervous system as signaling molecules that regulate developmental synapse formation and several forms of synaptic plasticity. In addition, the upregulation of immune molecules associated with neuroinflammatory pathological states such as stroke, trauma, and neurodegenerative disease is likely to disrupt normal signaling events and result in maladaptive modulation of neurotransmission. This chapter will present and discuss current evidence implicating neuroimmune molecules in the constitutive regulation of central nervous system (CNS) synapse function, under both normal and pathological conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boulanger LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64:93–109

    Article  PubMed  CAS  Google Scholar 

  2. Shatz CJ (2009) MHC class I: an unexpected role in neuronal plasticity. Neuron 64:40–45

    Article  PubMed  CAS  Google Scholar 

  3. Gosselin D, Rivest S (2007) Role of IL-1 and TNF in the brain: twenty years of progress on a Dr. Jekyll/Mr. Hyde duality of the innate immune system. Brain Behav Immun 21:281–289

    Article  PubMed  CAS  Google Scholar 

  4. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9:429–439

    Article  PubMed  CAS  Google Scholar 

  5. Cahoy JD et al (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  PubMed  CAS  Google Scholar 

  6. Zhang XM, Zhu J (2011) Kainic acid-induced neurotoxicity: targeting glial responses and glia-derived cytokines. Curr Neuropharmacol 9:388–398

    Article  PubMed  CAS  Google Scholar 

  7. Vitkovic L et al (2000) Cytokine signals propagate through the brain. Mol Psychiatry 5:604–615

    Article  PubMed  CAS  Google Scholar 

  8. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813:878–888

    Article  PubMed  CAS  Google Scholar 

  9. McAfoose J, Baune BT (2009) Evidence for a cytokine model of cognitive function. Neurosci Biobehav Rev 33:355–366

    Article  PubMed  CAS  Google Scholar 

  10. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  PubMed  CAS  Google Scholar 

  11. Pennica D et al (1984) Human tumour necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature 312:724–729

    Article  PubMed  CAS  Google Scholar 

  12. Moss ML et al (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385:733–736

    Article  PubMed  CAS  Google Scholar 

  13. Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: ramifications for the complex physiology of TNF. Cell 53:45–53

    Article  PubMed  CAS  Google Scholar 

  14. Smith RA, Baglioni C (1987) The active form of tumor necrosis factor is a trimer. J Biol Chem 262:6951–6954

    PubMed  CAS  Google Scholar 

  15. MacEwan DJ (2002) TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 14:477–492

    Article  PubMed  CAS  Google Scholar 

  16. Kinouchi K, Brown G, Pasternak G, Donner DB (1991) Identification and characterization of receptors for tumor necrosis factor-alpha in the brain. Biochem Biophys Res Commun 181:1532–1538

    Article  PubMed  CAS  Google Scholar 

  17. Zhang H, Nei H, Dougherty PM (2010) A p38 mitogen-activated protein kinase-dependent mechanism of disinhibition in spinal synaptic transmission induced by tumor necrosis factor-alpha. J Neurosci 30:12844–12855

    Article  PubMed  CAS  Google Scholar 

  18. Dopp JM, Mackenzie-Graham A, Otero GC, Merrill JE (1997) Differential expression, cytokine modulation, and specific functions of type-1 and type-2 tumor necrosis factor receptors in rat glia. J Neuroimmunol 75:104–112

    Article  PubMed  CAS  Google Scholar 

  19. Yang L, Lindholm K, Konishi Y, Li R, Shen Y (2002) Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci 22:3025–3032

    PubMed  CAS  Google Scholar 

  20. Vitkovic L, Bockaert J, Jacque C (2000) “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 74:457–471

    Article  PubMed  CAS  Google Scholar 

  21. Beattie EC et al (2002) Control of synaptic strength by glial TNFalpha. Science 295:2282–2285

    Article  PubMed  CAS  Google Scholar 

  22. Tonelli LH, Postolache TT (2005) Tumor necrosis factor alpha, interleukin-1 beta, interleukin-6 and major histocompatibility complex molecules in the normal brain and after peripheral immune challenge. Neurol Res 27:679–684

    Article  PubMed  CAS  Google Scholar 

  23. Wang CX, Shuaib A (2002) Involvement of inflammatory cytokines in central nervous system injury. Prog Neurobiol 67:161–172

    Article  PubMed  CAS  Google Scholar 

  24. Li Y, Ji A, Weihe E, Schafer MK (2004) Cell-specific expression and lipopolysaccharide-induced regulation of tumor necrosis factor alpha (TNFalpha) and TNF receptors in rat dorsal root ganglion. J Neurosci 24:9623–9631

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y et al (2007) Lipopolysaccharide-induced upregulation of tumor necrosis factor-alpha (TNF-alpha) and TNF receptors in rat sciatic nerve. J Mol Neurosci 32:207–216

    Article  PubMed  CAS  Google Scholar 

  26. Stellwagen D, Malenka RC (2006) Synaptic scaling mediated by glial TNF-alpha. Nature 440:1054–1059

    Article  PubMed  CAS  Google Scholar 

  27. Braddock M, Quinn A (2004) Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nat Rev Drug Discov 3:330–339

    Article  PubMed  CAS  Google Scholar 

  28. O’Connor JJ, Coogan AN (1999) Actions of the pro-inflammatory cytokine IL-1 beta on central synaptic transmission. Exp Physiol 84:601–614

    Article  PubMed  Google Scholar 

  29. Bourke E et al (2003) IL-1 beta scavenging by the type II IL-1 decoy receptor in human neutrophils. J Immunol 170:5999–6005

    PubMed  CAS  Google Scholar 

  30. Arend WP, Malyak M, Guthridge CJ, Gabay C (1998) Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol 16:27–55

    Article  PubMed  CAS  Google Scholar 

  31. French RA et al (1999) Expression and localization of p80 and p68 interleukin-1 receptor proteins in the brain of adult mice. J Neuroimmunol 93:194–202

    Article  PubMed  CAS  Google Scholar 

  32. Hammond EA et al (1999) The interleukin-1 type I receptor is expressed in human hypothalamus. Brain 122(Pt 9):1697–1707

    Article  PubMed  Google Scholar 

  33. Quan N, Zhang Z, Emery M, Bonsall R, Weiss JM (1996) Detection of interleukin-1 bioactivity in various brain regions of normal healthy rats. Neuroimmunomodulation 3:47–55

    Article  PubMed  CAS  Google Scholar 

  34. Huitinga I et al (2000) IL-1beta immunoreactive neurons in the human hypothalamus: reduced numbers in multiple sclerosis. J Neuroimmunol 107:8–20

    Article  PubMed  CAS  Google Scholar 

  35. Loddick SA et al (1997) Endogenous interleukin-1 receptor antagonist is neuroprotective. Biochem Biophys Res Commun 234:211–215

    Article  PubMed  CAS  Google Scholar 

  36. Loddick SA, Liu C, Takao T, Hashimoto K, De Souza EB (1998) Interleukin-1 receptors: cloning studies and role in central nervous system disorders. Brain Res Brain Res Rev 26:306–319

    Article  PubMed  CAS  Google Scholar 

  37. Giulian D, Baker TJ, Shih LC, Lachman LB (1986) Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med 164:594–604

    Article  PubMed  CAS  Google Scholar 

  38. Pearson VL, Rothwell NJ, Toulmond S (1999) Excitotoxic brain damage in the rat induces interleukin-1beta protein in microglia and astrocytes: correlation with the progression of cell death. Glia 25:311–323

    Article  PubMed  CAS  Google Scholar 

  39. Davies CA et al (1999) The progression and topographic distribution of interleukin-1beta expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 19:87–98

    Article  PubMed  CAS  Google Scholar 

  40. Bauer S, Kerr BJ, Patterson PH (2007) The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 8:221–232

    Article  PubMed  CAS  Google Scholar 

  41. Juttler E, Tarabin V, Schwaninger M (2002) Interleukin-6 (IL-6): a possible neuromodulator induced by neuronal activity. Neuroscientist 8:268–275

    PubMed  CAS  Google Scholar 

  42. Heinrich PC et al (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    Article  PubMed  CAS  Google Scholar 

  43. Gruol DL, Nelson TE (1997) Physiological and pathological roles of interleukin-6 in the central nervous system. Mol Neurobiol 15:307–339

    Article  PubMed  CAS  Google Scholar 

  44. Hans VH et al (1999) Experimental axonal injury triggers interleukin-6 mRNA, protein synthesis and release into cerebrospinal fluid. J Cereb Blood Flow Metab 19:184–194

    Article  PubMed  CAS  Google Scholar 

  45. Hayashi M, Ueyama T, Nemoto K, Tamaki T, Senba E (2000) Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J Neurotrauma 17:203–218

    Article  PubMed  CAS  Google Scholar 

  46. Suzuki S et al (1999) Temporal profile and cellular localization of interleukin-6 protein after focal cerebral ischemia in rats. J Cereb Blood Flow Metab 19:1256–1262

    Article  PubMed  CAS  Google Scholar 

  47. Tarkowski E et al (1995) Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke 26:1393–1398

    Article  PubMed  CAS  Google Scholar 

  48. De Simoni MG et al (2000) Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 12:2623–2633

    Article  PubMed  Google Scholar 

  49. Peltola J et al (2000) Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 41:205–211

    Article  PubMed  CAS  Google Scholar 

  50. Dorfman JR, Zerrahn J, Coles MC, Raulet DH (1997) The basis for self-tolerance of natural killer cells in beta2-microglobulin- and TAP-1- mice. J Immunol 159:5219–5225

    PubMed  CAS  Google Scholar 

  51. Tourne S et al (1996) Biosynthesis of major histocompatibility complex molecules and generation of T cells in Ii TAP1 double-mutant mice. Proc Natl Acad Sci USA 93:1464–1469

    Article  PubMed  CAS  Google Scholar 

  52. Syken J, Shatz CJ (2003) Expression of T cell receptor beta locus in central nervous system neurons. Proc Natl Acad Sci USA 100:13048–13053

    Article  PubMed  CAS  Google Scholar 

  53. Syken J, Grandpre T, Kanold PO, Shatz CJ (2006) PirB restricts ocular-dominance plasticity in visual cortex. Science 313:1795–1800

    Article  PubMed  CAS  Google Scholar 

  54. Zohar O et al (2008) Cutting edge: MHC class I-Ly49 interaction regulates neuronal function. J Immunol 180:6447–6451

    PubMed  CAS  Google Scholar 

  55. Bryceson YT, Foster JA, Kuppusamy SP, Herkenham M, Long EO (2005) Expression of a killer cell receptor-like gene in plastic regions of the central nervous system. J Neuroimmunol 161:177–182

    Article  PubMed  CAS  Google Scholar 

  56. Corriveau RA, Huh GS, Shatz CJ (1998) Regulation of class I MHC gene expression in the developing and mature CNS by neural activity. Neuron 21:505–520

    Article  PubMed  CAS  Google Scholar 

  57. Xu HP et al (2010) The immune protein CD3zeta is required for normal development of neural circuits in the retina. Neuron 65:503–515

    Article  PubMed  CAS  Google Scholar 

  58. Roumier A et al (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 24:11421–11428

    Article  PubMed  CAS  Google Scholar 

  59. Roumier A et al (2008) Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS One 3:e2595

    Article  PubMed  CAS  Google Scholar 

  60. Tomasello E et al (2000) Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 13:355–364

    Article  PubMed  CAS  Google Scholar 

  61. Cullheim S, Thams S (2010) Classic major histocompatibility complex class I molecules: new actors at the neuromuscular junction. Neuroscientist 16:600–607

    Article  PubMed  CAS  Google Scholar 

  62. Stevens B et al (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  PubMed  CAS  Google Scholar 

  63. Xu D et al (2003) Narp and NP1 form heterocomplexes that function in developmental and activity-dependent synaptic plasticity. Neuron 39:513–528

    Article  PubMed  CAS  Google Scholar 

  64. Dodds DC, Omeis IA, Cushman SJ, Helms JA, Perin MS (1997) Neuronal pentraxin receptor, a novel putative integral membrane pentraxin that interacts with neuronal pentraxin 1 and 2 and taipoxin-associated calcium-binding protein 49. J Biol Chem 272:21488–21494

    Article  PubMed  CAS  Google Scholar 

  65. Schlimgen AK, Helms JA, Vogel H, Perin MS (1995) Neuronal pentraxin, a secreted protein with homology to acute phase proteins of the immune system. Neuron 14:519–526

    Article  PubMed  CAS  Google Scholar 

  66. Tsui CC et al (1996) Narp, a novel member of the pentraxin family, promotes neurite outgrowth and is dynamically regulated by neuronal activity. J Neurosci 16:2463–2478

    PubMed  CAS  Google Scholar 

  67. Needleman LA, Liu X-B, El-Sabeawy F, Jones EG, McAllister AK (2010) MHC class I molecules are present both pre- and postsynaptically in the visual cortex during postnatal development and in adulthood. Proc Natl Acad Sci USA 107:16999–17004

    Article  PubMed  CAS  Google Scholar 

  68. Glynn MW et al (2011) MHCI negatively regulates synapse density during the establishment of cortical connections. Nat Neurosci 14:442–451

    Article  PubMed  CAS  Google Scholar 

  69. Fourgeaud L et al (2010) MHC class I modulates NMDA receptor function and AMPA receptor trafficking. Proc Natl Acad Sci USA 107:22278–22283

    Article  PubMed  CAS  Google Scholar 

  70. Goddard CA, Butts DA, Shatz CJ (2007) Regulation of CNS synapses by neuronal MHC class I. Proc Natl Acad Sci USA 104:6828–6833

    Article  PubMed  Google Scholar 

  71. Yoshida T et al (2012) Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J Neurosci 32:2588–2600

    Article  PubMed  CAS  Google Scholar 

  72. O’Brien RJ et al (1999) Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23:309–323

    Article  PubMed  Google Scholar 

  73. O’Brien R et al (2002) Synaptically targeted narp plays an essential role in the aggregation of AMPA receptors at excitatory synapses in cultured spinal neurons. J Neurosci 22:4487–4498

    PubMed  Google Scholar 

  74. Bjartmar L et al (2006) Neuronal pentraxins mediate synaptic refinement in the developing visual system. J Neurosci 26:6269–6281

    Article  PubMed  CAS  Google Scholar 

  75. Leamey CA, Van Wart A, Sur M (2009) Intrinsic patterning and experience-dependent mechanisms that generate eye-specific projections and binocular circuits in the visual pathway. Curr Opin Neurobiol 19:181–187

    Article  PubMed  CAS  Google Scholar 

  76. Ruthazer ES, Aizenman CD (2010) Learning to see: patterned visual activity and the development of visual function. Trends Neurosci 33:183–192

    Article  PubMed  CAS  Google Scholar 

  77. Guido W (2008) Refinement of the retinogeniculate pathway. J Physiol 586:4357–4362

    Article  PubMed  CAS  Google Scholar 

  78. Feller MB (2009) Retinal waves are likely to instruct the formation of eye-specific retinogeniculate projections. Neural Dev 4:24

    Article  PubMed  Google Scholar 

  79. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  80. Huh GS et al (2000) Functional requirement for class I MHC in CNS development and plasticity. Science 290:2155–2159

    Article  PubMed  CAS  Google Scholar 

  81. Datwani A et al (2009) Classical MHCI molecules regulate retinogeniculate refinement and limit ocular dominance plasticity. Neuron 64:463–470

    Article  PubMed  CAS  Google Scholar 

  82. Nauta AJ et al (2003) Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol 33:465–473

    Article  PubMed  CAS  Google Scholar 

  83. Lee RH et al (2010) Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system. Neural Dev 5:2

    Article  PubMed  CAS  Google Scholar 

  84. Golan H, Levav T, Mendelsohn A, Huleihel M (2004) Involvement of tumor necrosis factor alpha in hippocampal development and function. Cereb Cortex 14:97–105

    Article  PubMed  CAS  Google Scholar 

  85. Wiesel TN (1982) Postnatal development of the visual cortex and the influence of environment. Nature 299:583–591

    Article  PubMed  CAS  Google Scholar 

  86. Frenkel MY, Bear MF (2004) How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44:917–923

    Article  PubMed  CAS  Google Scholar 

  87. Kaneko M, Stellwagen D, Malenka RC, Stryker MP (2008) Tumor necrosis factor-alpha mediates one component of competitive, experience-dependent plasticity in developing visual cortex. Neuron 58:673–680

    Article  PubMed  CAS  Google Scholar 

  88. Ranson A, Cheetham CEJ, Fox K, Sengpiel F (2012) Homeostatic plasticity mechanisms are required for juvenile, but not adult, ocular dominance plasticity. Proc Natl Acad Sci USA 109:1311–1316

    Article  PubMed  CAS  Google Scholar 

  89. Chu Y et al (2010) Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci USA 107:7975–7980

    Article  PubMed  CAS  Google Scholar 

  90. McConnell MJ, Huang YH, Datwani A, Shatz CJ (2009) H2-K(b) and H2-D(b) regulate cerebellar long-term depression and limit motor learning. Proc Natl Acad Sci USA 106:6784–6789

    Article  PubMed  CAS  Google Scholar 

  91. Letellier M, Willson ML, Gautheron V, Mariani J, Lohof AM (2008) Normal adult climbing fiber monoinnervation of cerebellar Purkinje cells in mice lacking MHC class I molecules. Dev Neurobiol 68:997–1006

    Article  PubMed  CAS  Google Scholar 

  92. Thams S et al (2009) Classical major histocompatibility complex class I molecules in motoneurons: new actors at the neuromuscular junction. J Neurosci 29:13503–13515

    Article  PubMed  CAS  Google Scholar 

  93. Atwal JK et al (2008) PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322:967–970

    Article  PubMed  CAS  Google Scholar 

  94. D’Arcangelo G et al (2000) Interleukin-6 inhibits neurotransmitter release and the spread of excitation in the rat cerebral cortex. Eur J Neurosci 12:1241–1252

    Article  PubMed  Google Scholar 

  95. Zhu PJ et al (2011) Suppression of PKR promotes network excitability and enhanced cognition by interferon-gamma-mediated disinhibition. Cell 147:1384–1396

    Article  PubMed  CAS  Google Scholar 

  96. Grassi F et al (1994) TNF-alpha increases the frequency of spontaneous miniature synaptic currents in cultured rat hippocampal neurons. Brain Res 659:226–230

    Article  PubMed  CAS  Google Scholar 

  97. Santello M, Bezzi P, Volterra A (2011) TNFalpha controls glutamatergic gliotransmission in the hippocampal dentate gyrus. Neuron 69:988–1001

    Article  PubMed  CAS  Google Scholar 

  98. Nakamura K et al (2007) CD3 and immunoglobulin G Fc receptor regulate cerebellar functions. Mol Cell Biol 27:5128–5134

    Article  PubMed  CAS  Google Scholar 

  99. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21

    Article  PubMed  CAS  Google Scholar 

  100. Greger IH, Ziff EB, Penn AC (2007) Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci 30:407–416

    Article  PubMed  CAS  Google Scholar 

  101. Daw NW, Stein PS, Fox K (1993) The role of NMDA receptors in information processing. Annu Rev Neurosci 16:207–222

    Article  PubMed  CAS  Google Scholar 

  102. Paoletti P, Neyton J (2007) NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 7:39–47

    Article  PubMed  CAS  Google Scholar 

  103. Pachernegg S, Strutz-Seebohm N, Hollmann M (2012) GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci 35:240–249

    Article  PubMed  CAS  Google Scholar 

  104. Jacob TC, Moss SJ, Jurd R (2008) GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 9:331–343

    Article  PubMed  CAS  Google Scholar 

  105. Luscher B, Fuchs T, Kilpatrick CL (2011) GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron 70:385–409

    Article  PubMed  CAS  Google Scholar 

  106. Stellwagen D, Beattie EC, Seo JY, Malenka RC (2005) Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci 25:3219–3228

    Article  PubMed  CAS  Google Scholar 

  107. Kawasaki Y, Zhang L, Cheng JK, Ji RR (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28:5189–5194

    Article  PubMed  CAS  Google Scholar 

  108. Han P, Whelan PJ (2010) Tumor necrosis factor alpha enhances glutamatergic transmission onto spinal motoneurons. J Neurotrauma 27:287–292

    Article  PubMed  Google Scholar 

  109. Ogoshi F et al (2005) Tumor necrosis-factor-alpha (TNF-alpha) induces rapid insertion of Ca2+−permeable alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA)/kainate (Ca-A/K) channels in a subset of hippocampal pyramidal neurons. Exp Neurol 193:384–393

    Article  PubMed  CAS  Google Scholar 

  110. Leonoudakis D, Zhao P, Beattie EC (2008) Rapid tumor necrosis factor alpha-induced exocytosis of glutamate receptor 2-lacking AMPA receptors to extrasynaptic plasma membrane potentiates excitotoxicity. J Neurosci 28:2119–2130

    Article  PubMed  CAS  Google Scholar 

  111. Ferguson AR et al (2008) Cell death after spinal cord injury is exacerbated by rapid TNF alpha-induced trafficking of GluR2-lacking AMPARs to the plasma membrane. J Neurosci 28:11391–11400

    Article  PubMed  CAS  Google Scholar 

  112. He P, Liu Q, Wu J, Shen Y (2012) Genetic deletion of TNF receptor suppresses excitatory synaptic transmission via reducing AMPA receptor synaptic localization in cortical neurons. FASEB J 26:334–345

    Article  PubMed  CAS  Google Scholar 

  113. Furukawa K, Mattson MP (1998) The transcription factor NF-kappaB mediates increases in calcium currents and decreases in NMDA- and AMPA/kainate-induced currents induced by tumor necrosis factor-alpha in hippocampal neurons. J Neurochem 70:1876–1886

    Article  PubMed  CAS  Google Scholar 

  114. Buzsaki G (2001) Hippocampal GABAergic interneurons: a physiological perspective. Neurochem Res 26:899–905

    Article  PubMed  CAS  Google Scholar 

  115. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    Article  PubMed  CAS  Google Scholar 

  116. Duveau V et al (2011) Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis. Eur J Neurosci 34:362–373

    Article  PubMed  Google Scholar 

  117. Kanno T, Nagata T, Yamamoto S, Okamura H, Nishizaki T (2004) Interleukin-18 stimulates synaptically released glutamate and enhances postsynaptic AMPA receptor responses in the CA1 region of mouse hippocampal slices. Brain Res 1012:190–193

    Article  PubMed  CAS  Google Scholar 

  118. Viviani B et al (2003) Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 23:8692–8700

    PubMed  CAS  Google Scholar 

  119. Huang Y, Smith DE, Ibanez-Sandoval O, Sims JE, Friedman WJ (2011) Neuron-specific effects of interleukin-1beta are mediated by a novel isoform of the IL-1 receptor accessory protein. J Neurosci 31:18048–18059

    Article  PubMed  CAS  Google Scholar 

  120. Viviani B et al (2006) Interleukin-1 beta released by gp120 drives neural death through tyrosine phosphorylation and trafficking of NMDA receptors. J Biol Chem 281:30212–30222

    Article  PubMed  CAS  Google Scholar 

  121. Nelson TE, Netzeband JG, Gruol DL (2004) Chronic interleukin-6 exposure alters metabotropic glutamate receptor-activated calcium signalling in cerebellar Purkinje neurons. Eur J Neurosci 20:2387–2400

    Article  PubMed  Google Scholar 

  122. Nelson TE, Ur CL, Gruol DL (2002) Chronic interleukin-6 exposure alters electrophysiological properties and calcium signaling in developing cerebellar purkinje neurons in culture. J Neurophysiol 88:475–486

    PubMed  CAS  Google Scholar 

  123. Ali C et al (2000) Ischemia-induced interleukin-6 as a potential endogenous neuroprotective cytokine against NMDA receptor-mediated excitotoxicity in the brain. J Cereb Blood Flow Metab 20:956–966

    Article  PubMed  CAS  Google Scholar 

  124. Pizzi M et al (2004) Prevention of neuron and oligodendrocyte degeneration by interleukin-6 (IL-6) and IL-6 receptor/IL-6 fusion protein in organotypic hippocampal slices. Mol Cell Neurosci 25:301–311

    Article  PubMed  CAS  Google Scholar 

  125. Pieraut S et al (2011) An autocrine neuronal interleukin-6 loop mediates chloride accumulation and NKCC1 phosphorylation in axotomized sensory neurons. J Neurosci 31:13516–13526

    Article  PubMed  CAS  Google Scholar 

  126. Staley K, Smith R (2001) A new form of feedback at the GABA(A) receptor. Nat Neurosci 4:674–676

    Article  PubMed  CAS  Google Scholar 

  127. Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129:1659–1673

    Article  PubMed  CAS  Google Scholar 

  128. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  129. Barrionuevo G, Brown TH (1983) Associative long-term potentiation in hippocampal slices. Proc Natl Acad Sci USA 80:7347–7351

    Article  PubMed  CAS  Google Scholar 

  130. Levy WB, Steward O (1979) Synapses as associative memory elements in the hippocampal formation. Brain Res 175:233–245

    Article  PubMed  CAS  Google Scholar 

  131. Albensi BC, Oliver DR, Toupin J, Odero G (2007) Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 204:1–13

    Article  PubMed  Google Scholar 

  132. Vogt KE, Canepari M (2010) On the induction of postsynaptic granule cell-Purkinje neuron LTP and LTD. Cerebellum 9:284–290

    Article  PubMed  Google Scholar 

  133. Duguid I, Sjostrom PJ (2006) Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Curr Opin Neurobiol 16:312–322

    Article  PubMed  CAS  Google Scholar 

  134. Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350

    Article  PubMed  CAS  Google Scholar 

  135. Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269–274

    Article  PubMed  CAS  Google Scholar 

  136. Barco A et al (2005) Gene expression profiling of facilitated L-LTP in VP16-CREB mice reveals that BDNF is critical for the maintenance of LTP and its synaptic capture. Neuron 48:123–137

    Article  PubMed  CAS  Google Scholar 

  137. Raiker SJ et al (2010) Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. J Neurosci 30:12432–12445

    Article  PubMed  CAS  Google Scholar 

  138. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  PubMed  CAS  Google Scholar 

  139. Tancredi V et al (1992) Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 146:176–178

    Article  PubMed  CAS  Google Scholar 

  140. Cunningham AJ, Murray CA, O’Neill LA, Lynch MA, O’Connor JJ (1996) Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 203:17–20

    Article  PubMed  CAS  Google Scholar 

  141. Wang Q, Wu J, Rowan MJ, Anwyl R (2005) Beta-amyloid inhibition of long-term potentiation is mediated via tumor necrosis factor. Eur J Neurosci 22:2827–2832

    Article  PubMed  Google Scholar 

  142. Butler MP, O’Connor JJ, Moynagh PN (2004) Dissection of tumor-necrosis factor-alpha inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein kinase-dependent mechanism which maps to early-but not late-phase LTP. Neuroscience 124:319–326

    Article  PubMed  CAS  Google Scholar 

  143. Curran BP, Murray HJ, O’Connor JJ (2003) A role for c-Jun N-terminal kinase in the inhibition of long-term potentiation by interleukin-1beta and long-term depression in the rat dentate gyrus in vitro. Neuroscience 118:347–357

    Article  PubMed  CAS  Google Scholar 

  144. Albensi BC, Mattson MP (2000) Evidence for the involvement of TNF and NF-kappaB in hippocampal synaptic plasticity. Synapse 35:151–159

    Article  PubMed  CAS  Google Scholar 

  145. Bellinger FP, Madamba S, Siggins GR (1993) Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res 628:227–234

    Article  PubMed  CAS  Google Scholar 

  146. Katsuki H et al (1990) Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur J Pharmacol 181:323–326

    Article  PubMed  CAS  Google Scholar 

  147. Coogan A, O’Connor JJ (1997) Inhibition of NMDA receptor-mediated synaptic transmission in the rat dentate gyrus in vitro by IL-1 beta. Neuroreport 8:2107–2110

    Article  PubMed  CAS  Google Scholar 

  148. Coogan AN, O’Connor JJ (1999) Interleukin-1beta inhibits a tetraethylammonium-induced synaptic potentiation in the rat dentate gyrus in vitro. Eur J Pharmacol 374:197–206

    Article  PubMed  CAS  Google Scholar 

  149. Coogan AN, O’Neill LA, O’Connor JJ (1999) The P38 mitogen-activated protein kinase inhibitor SB203580 antagonizes the inhibitory effects of interleukin-1beta on long-term potentiation in the rat dentate gyrus in vitro. Neuroscience 93:57–69

    Article  PubMed  CAS  Google Scholar 

  150. Schneider H et al (1998) A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci USA 95:7778–7783

    Article  PubMed  CAS  Google Scholar 

  151. Cumiskey D, Curran BP, Herron CE, O’Connor JJ (2007) A role for inflammatory mediators in the IL-18 mediated attenuation of LTP in the rat dentate gyrus. Neuropharmacology 52:1616–1623

    Article  PubMed  CAS  Google Scholar 

  152. Cumiskey D, Pickering M, O’Connor JJ (2007) Interleukin-18 mediated inhibition of LTP in the rat dentate gyrus is attenuated in the presence of mGluR antagonists. Neurosci Lett 412:206–210

    Article  PubMed  CAS  Google Scholar 

  153. Curran B, O’Connor JJ (2001) The pro-inflammatory cytokine interleukin-18 impairs long-term potentiation and NMDA receptor-mediated transmission in the rat hippocampus in vitro. Neuroscience 108:83–90

    Article  PubMed  CAS  Google Scholar 

  154. Ikegaya Y, Delcroix I, Iwakura Y, Matsuki N, Nishiyama N (2003) Interleukin-1beta abrogates long-term depression of hippocampal CA1 synaptic transmission. Synapse 47:54–57

    Article  PubMed  CAS  Google Scholar 

  155. Li AJ, Katafuchi T, Oda S, Hori T, Oomura Y (1997) Interleukin-6 inhibits long-term potentiation in rat hippocampal slices. Brain Res 748:30–38

    Article  PubMed  CAS  Google Scholar 

  156. Tancredi V et al (2000) The inhibitory effects of interleukin-6 on synaptic plasticity in the rat hippocampus are associated with an inhibition of mitogen-activated protein kinase ERK. J Neurochem 75:634–643

    Article  PubMed  CAS  Google Scholar 

  157. Bellinger FP, Madamba SG, Campbell IL, Siggins GR (1995) Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neurosci Lett 198:95–98

    Article  PubMed  CAS  Google Scholar 

  158. Balschun D et al (2004) Interleukin-6: a cytokine to forget. FASEB J 18:1788–1790

    PubMed  CAS  Google Scholar 

  159. Tancredi V, Zona C, Velotti F, Eusebi F, Santoni A (1990) Interleukin-2 suppresses established long-term potentiation and inhibits its induction in the rat hippocampus. Brain Res 525:149–151

    Article  PubMed  CAS  Google Scholar 

  160. Xiong H et al (2003) Inhibition of long-term potentiation by interleukin-8: implications for human immunodeficiency virus-1-associated dementia. J Neurosci Res 71:600–607

    Article  PubMed  CAS  Google Scholar 

  161. D’Arcangelo G et al (1991) Interferon inhibits synaptic potentiation in rat hippocampus. Brain Res 564:245–248

    Article  PubMed  Google Scholar 

  162. Mendoza-Fernandez V, Andrew RD, Barajas-Lopez C (2000) Interferon-alpha inhibits long-term potentiation and unmasks a long-term depression in the rat hippocampus. Brain Res 885:14–24

    Article  PubMed  CAS  Google Scholar 

  163. Cho RW et al (2008) mGluR1/5-dependent long-term depression requires the regulated ectodomain cleavage of neuronal pentraxin NPR by TACE. Neuron 57:858–871

    Article  PubMed  CAS  Google Scholar 

  164. Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5:97–107

    Article  PubMed  CAS  Google Scholar 

  165. Miller KD (1996) Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17:371–374

    Article  PubMed  CAS  Google Scholar 

  166. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435

    Article  PubMed  CAS  Google Scholar 

  167. Pozo K, Goda Y (2010) Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66:337–351

    Article  PubMed  CAS  Google Scholar 

  168. Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391:892–896

    Article  PubMed  CAS  Google Scholar 

  169. Leslie KR, Nelson SB, Turrigiano GG (2001) Postsynaptic depolarization scales quantal amplitude in cortical pyramidal neurons. J Neurosci 21:RC170

    PubMed  CAS  Google Scholar 

  170. Pak DT, Sheng M (2003) Targeted protein degradation and synapse remodeling by an inducible protein kinase. Science 302:1368–1373

    Article  PubMed  CAS  Google Scholar 

  171. Seeburg DP, Feliu-Mojer M, Gaiottino J, Pak DT, Sheng M (2008) Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity. Neuron 58:571–583

    Article  PubMed  CAS  Google Scholar 

  172. Seeburg DP, Sheng M (2008) Activity-induced Polo-like kinase 2 is required for homeostatic plasticity of hippocampal neurons during epileptiform activity. J Neurosci 28:6583–6591

    Article  PubMed  CAS  Google Scholar 

  173. Peng YR et al (2010) Postsynaptic spiking homeostatically induces cell-autonomous regulation of inhibitory inputs via retrograde signaling. J Neurosci 30:16220–16231

    Article  PubMed  CAS  Google Scholar 

  174. Rannals MD, Kapur J (2011) Homeostatic strengthening of inhibitory synapses is mediated by the accumulation of GABA(A) receptors. J Neurosci 31:17701–17712

    Article  PubMed  CAS  Google Scholar 

  175. Aoto J, Nam CI, Poon MM, Ting P, Chen L (2008) Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60:308–320

    Article  PubMed  CAS  Google Scholar 

  176. Groth RD, Lindskog M, Thiagarajan TC, Li L, Tsien RW (2011) Beta Ca2+/CaM-dependent kinase type II triggers upregulation of GluA1 to coordinate adaptation to synaptic inactivity in hippocampal neurons. Proc Natl Acad Sci USA 108:828–833

    Article  PubMed  CAS  Google Scholar 

  177. Gainey MA, Hurvitz-Wolff JR, Lambo ME, Turrigiano GG (2009) Synaptic scaling requires the GluR2 subunit of the AMPA receptor. J Neurosci 29:6479–6489

    Article  PubMed  CAS  Google Scholar 

  178. Kilman V, van Rossum MC, Turrigiano GG (2002) Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J Neurosci 22:1328–1337

    PubMed  CAS  Google Scholar 

  179. Saliba RS, Michels G, Jacob TC, Pangalos MN, Moss SJ (2007) Activity-dependent ubiquitination of GABA(A) receptors regulates their accumulation at synaptic sites. J Neurosci 27:13341–13351

    Article  PubMed  CAS  Google Scholar 

  180. Beique JC, Na Y, Kuhl D, Worley PF, Huganir RL (2011) Arc-dependent synapse-specific homeostatic plasticity. Proc Natl Acad Sci USA 108:816–821

    Article  PubMed  CAS  Google Scholar 

  181. Jakawich SK et al (2010) Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 68:1143–1158

    Article  PubMed  CAS  Google Scholar 

  182. Sutton MA et al (2006) Miniature neurotransmission stabilizes synaptic function via tonic suppression of local dendritic protein synthesis. Cell 125:785–799

    Article  PubMed  CAS  Google Scholar 

  183. Wang HL, Zhang Z, Hintze M, Chen L (2011) Decrease in calcium concentration triggers neuronal retinoic acid synthesis during homeostatic synaptic plasticity. J Neurosci 31:17764–17771

    Article  PubMed  CAS  Google Scholar 

  184. Steinmetz CC, Turrigiano GG (2010) Tumor necrosis factor-alpha signaling maintains the ability of cortical synapses to express synaptic scaling. J Neurosci 30:14685–14690

    Article  PubMed  CAS  Google Scholar 

  185. Desai NS, Cudmore RH, Nelson SB, Turrigiano GG (2002) Critical periods for experience-dependent synaptic scaling in visual cortex. Nat Neurosci 5:783–789

    PubMed  CAS  Google Scholar 

  186. Goel A, Lee HK (2007) Persistence of experience-induced homeostatic synaptic plasticity through adulthood in superficial layers of mouse visual cortex. J Neurosci 27:6692–6700

    Article  PubMed  CAS  Google Scholar 

  187. Chang MC et al (2010) Narp regulates homeostatic scaling of excitatory synapses on parvalbumin-expressing interneurons. Nat Neurosci 13:1090–1097

    Article  PubMed  CAS  Google Scholar 

  188. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  PubMed  CAS  Google Scholar 

  189. Neumann H, Schmidt H, Cavalie A, Jenne D, Wekerle H (1997) Major histocompatibility complex (MHC) class I gene expression in single neurons of the central nervous system: differential regulation by interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha. J Exp Med 185:305–316

    Article  PubMed  CAS  Google Scholar 

  190. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  PubMed  CAS  Google Scholar 

  191. Halassa MM, Fellin T, Haydon PG (2007) The tripartite synapse: roles for gliotransmission in health and disease. Trends Mol Med 13:54–63

    Article  PubMed  CAS  Google Scholar 

  192. Jourdain P et al (2007) Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci 10:331–339

    Article  PubMed  CAS  Google Scholar 

  193. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734–744

    Article  PubMed  CAS  Google Scholar 

  194. Leonoudakis D, Braithwaite SP, Beattie MS, Beattie EC (2004) TNFalpha-induced AMPA-receptor trafficking in CNS neurons; relevance to excitotoxicity? Neuron Glia Biol 1:263–273

    Article  PubMed  Google Scholar 

  195. Zhao P, Ignacio S, Beattie EC, Abood ME (2008) Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. Eur J Neurosci 27:572–579

    Article  PubMed  Google Scholar 

  196. Carlson NG, Bacchi A, Rogers SW, Gahring LC (1998) Nicotine blocks TNF-alpha-mediated neuroprotection to NMDA by an alpha-bungarotoxin-sensitive pathway. J Neurobiol 35:29–36

    Article  PubMed  CAS  Google Scholar 

  197. Carlson NG et al (1999) Inflammatory cytokines IL-1 alpha, IL-1 beta, IL-6, and TNF-alpha impart neuroprotection to an excitotoxin through distinct pathways. J Immunol 163:3963–3968

    PubMed  CAS  Google Scholar 

  198. Liu XH, Xu H, Barks JD (1999) Tumor necrosis factor-a attenuates N-methyl-D-aspartate-mediated neurotoxicity in neonatal rat hippocampus. Brain Res 851:94–104

    Article  PubMed  CAS  Google Scholar 

  199. Schwab C, Steele JC, McGeer PL (1996) Neurofibrillary tangles of Guam parkinson-dementia are associated with reactive microglia and complement proteins. Brain Res 707:196–205

    Article  PubMed  CAS  Google Scholar 

  200. Rogers J et al (1992) Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA 89:10016–10020

    Article  PubMed  CAS  Google Scholar 

  201. Rogers J et al (1992) Complement activation and beta-amyloid-mediated neurotoxicity in Alzheimer’s disease. Res Immunol 143:624–630

    Article  PubMed  CAS  Google Scholar 

  202. Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349

    Article  PubMed  CAS  Google Scholar 

  203. Boyett KW et al (2003) Increased fibrillar beta-amyloid in response to human clq injections into hippocampus and cortex of APP+PS1 transgenic mice. Neurochem Res 28:83–93

    Article  PubMed  CAS  Google Scholar 

  204. Webster SD et al (2000) Complement component C1q modulates the phagocytosis of Abeta by microglia. Exp Neurol 161:127–138

    Article  PubMed  CAS  Google Scholar 

  205. Fonseca MI, Zhou J, Botto M, Tenner AJ (2004) Absence of C1q leads to less neuropathology in transgenic mouse models of Alzheimer’s disease. J Neurosci 24:6457–6465

    Article  PubMed  CAS  Google Scholar 

  206. Steele MR, Inman DM, Calkins DJ, Horner PJ, Vetter ML (2006) Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest Ophthalmol Vis Sci 47:977–985

    Article  PubMed  Google Scholar 

  207. Stasi K et al (2006) Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Invest Ophthalmol Vis Sci 47:1024–1029

    Article  PubMed  Google Scholar 

  208. Ringheim GE, Conant K (2004) Neurodegenerative disease and the neuroimmune axis (Alzheimer’s and Parkinson’s disease, and viral infections). J Neuroimmunol 147:43–49

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Stellwagen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pribiag, H., Stellwagen, D. (2013). Neuroimmune Modulation of Synaptic Function. In: Cui, C., Grandison, L., Noronha, A. (eds) Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4729-0_3

Download citation

Publish with us

Policies and ethics