Skip to main content

Neuroimmune Mechanisms of Glia and Their Interplay with Alcohol Exposure Across the Lifespan

  • Chapter
  • First Online:
Neural-Immune Interactions in Brain Function and Alcohol Related Disorders

Abstract

A plethora of studies demonstrate a link between alcohol consumption and altered immune activity in the central nervous system (CNS). Alcohol-induced immune activity has been observed in animal models of fetal alcohol syndrome, in binge models associated with adolescence and adulthood, and in chronic models of alcohol consumption in adults and aged animals. The purpose of this chapter is to provide an overview of studies analyzing alcohol effects on immune activity in the CNS throughout the lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. May PA, Gossage JP (2001) Estimating the prevalence of fetal alcohol syndrome. A summary. Alcohol Res Health 25(3):159–167

    PubMed  CAS  Google Scholar 

  2. Sokol RJ, Delaney-Black V, Nordstrom B (2003) Fetal alcohol spectrum disorder. JAMA 290(22):2996–2999

    PubMed  CAS  Google Scholar 

  3. May PA, Gossage JP, Kalberg WO, Robinson LK, Buckley D, Manning M, Hoyme HE (2009) Prevalence and epidemiologic characteristics of FASD from various research methods with an emphasis on recent in-school studies. Dev Disabil Res Rev 15(3):176–192

    PubMed  Google Scholar 

  4. Cui C, Grandison L, Noronha A (2011) Neuroimmune mechanisms of brain function and alcohol related disorders. Brain Behav Immun 25(Suppl 1):S1–S3

    Google Scholar 

  5. Crews FT, Zou J, Qin L (2011) Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav Immun 25(Suppl 1):S4–S12

    PubMed  CAS  Google Scholar 

  6. Goral J, Karavitis J, Kovacs EJ (2008) Exposure-dependent effects of ethanol on the innate immune system. Alcohol 42(4):237–247

    PubMed  CAS  Google Scholar 

  7. Crews FT, Bechara R, Brown LA, Guidot DM, Mandrekar P, Oak S, Qin L, Szabo G, Wheeler M, Zou J (2006) Cytokines and alcohol. Alcohol Clin Exp Res 30(4):720–730

    PubMed  CAS  Google Scholar 

  8. Crews FT, Nixon K (2009) Mechanisms of neurodegeneration and regeneration in alcoholism. Alcohol Alcohol 44(2):115–127

    PubMed  CAS  Google Scholar 

  9. Blanco AM, Guerri C (2007) Ethanol intake enhances inflammatory mediators in brain: role of glial cells and TLR4/IL-1RI receptors. Front Biosci 12:2616–2630

    PubMed  CAS  Google Scholar 

  10. Davis RL, Syapin PJ (2004) Ethanol increases nuclear factor-kappa B activity in human astroglial cells. Neurosci Lett 371(2–3):128–132

    PubMed  CAS  Google Scholar 

  11. Zou J, Crews F (2006) CREB and NF-kappaB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26(4–6):385–405

    PubMed  CAS  Google Scholar 

  12. Knapp DJ, Crews FT (1999) Induction of cyclooxygenase-2 in brain during acute and chronic ethanol treatment and ethanol withdrawal. Alcohol Clin Exp Res 23(4):633–643

    PubMed  CAS  Google Scholar 

  13. Crews F, Nixon K, Kim D, Joseph J, Shukitt-Hale B, Qin L, Zou J (2006) BHT blocks NF-kappaB activation and ethanol-induced brain damage. Alcohol Clin Exp Res 30(11):1938–1949

    PubMed  CAS  Google Scholar 

  14. Zou J, Crews F (2010) Induction of innate immune gene expression cascades in brain slice cultures by ethanol: key role of NF-kappaB and proinflammatory cytokines. Alcohol Clin Exp Res 34(5):777–789

    PubMed  CAS  Google Scholar 

  15. Blanco AM, Pascual M, Valles SL, Guerri C (2004) Ethanol-induced iNOS and COX-2 expression in cultured astrocytes via NF-kappa B. Neuroreport 15(4):681–685

    PubMed  CAS  Google Scholar 

  16. Ward RJ, Zhang Y, Crichton RR, Piret B, Piette J, de Witte P (1996) Identification of the nuclear transcription factor NFkappaB in rat after in vivo ethanol administration. FEBS Lett 389(2):119–122

    PubMed  CAS  Google Scholar 

  17. Saijo K, Glass CK (2011) Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol 11(11):775–787

    PubMed  CAS  Google Scholar 

  18. Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91(2):461–553

    PubMed  CAS  Google Scholar 

  19. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, Klemsz M, Feeney AJ, Wu GE, Paige CJ, Maki RA (1996) Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 15(20):5647–5658

    PubMed  CAS  Google Scholar 

  20. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94(8):4080–4085

    PubMed  CAS  Google Scholar 

  21. Priller J, Flugel A, Wehner T, Boentert M, Haas CA, Prinz M, Fernandez-Klett F, Prass K, Bechmann I, de Boer BA, Frotscher M, Kreutzberg GW, Persons DA, Dirnagl U (2001) Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat Med 7(12):1356–1361

    PubMed  CAS  Google Scholar 

  22. Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239(4837):290–292

    PubMed  CAS  Google Scholar 

  23. Ransohoff RM (2007) Microgliosis: the questions shape the answers. Nat Neurosci 10(12):1507–1509

    PubMed  CAS  Google Scholar 

  24. Hickey WF (1991) Migration of hematogenous cells through the blood–brain barrier and the initiation of CNS inflammation. Brain Pathol 1(2):97–105

    PubMed  CAS  Google Scholar 

  25. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543

    PubMed  CAS  Google Scholar 

  26. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, Heikenwalder M, Bruck W, Priller J, Prinz M (2007) Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 10(12):1544–1553

    PubMed  CAS  Google Scholar 

  27. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14(9):1142–1149

    PubMed  CAS  Google Scholar 

  28. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934

    PubMed  CAS  Google Scholar 

  29. Fellner L, Jellinger KA, Wenning GK, Stefanova N (2011) Glial dysfunction in the pathogenesis of alpha-synucleinopathies: emerging concepts. Acta Neuropathol 121(6):675–693

    PubMed  CAS  Google Scholar 

  30. Reitz C, Brayne C, Mayeux R (2011) Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3):137–152

    PubMed  Google Scholar 

  31. Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48(2):405–415

    PubMed  CAS  Google Scholar 

  32. Lawson LJ, Perry VH, Dri P, Gordon S (1990) Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1):151–170

    PubMed  CAS  Google Scholar 

  33. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–439

    PubMed  CAS  Google Scholar 

  34. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145

    PubMed  CAS  Google Scholar 

  35. Sierra A, Encinas JM, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7(4):483–495

    PubMed  CAS  Google Scholar 

  36. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758

    PubMed  CAS  Google Scholar 

  37. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318

    PubMed  CAS  Google Scholar 

  38. Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8(11):e1000527

    PubMed  Google Scholar 

  39. Zettel M, Tremblay ME, Ison JR, Allen PD, Morrison WZ, Inglis A, Stanley HE, Rosene DL, Majewska AK (2010) Age-related loss of hearing or sight in mice yields greater apparent aging effects in corresponding sensory cortices. Soc Neurosci Abstr 36:765.3

    Google Scholar 

  40. Perry VH, Hume DA, Gordon S (1985) Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 15(2):313–326

    PubMed  CAS  Google Scholar 

  41. Dalmau I, Finsen B, Zimmer J, Gonzalez B, Castellano B (1998) Development of microglia in the postnatal rat hippocampus. Hippocampus 8(5):458–474

    PubMed  CAS  Google Scholar 

  42. Fiske BK, Brunjes PC (2000) Microglial activation in the developing rat olfactory bulb. Neuroscience 96(4):807–815

    PubMed  CAS  Google Scholar 

  43. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980

    PubMed  CAS  Google Scholar 

  44. Schafer DP, Lehrman EK, Kautzman AG, Barres B, Stevens B (2010) Synaptic pruning in the CNS: the role of microglia and the complement system. Soc Neurosci Abstr 36:554.5

    Google Scholar 

  45. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178

    PubMed  CAS  Google Scholar 

  46. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458

    PubMed  CAS  Google Scholar 

  47. Boulanger LM (2009) Immune proteins in brain development and synaptic plasticity. Neuron 64(1):93–109

    PubMed  CAS  Google Scholar 

  48. Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC (2006) CNS immune privilege: hiding in plain sight. Immunol Rev 213:48–65

    PubMed  Google Scholar 

  49. Brockhaus J, Ilschner S, Banati RB, Kettenmann H (1993) Membrane properties of ameboid microglial cells in the corpus callosum slice from early postnatal mice. J Neurosci 13(10):4412–4421

    PubMed  CAS  Google Scholar 

  50. Haas S, Brockhaus J, Verkhratsky A, Kettenmann H (1996) ATP-induced membrane currents in ameboid microglia acutely isolated from mouse brain slices. Neuroscience 75(1):257–261

    PubMed  CAS  Google Scholar 

  51. Streit WJ, Xue QS (2009) Life and death of microglia. J Neuroimmune Pharmacol 4(4):371–379

    PubMed  Google Scholar 

  52. Sievers J, Parwaresch R, Wottge HU (1994) Blood monocytes and spleen macrophages differentiate into microglia-like cells on monolayers of astrocytes: morphology. Glia 12(4):245–258

    PubMed  CAS  Google Scholar 

  53. Wollmer MA, Lucius R, Wilms H, Held-Feindt J, Sievers J, Mentlein R (2001) ATP and adenosine induce ramification of microglia in vitro. J Neuroimmunol 115(1–2):19–27

    PubMed  CAS  Google Scholar 

  54. Schilling T, Nitsch R, Heinemann U, Haas D, Eder C (2001) Astrocyte-released cytokines induce ramification and outward K  +  channel expression in microglia via distinct signalling pathways. Eur J Neurosci 14(3):463–473

    PubMed  CAS  Google Scholar 

  55. Carson MJ, Bilousova TV, Puntambekar SS, Melchior B, Doose JM, Ethell IM (2007) A rose by any other name? The potential consequences of microglial heterogeneity during CNS health and disease. Neurotherapeutics 4(4):571–579

    PubMed  CAS  Google Scholar 

  56. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4(4):399–418

    PubMed  Google Scholar 

  57. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394

    PubMed  CAS  Google Scholar 

  58. Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7(2):161–167

    PubMed  CAS  Google Scholar 

  59. Schwartz M, Butovsky O, Bruck W, Hanisch UK (2006) Microglial phenotype: is the commitment reversible? Trends Neurosci 29(2):68–74

    PubMed  CAS  Google Scholar 

  60. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57(6):563–581

    PubMed  CAS  Google Scholar 

  61. Meeuwsen S, Bsibsi M, Persoon-Deen C, Ravid R, van Noort JM (2005) Cultured human adult microglia from different donors display stable cytokine, chemokine and growth factor gene profiles but respond differently to a pro-inflammatory stimulus. Neuroimmunomodulation 12(4):235–245

    PubMed  CAS  Google Scholar 

  62. Sierra A, Gottfried-Blackmore AC, McEwen BS, Bulloch K (2007) Microglia derived from aging mice exhibit an altered inflammatory profile. Glia 55(4):412–424

    PubMed  Google Scholar 

  63. Hart AD, Wyttenbach A, Hugh PV, Teeling JL (2012) Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav Immun 26:754–765

    PubMed  Google Scholar 

  64. Choi JH, Won MH (2011) Microglia in the normally aged hippocampus. Lab Anim Res 27(3):181–187

    PubMed  Google Scholar 

  65. Miller KR, Streit WJ (2007) The effects of aging, injury and disease on microglial function: a case for cellular senescence. Neuron Glia Biol 3(3):245–253

    PubMed  Google Scholar 

  66. Streit WJ (2006) Microglial senescence: does the brain’s immune system have an expiration date? Trends Neurosci 29(9):506–510

    PubMed  CAS  Google Scholar 

  67. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20(5):588–594

    PubMed  CAS  Google Scholar 

  68. Freeman MR (2010) Specification and morphogenesis of astrocytes. Science 330(6005):774–778

    PubMed  CAS  Google Scholar 

  69. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35

    PubMed  Google Scholar 

  70. Oberheim NA, Goldman SA, Nedergaard M (2012) Heterogeneity of astrocytic form and function. Methods Mol Biol 814:23–45

    PubMed  Google Scholar 

  71. Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG, Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M, Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. J Neurochem 121:4–27

    PubMed  CAS  Google Scholar 

  72. Achur RN, Freeman WM, Vrana KE (2010) Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J Neuroimmune Pharmacol 5(1):83–91

    PubMed  Google Scholar 

  73. Laso FJ, Vaquero JM, Almeida J, Marcos M, Orfao A (2007) Production of inflammatory cytokines by peripheral blood monocytes in chronic alcoholism: relationship with ethanol intake and liver disease. Cytometry B Clin Cytom 72(5):408–415

    PubMed  Google Scholar 

  74. Kiefer F, Jahn H, Schick M, Wiedemann K (2002) Alcohol intake, tumour necrosis factor-alpha, leptin and craving: factors of a possibly vicious circle? Alcohol Alcohol 37(4):401–404

    PubMed  CAS  Google Scholar 

  75. Kim DJ, Kim W, Yoon SJ, Choi BM, Kim JS, Go HJ, Kim YK, Jeong J (2003) Effects of alcohol hangover on cytokine production in healthy subjects. Alcohol 31(3):167–170

    PubMed  CAS  Google Scholar 

  76. Liu J, Lewohl JM, Harris RA, Iyer VR, Dodd PR, Randall PK, Mayfield RD (2006) Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology 31(7):1574–1582

    PubMed  CAS  Google Scholar 

  77. Okvist A, Johansson S, Kuzmin A, Bazov I, Merino-Martinez R, Ponomarev I, Mayfield RD, Harris RA, Sheedy D, Garrick T, Harper C, Hurd YL, Terenius L, Ekstrom TJ, Bakalkin G, Yakovleva T (2007) Neuroadaptations in human chronic alcoholics: dysregulation of the NF-kappaB system. PLoS One 2(9):e930

    PubMed  Google Scholar 

  78. Yakovleva T, Bazov I, Watanabe H, Hauser KF, Bakalkin G (2011) Transcriptional control of maladaptive and protective responses in alcoholics: a role of the NF-kappaB system. Brain Behav Immun 25(Suppl 1):S29–S38

    PubMed  CAS  Google Scholar 

  79. He J, Crews FT (2008) Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 210(2):349–358

    PubMed  CAS  Google Scholar 

  80. Blednov YA, Bergeson SE, Walker D, Ferreira VM, Kuziel WA, Harris RA (2005) Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol. Behav Brain Res 165(1):110–125

    PubMed  CAS  Google Scholar 

  81. Nelson TE, Hao C, Manos J, Ransohoff RM, Gruol DL (2011) Altered hippocampal synaptic transmission in transgenic mice with astrocyte-targeted enhanced CCL2 expression. Brain Behav Immun 25(Suppl 1):S106–S119

    PubMed  CAS  Google Scholar 

  82. Ahluwalia B, Wesley B, Adeyiga O, Smith DM, Da-Silva A, Rajguru S (2000) Alcohol modulates cytokine secretion and synthesis in human fetus: an in vivo and in vitro study. Alcohol 21(3):207–213

    PubMed  CAS  Google Scholar 

  83. Guerri C, Bazinet A, Riley EP (2009) Foetal alcohol spectrum disorders and alterations in brain and behaviour. Alcohol Alcohol 44(2):108–114

    PubMed  CAS  Google Scholar 

  84. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105(1):7–17

    PubMed  CAS  Google Scholar 

  85. Napper RM, West JR (1995) Permanent neuronal cell loss in the cerebellum of rats exposed to continuous low blood alcohol levels during the brain growth spurt: a stereological investigation. J Comp Neurol 362(2):283–292

    PubMed  CAS  Google Scholar 

  86. Pierce DR, Kane CJ, Serbus DC, Light KE (1997) Microencephaly and selective decreases in cerebellar Purkinje cell numbers following combined exposure to ethanol and methadone during rat brain development. Dev Neurosci 19(5):438–445

    PubMed  CAS  Google Scholar 

  87. Goodlett CR, Eilers AT (1997) Alcohol-induced Purkinje cell loss with a single binge exposure in neonatal rats: a stereological study of temporal windows of vulnerability. Alcohol Clin Exp Res 21(4):738–744

    PubMed  CAS  Google Scholar 

  88. Pierce DR, Williams DK, Light KE (1999) Purkinje cell vulnerability to developmental ­ethanol exposure in the rat cerebellum. Alcohol Clin Exp Res 23(10):1650–1659

    PubMed  CAS  Google Scholar 

  89. Light KE, Belcher SM, Pierce DR (2002) Time course and manner of Purkinje neuron death following a single ethanol exposure on postnatal day 4 in the developing rat. Neuroscience 114(2):327–337

    PubMed  CAS  Google Scholar 

  90. Kane CJ, Phelan KD, Han L, Smith RR, Xie J, Douglas JC, Drew PD (2011) Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator-activated receptor-γ agonists. Brain Behav Immun 25(Suppl 1):S137–S145

    PubMed  CAS  Google Scholar 

  91. Tiwari V, Chopra K (2011) Resveratrol prevents alcohol-induced cognitive deficits and brain damage by blocking inflammatory signaling and cell death cascade in neonatal rat brain. J Neurochem 117(4):678–690

    PubMed  CAS  Google Scholar 

  92. Schneider ML, Moore CF, Adkins MM (2011) The effects of prenatal alcohol exposure on behavior: rodent and primate studies. Neuropsychol Rev 21(2):186–203

    PubMed  Google Scholar 

  93. Kumar A, Singh CK, Lavoie HA, Dipette DJ, Singh US (2011) Resveratrol restores Nrf2 level and prevents ethanol-induced toxic effects in the cerebellum of a rodent model of fetal alcohol spectrum disorders. Mol Pharmacol 80(3):446–457

    PubMed  CAS  Google Scholar 

  94. DeVito WJ, Stone S (2001) Prenatal exposure to ethanol alters the neuroimmune response to a central nervous system wound in the adult rat. Alcohol 25(1):39–47

    PubMed  CAS  Google Scholar 

  95. Zhang X, Sliwowska JH, Weinberg J (2005) Prenatal alcohol exposure and fetal programming: effects on neuroendocrine and immune function. Exp Biol Med 230(6):376–388

    CAS  Google Scholar 

  96. Silveri MM, Spear LP (1998) Decreased sensitivity to the hypnotic effects of ethanol early in ontogeny. Alcohol Clin Exp Res 22(3):670–676

    PubMed  CAS  Google Scholar 

  97. Van Skike CE, Botta P, Chin VS, Tokunaga S, McDaniel JM, Venard J, Diaz-Granados JL, Valenzuela CF, Matthews DB (2010) Behavioral effects of ethanol in cerebellum are age dependent: potential system and molecular mechanisms. Alcohol Clin Exp Res 34(12): 2070–2080

    PubMed  Google Scholar 

  98. Monti PM, Miranda R Jr, Nixon K, Sher KJ, Swartzwelder HS, Tapert SF, White A, Crews FT (2005) Adolescence: booze, brains, and behavior. Alcohol Clin Exp Res 29(2):207–220

    PubMed  Google Scholar 

  99. Crews F, He J, Hodge C (2007) Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 86(2):189–199

    PubMed  CAS  Google Scholar 

  100. Peleg-Oren N, Saint-Jean G, Cardenas GA, Tammara H, Pierre C (2009) Drinking alcohol before age 13 and negative outcomes in late adolescence. Alcohol Clin Exp Res 33(11):1966–1972

    PubMed  Google Scholar 

  101. Doremus-Fitzwater TL, Varlinskaya EI, Spear LP (2010) Motivational systems in adolescence: possible implications for age differences in substance abuse and other risk-taking behaviors. Brain Cogn 72(1):114–123

    PubMed  Google Scholar 

  102. Nixon K, McClain JA (2010) Adolescence as a critical window for developing an alcohol use disorder: current findings in neuroscience. Curr Opin Psychiatry 23(3):227–232

    PubMed  Google Scholar 

  103. Maldonado-Devincci AM, Alipour KK, Michael LA, Kirstein CL (2010) Repeated binge ethanol administration during adolescence enhances voluntary sweetened ethanol intake in young adulthood in male and female rats. Pharmacol Biochem Behav 96(4):476–487

    PubMed  CAS  Google Scholar 

  104. Noonan MA, Bulin SE, Fuller DC, Eisch AJ (2010) Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci 30(1):304–315

    PubMed  CAS  Google Scholar 

  105. He J, Crews FT (2007) Neurogenesis decreases during brain maturation from adolescence to adulthood. Pharmacol Biochem Behav 86(2):327–333

    PubMed  CAS  Google Scholar 

  106. McClain JA, Hayes DM, Morris SA, Nixon K (2011) Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics. J Comp Neurol 519(13):2697–2710

    PubMed  CAS  Google Scholar 

  107. Nixon K, Crews FT (2002) Binge ethanol exposure decreases neurogenesis in adult rat hippocampus. J Neurochem 83(5):1087–1093

    PubMed  CAS  Google Scholar 

  108. Russo I, Barlati S, Bosetti F (2011) Effects of neuroinflammation on the regenerative capacity of brain stem cells. J Neurochem 116(6):947–956

    PubMed  CAS  Google Scholar 

  109. Spulber S, Oprica M, Bartfai T, Winblad B, Schultzberg M (2008) Blunted neurogenesis and gliosis due to transgenic overexpression of human soluble IL-1ra in the mouse. Eur J Neurosci 27(3):549–558

    PubMed  Google Scholar 

  110. Sun Y, Jin K, Childs JT, Xie L, Mao XO, Greenberg DA (2005) Neuronal nitric oxide ­synthase and ischemia-induced neurogenesis. J Cereb Blood Flow Metab 25(4):485–492

    PubMed  CAS  Google Scholar 

  111. Vallieres L, Campbell IL, Gage FH, Sawchenko PE (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22(2):486–492

    PubMed  CAS  Google Scholar 

  112. Monje ML, Toda H, Palmer TD (2003) Inflammatory blockade restores adult hippocampal neurogenesis. Science 302(5651):1760–1765

    PubMed  CAS  Google Scholar 

  113. Liu BF, Gao EJ, Zeng XZ, Ji M, Cai Q, Lu Q, Yang H, Xu QY (2006) Proliferation of neural precursors in the subventricular zone after chemical lesions of the nigrostriatal pathway in rat brain. Brain Res 1106(1):30–39

    PubMed  CAS  Google Scholar 

  114. Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13(7):717–728

    PubMed  CAS  Google Scholar 

  115. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R, Schwartz M (2007) Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 9(9):1081–1088

    PubMed  CAS  Google Scholar 

  116. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100(23):13632–13637

    PubMed  CAS  Google Scholar 

  117. Baron R, Nemirovsky A, Harpaz I, Cohen H, Owens T, Monsonego A (2008) IFN-γ enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer’s disease. FASEB J 22(8):2843–2852

    PubMed  CAS  Google Scholar 

  118. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N, Cohen H, Kipnis J, Schwartz M (2006) Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 9(2):268–275

    PubMed  CAS  Google Scholar 

  119. McClain JA, Morris SA, Deeny MA, Marshall SA, Hayes DM, Kiser ZM, Nixon K (2011) Adolescent binge alcohol exposure induces long-lasting partial activation of microglia. Brain Behav Immun 25(Suppl 1):S120–S128

    PubMed  CAS  Google Scholar 

  120. Mandrekar P, Szabo G (2009) Signalling pathways in alcohol-induced liver inflammation. J Hepatol 50(6):1258–1266

    PubMed  CAS  Google Scholar 

  121. Wang HJ, Zakhari S, Jung MK (2010) Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol 16(11):1304–1313

    PubMed  CAS  Google Scholar 

  122. Rivest S, Lacroix S, Vallieres L, Nadeau S, Zhang J, Laflamme N (2000) How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proc Soc Exp Biol Med 223(1):22–38

    PubMed  CAS  Google Scholar 

  123. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462

    PubMed  Google Scholar 

  124. Qin L, He J, Hanes RN, Pluzarev O, Hong JS, Crews FT (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 5:10

    PubMed  Google Scholar 

  125. Zahr NM, Luong R, Sullivan EV, Pfefferbaum A (2010) Measurement of serum, liver, and brain cytokine induction, thiamine levels, and hepatopathology in rats exposed to a 4-day alcohol binge protocol. Alcohol Clin Exp Res 34(11):1858–1870

    PubMed  CAS  Google Scholar 

  126. Riikonen J, Jaatinen P, Rintala J, Porsti I, Karjala K, Hervonen A (2002) Intermittent ethanol exposure increases the number of cerebellar microglia. Alcohol Alcohol 37(5):421–426

    PubMed  CAS  Google Scholar 

  127. Nixon K, Kim DH, Potts EN, He J, Crews FT (2008) Distinct cell proliferation events during abstinence after alcohol dependence: microglia proliferation precedes neurogenesis. Neurobiol Dis 31(2):218–229

    PubMed  CAS  Google Scholar 

  128. Mulligan MK, Ponomarev I, Hitzemann RJ, Belknap JK, Tabakoff B, Harris RA, Crabbe JC, Blednov YA, Grahame NJ, Phillips TJ, Finn DA, Hoffman PL, Iyer VR, Koob GF, Bergeson SE (2006) Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Natl Acad Sci USA 103(16):6368–6373

    PubMed  CAS  Google Scholar 

  129. Breese GR, Knapp DJ, Overstreet DH, Navarro M, Wills TA, Angel RA (2008) Repeated lipopolysaccharide (LPS) or cytokine treatments sensitize ethanol withdrawal-induced anxiety-like behavior. Neuropsychopharmacology 33(4):867–876

    PubMed  CAS  Google Scholar 

  130. Blednov YA, Ponomarev I, Geil C, Bergeson S, Koob GF, Harris RA (2012) Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol 17(1):108–120

    PubMed  CAS  Google Scholar 

  131. Kimpel MW, Strother WN, McClintick JN, Carr LG, Liang T, Edenberg HJ, McBride WJ (2007) Functional gene expression differences between inbred alcohol-preferring and -non-preferring rats in five brain regions. Alcohol 41(2):95–132

    PubMed  CAS  Google Scholar 

  132. Liu J, Lewohl JM, Harris RA, Dodd PR, Mayfield RD (2007) Altered gene expression profiles in the frontal cortex of cirrhotic alcoholics. Alcohol Clin Exp Res 31(9):1460–1466

    PubMed  CAS  Google Scholar 

  133. Brown DR (2009) Role of microglia in age-related changes to the nervous system. Scientific World Journal 9:1061–1071

    PubMed  CAS  Google Scholar 

  134. Lucin KM, Wyss-Coray T (2009) Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 64(1):110–122

    PubMed  CAS  Google Scholar 

  135. Corona AW, Fenn AM, Godbout JP (2012) Cognitive and behavioral consequences of impaired immunoregulation in aging. J Neuroimmune Pharmacol 7:7–23

    PubMed  Google Scholar 

  136. Dlugos CA, Pentney RJ (2001) Quantitative immunocytochemistry of glia in the cerebellar cortex of old ethanol-fed rats. Alcohol 23(2):63–69

    PubMed  CAS  Google Scholar 

  137. Rintala J, Jaatinen P, Kiianmaa K, Riikonen J, Kemppainen O, Sarviharju M, Hervonen A (2001) Dose-dependent decrease in glial fibrillary acidic protein-immunoreactivity in rat cerebellum after lifelong ethanol consumption. Alcohol 23(1):1–8

    PubMed  CAS  Google Scholar 

  138. Blanco AM, Valles SL, Pascual M, Guerri C (2005) Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 175(10):6893–6899

    PubMed  CAS  Google Scholar 

  139. Floreani NA, Rump TJ, Abdul Muneer PM, Alikunju S, Morsey BM, Brodie MR, Persidsky Y, Haorah J (2010) Alcohol-induced interactive phosphorylation of Src and toll-like receptor regulates the secretion of inflammatory mediators by human astrocytes. J Neuroimmune Pharmacol 5(4):533–545

    PubMed  Google Scholar 

  140. Blanco AM, Perez-Arago A, Fernandez-Lizarbe S, Guerri C (2008) Ethanol mimics ligand-mediated activation and endocytosis of IL-1RI/TLR4 receptors via lipid rafts caveolae in astroglial cells. J Neurochem 106(2):625–639

    PubMed  CAS  Google Scholar 

  141. Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 183(7):4733–4744

    PubMed  CAS  Google Scholar 

  142. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30(24):8285–8295

    PubMed  CAS  Google Scholar 

  143. Pascual M, Balino P, Alfonso-Loeches S, Aragon CM, Guerri C (2011) Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 25(Suppl 1):S80–S91

    PubMed  CAS  Google Scholar 

  144. Wu Y, Lousberg EL, Moldenhauer LM, Hayball JD, Coller JK, Rice KC, Watkins LR, Somogyi AA, Hutchinson MR (2012) Inhibiting the TLR4-MyD88 signalling cascade by genetic or pharmacologic strategies reduces acute alcohol dose-induced sedation and motor impairment in mice. Br J Pharmacol 165:1319–1329

    PubMed  CAS  Google Scholar 

  145. Liu J, Yang AR, Kelly T, Puche A, Esoga C, June HL Jr, Elnabawi A, Merchenthaler I, Sieghart W, June HL Sr, Aurelian L (2011) Binge alcohol drinking is associated with GABAA alpha2-regulated Toll-like receptor 4 (TLR4) expression in the central amygdala. Proc Natl Acad Sci USA 108(11):4465–4470

    PubMed  CAS  Google Scholar 

  146. Miller MW (1995) Generation of neurons in the rat dentate gyrus and hippocampus: effects of prenatal and postnatal treatment with ethanol. Alcohol Clin Exp Res 19(6):1500–1509

    PubMed  CAS  Google Scholar 

  147. Moulder KL, Fu T, Melbostad H, Cormier RJ, Isenberg KE, Zorumski CF, Mennerick S (2002) Ethanol-induced death of postnatal hippocampal neurons. Neurobiol Dis 10(3):396–409

    PubMed  CAS  Google Scholar 

  148. Jacobs JS, Miller MW (2001) Proliferation and death of cultured fetal neocortical neurons: effects of ethanol on the dynamics of cell growth. J Neurocytol 30(5):391–401

    PubMed  CAS  Google Scholar 

  149. Maier SE, Cramer JA, West JR, Sohrabji F (1999) Alcohol exposure during the first two trimesters equivalent alters granule cell number and neurotrophin expression in the developing rat olfactory bulb. J Neurobiol 41(3):414–423

    PubMed  CAS  Google Scholar 

  150. De A, Boyadjieva NI, Pastorcic M, Reddy BV, Sarkar DK (1994) Cyclic AMP and ethanol interact to control apoptosis and differentiation in hypothalamic beta-endorphin neurons. J Biol Chem 269(43):26697–26705

    PubMed  CAS  Google Scholar 

  151. Sarkar DK, Kuhn P, Marano J, Chen C, Boyadjieva N (2007) Alcohol exposure during the developmental period induces beta-endorphin neuronal death and causes alteration in the opioid control of stress axis function. Endocrinology 148(6):2828–2834

    PubMed  CAS  Google Scholar 

  152. Boyadjieva NI, Sarkar DK (2010) Role of microglia in ethanol’s apoptotic action on hypothalamic neuronal cells in primary cultures. Alcohol Clin Exp Res 34(11):1835–1842

    PubMed  CAS  Google Scholar 

  153. Drew PD, Xu J, Racke MK (2008) PPAR-γ: therapeutic potential for multiple sclerosis. PPAR Res 2008:627463

    PubMed  Google Scholar 

  154. Stopponi S, Somaini L, Cippitelli A, Cannella N, Braconi S, Kallupi M, Ruggeri B, Heilig M, Demopulos G, Gaitanaris G, Massi M, Ciccocioppo R (2011) Activation of nuclear PPAR-γ receptors by the antidiabetic agent pioglitazone suppresses alcohol drinking and relapse to alcohol seeking. Biol Psychiatry 69(7):642–649

    PubMed  CAS  Google Scholar 

  155. Pascual M, Blanco AM, Cauli O, Minarro J, Guerri C (2007) Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 25(2):541–550

    PubMed  Google Scholar 

  156. Agrawal RG, Hewetson A, George CM, Syapin PJ, Bergeson SE (2011) Minocycline reduces ethanol drinking. Brain Behav Immun 25(Suppl 1):S165–S169

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia J. M. Kane Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drew, P.D., Kane, C.J.M. (2013). Neuroimmune Mechanisms of Glia and Their Interplay with Alcohol Exposure Across the Lifespan. In: Cui, C., Grandison, L., Noronha, A. (eds) Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4729-0_11

Download citation

Publish with us

Policies and ethics