Advertisement

Recognition and Treatment of Chlamydial Infections from Birth to Adolescence

  • Toni Darville
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

The “silent epidemic” of Chlamydia trachomatis threatens to cause reproductive damage and infertility in many of the 50 million women who acquire it each year. Female reproductive tract infection has more recently been linked to stillbirth and premature delivery. Innate immune cells and mediators appear to be the primary players in pathogenesis, with neutrophils playing a prominent role in disease development. Although adaptive antibody and CD4 T cell responses appear primarily protective, these responses are inefficient. Infections are frequently chronic as a result, and when infection is diagnosed and treated with appropriate antibiotics, repeated infection is the rule. The lack of acute symptoms in many infected individuals contributes to the high prevalence of chlamydial infection. Although chronic sequelae are relatively rare in men, and many women sustain infection without developing pelvic inflammatory disease or chronic sequelae, the extremely high prevalence of chlamydial infection leads to significant morbidity and healthcare costs. A vaccine is urgently needed to prevent infection, but given the difficulties of inducing a CD4 T cell memory response that can home quickly to the genital tract, induction of sterilizing immunity may not be possible. A vaccine that prevents disease by lowering bacterial burden and dampening production of tissue-damaging responses may be possible. Until an efficacious vaccine is developed, screening and treatment programs appear to be the best method of disease prevention.

Keywords

Ectopic Pregnancy Bacterial Vaginosis Chlamydia Trachomatis Pelvic Inflammatory Disease Chronic Pelvic Pain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Toni Darville is supported by United States National Institutes of Health grants (AI054624 and U19 AI084024).

References

  1. 1.
    Miller WC, Ford CA, Morris M, Handcock MS, Schmitz JL, Hobbs MM et al (2004) Prevalence of Chlamydial and gonococcal infections among young adults in the United States. JAMA 291:2229–2236PubMedCrossRefGoogle Scholar
  2. 2.
    LaMontagne DS, Fenton KA, Randall S, Anderson S, Carter P (2004) Establishing the national Chlamydia screening programme in England: results from the first full year of screening. Sex Transm Infect 80:335–341PubMedCrossRefGoogle Scholar
  3. 3.
    Ford CA, Pence BW, Miller WC, Resnick MD, Bearinger LH, Pettingell S et al (2005) Predicting adolescents’ longitudinal risk for sexually transmitted infection: results from the National Longitudinal Study of Adolescent Health. Arch Pediatr Adolesc Med 159:657–664PubMedCrossRefGoogle Scholar
  4. 4.
    Griffiths E, Gupta RS (2002) Protein signatures distinctive of Chlamydial species: horizontal transfers of cell wall biosynthesis genes glmU from archaea to Chlamydiae and murA between Chlamydiae and Streptomyces. Microbiology 148:2541–2549PubMedGoogle Scholar
  5. 5.
    O’Connell CM, Abdelrahman YM, Green E, Darville HK, Saira K, Smith B et al (2011) TLR2 activation by Chlamydia trachomatis is plasmid-dependent and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum. Infect Immun 79(3):1044–1056PubMedCrossRefGoogle Scholar
  6. 6.
    Stephens RS (2003) The cellular paradigm of Chlamydial pathogenesis. Trends Microbiol 11:44–51PubMedCrossRefGoogle Scholar
  7. 7.
    Karimi O, Ouburg S, de Vries HJ, Pena AS, Pleijster J, Land JA et al (2009) TLR2 haplotypes in the susceptibility to and severity of Chlamydia trachomatis infections in Dutch women. Drugs Today (Barc) 45(Suppl B):67–74Google Scholar
  8. 8.
    Darville T, O’Neill JM, Andrews CW Jr, Nagarajan UM, Stahl L, Ojcius DM (2003) Toll-like receptor-2, but not toll-like receptor-4, is essential for development of oviduct pathology in Chlamydial genital tract infection. J Immunol 171:6187–6197PubMedGoogle Scholar
  9. 9.
    Frazer LC, O’Connell CM, Andrews CW Jr, Zurenski MA, Darville T (2011) Enhanced neutrophil longevity and recruitment contribute to the severity of oviduct pathology during C. muridarum infection. Infect Immun 79(10):4029–4041PubMedCrossRefGoogle Scholar
  10. 10.
    Shah AA, Schripsema JH, Imtiaz MT, Sigar IM, Kasimos J, Matos PG et al (2005) Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum. Sex Transm Dis 32:49–56PubMedCrossRefGoogle Scholar
  11. 11.
    Darville T, Andrews CW Jr, Laffoon KK, Shymasani W, Kishen LR, Rank RG (1997) Mouse strain-dependent variation in the course and outcome of Chlamydial genital tract infection is associated with differences in host response. Infect Immun 65:3065–3073PubMedGoogle Scholar
  12. 12.
    Ramsey KH, Sigar IM, Schripsema JH, Shaba N, Cohoon KP (2005) Expression of matrix metalloproteinases subsequent to urogenital Chlamydia muridarum infection of mice. Infect Immun 73:6962–6973PubMedCrossRefGoogle Scholar
  13. 13.
    Imtiaz MT, Distelhorst JT, Schripsema JH, Sigar IM, Kasimos JN, Lacy SR et al (2007) A role for matrix metalloproteinase-9 in pathogenesis of urogenital Chlamydia muridarum infection in mice. Microbes InfectGoogle Scholar
  14. 14.
    Molano M, Meijer CJ, Weiderpass E, Arslan A, Posso H, Franceschi S et al (2005) The natural course of Chlamydia trachomatis infection in asymptomatic Colombian women: a 5-year follow-up study. J Infect Dis 191:907–916PubMedCrossRefGoogle Scholar
  15. 15.
    Burstein GR, Gaydos CA, Diener-West M, Howell MR, Zenilman JM, Quinn TC (1998) Incident Chlamydia trachomatis infections among inner-city adolescent females (see comments). JAMA 280:521–526PubMedCrossRefGoogle Scholar
  16. 16.
    Arno JN, Katz BP, McBride R, Carty GA, Batteiger BE, Caine VA et al (1994) Age and clinical immunity to infections with Chlamydia trachomatis. Sex Transm Dis 21:47–52PubMedCrossRefGoogle Scholar
  17. 17.
    Kimani J, Maclean IW, Bwayo JJ, MacDonald K, Oyugi J, Maitha GM et al (1996) Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J Infect Dis 173:1437–1444PubMedCrossRefGoogle Scholar
  18. 18.
    Brunham RC, Kimani J, Bwayo J, Maitha G, Maclean I, Yang C et al (1996) The epidemiology of Chlamydia trachomatis within a sexually transmitted diseases core group. J Infect Dis 173:950–956PubMedCrossRefGoogle Scholar
  19. 19.
    Cohen CR, Koochesfahani KM, Meier AS, Shen C, Karunakaran K, Ondondo B et al (2005) Immunoepidemiologic profile of Chlamydia trachomatis infection: importance of heat-shock protein 60 and interferon- gamma. J Infect Dis 192:591–599PubMedCrossRefGoogle Scholar
  20. 20.
    Su H, Feilzer K, Caldwell HD, Morrison RP (1997) Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect Immun 65:1993–1999PubMedGoogle Scholar
  21. 21.
    Morrison SG, Morrison RP (2005) A predominant role for antibody in acquired immunity to Chlamydial genital tract reinfection. J Immunol 175:7536-7542PubMedGoogle Scholar
  22. 22.
    Brunham RC, Kuo CC, Cles L, Holmes KK (1983) Correlation of host immune response with quantitative recovery of Chlamydia trachomatis from the human endocervix. Infect Immun 39:1491–1494PubMedGoogle Scholar
  23. 23.
    Brunham RC, Peeling R, Maclean I, McDowell J, Persson K, Osser S (1987) Postabortal Chlamydia trachomatis salpingitis: correlating risk with antigen-specific serological responses and with neutralization. J Infect Dis 155:749–755PubMedCrossRefGoogle Scholar
  24. 24.
    World Health Organization (WHO) (2001) Global prevalence and incidence of selected curable sexually transmitted infections: overview and estimates. WHO, GenevaGoogle Scholar
  25. 25.
    Sturm-Ramirez K, Brumblay H, Diop K, Gueye-Ndiaye A, Sankale JL, Thior I et al (2000) Molecular epidemiology of genital Chlamydia trachomatis infection in high-risk women in Senegal, West Africa. J Clin Microbiol 38:138–145PubMedGoogle Scholar
  26. 26.
    Kilmarx PH, Black CM, Limpakarnjanarat K, Shaffer N, Yanpaisarn S, Chaisilwattana P et al (1998) Rapid assessment of sexually transmitted diseases in a sentinel population in Thailand: prevalence of Chlamydial infection, gonorrhoea, and syphilis among pregnant women–1996. Sex Transm Infect 74:189–193PubMedCrossRefGoogle Scholar
  27. 27.
    Warszawski J, Meyer L, Weber P (1999) Criteria for selective screening of cervical Chlamydia trachomatis infection in women attending private gynecology practices. Eur J Obstet Gynecol Reprod Biol 86:5–10PubMedCrossRefGoogle Scholar
  28. 28.
    Gaydos CA, Howell MR, Quinn TC, McKee KT Jr, Gaydos JC (2003) Sustained high prevalence of Chlamydia trachomatis infections in female army recruits. Sex Transm Dis 30:539–544PubMedCrossRefGoogle Scholar
  29. 29.
    Cohen DA, Nsuami M, Etame RB, Tropez-Sims S, Abdalian S, Farley TA et al (1998) A school-based Chlamydia control program using DNA amplification technology. Pediatrics 101:e1PubMedCrossRefGoogle Scholar
  30. 30.
    Best D, Ford CA, Miller WC (2001) Prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae infection in pediatric private practice. Pediatrics 108:E103PubMedCrossRefGoogle Scholar
  31. 31.
    Stamm WE, Koutsky LA, Benedetti JK, Jourden JL, Brunham RC, Holmes KK (1984) Chlamydia trachomatis urethral infections in men. Prevalence, risk factors, and clinical manifestations. AnnIntern Med 100:47–51Google Scholar
  32. 32.
    Schachter J, Grossman M, Holt J, Sweet R, Spector S (1979) Infection with Chlamydia trachomatis: involvement of multiple anatomic sites in neonates. J Infect Dis 139:232–234PubMedCrossRefGoogle Scholar
  33. 33.
    Jones RB, Rabinovitch RA, Katz BP, Batteiger BE, Quinn TS, Terho P et al (1985) Chlamydia trachomatis in the pharynx and rectum of heterosexual patients at risk for genital infection. AnnIntern Med 102:757–762Google Scholar
  34. 34.
    Quinn TC, Goodell SE, Mkrtichian E, Schuffler MD, Wang SP, Stamm WE et al (1981) Chlamydia trachomatis proctitis. N Eng J Med 305:195–200CrossRefGoogle Scholar
  35. 35.
    Rahman MU, Cantwell R, Johnson CC, Hodinka RL, Schumacher HR, Hudson AP (1992) Inapparent genital infection with Chlamydia trachomatis and its potential role in the genesis of Reiters syndrome. DNA Cell Biol 11:215–219PubMedCrossRefGoogle Scholar
  36. 36.
    Keat A, Thomas BJ, Taylor Robinson D (1983) Chlamydial infection in the aetiology of arthritis. Br Med Bull 39:168–174PubMedGoogle Scholar
  37. 37.
    Koskela P, Anttila T, Bjorge T, Brunsvig A, Dillner J, Hakama M et al (2000) Chlamydia trachomatis infection as a risk factor for invasive cervical cancer. Int J Cancer 85:35–39PubMedCrossRefGoogle Scholar
  38. 38.
    Plummer FA, Simonsen JN, Cameron DW, Ndinya-Achola JO, Kreiss JK, Gakinya MN et al (1991) Cofactors in male-female sexual transmission of human immunodeficiency virus type 1. J Infect Dis 163:233–239PubMedCrossRefGoogle Scholar
  39. 39.
    Paavonen J, Vesterinen E, Mardh PA (1982) Infertility as a sequela of Chlamydial pelvic inflammatory disease. Scand J Infect Dis Suppl 32:73–76PubMedGoogle Scholar
  40. 40.
    Haggerty CL, Gottlieb SL, Taylor BD, Low N, Xu F, Ness RB (2010) Risk of sequelae after Chlamydia trachomatis genital infection in women. J Infect Dis 201(Suppl 2):S134–55PubMedCrossRefGoogle Scholar
  41. 41.
    Rahm VA, Gnarpe H, Odlind V (1988) Chlamydia trachomatis among sexually active teenage girls. Lack of correlation between Chlamydial infection, history of the patient and clinical signs of infection. Br J Obstet Gynaecol 95:916–919PubMedCrossRefGoogle Scholar
  42. 42.
    Bachmann LH, Richey CM, Waites K, Schwebke JR, Hook III EW (1999) Patterns of Chlamydia trachomatis testing and follow-up at a University Hospital Medical Center. Sex Transm Dis 26:496–499PubMedCrossRefGoogle Scholar
  43. 43.
    Geisler WM, Wang C, Morrison SG, Black CM, Bandea CI, Hook III EW (2008) The natural history of untreated Chlamydia trachomatis infection in the interval between screening and returning for treatment. Sex Transm Dis 35:119–123PubMedCrossRefGoogle Scholar
  44. 44.
    Morre SA, van den Brule AJ, Rozendaal L, Boeke AJ, Voorhorst FJ, de Blok S et al (2002) The natural course of asymptomatic Chlamydia trachomatis infections: 45 % clearance and no development of clinical PID after one-year follow-up. Int J STD AIDS 13(Suppl 2):12–18PubMedCrossRefGoogle Scholar
  45. 45.
    Oakeshott P, Kerry S, Aghaizu A, Atherton H, Hay S, Taylor-Robinson D et al (2010) Randomised controlled trial of screening for Chlamydia trachomatis to prevent pelvic inflammatory disease: the POPI (prevention of pelvic infection) trial. BMJ 340:c1642PubMedCrossRefGoogle Scholar
  46. 46.
    Svensson L, Westrom L, Ripa KT, Mardh PA (1980) Differences in some clinical and laboratory parameters in acute salpingitis related to culture and serologic findings. Am J Obstet Gynecol 138(7 Pt 2):1017–1021PubMedGoogle Scholar
  47. 47.
    Hillis SD, Owens LM, Marchbanks PA, Amsterdam LE, Mac Kenzie WR (1997) Recurrent Chlamydial infections increase the risks of hospitalization for ectopic pregnancy and pelvic inflammatory disease. Am J Obstet Gynecol 176:103–107PubMedCrossRefGoogle Scholar
  48. 48.
    Ness RB, Smith KJ, Chang CC, Schisterman EF, Bass DC (2006) Prediction of pelvic inflammatory disease among young, single, sexually active women. Sex Transm Dis 33:137–142PubMedCrossRefGoogle Scholar
  49. 49.
    Schachter J, Grossman M, Sweet RL, Holt J, Jordan C, Bishop E (1986). Prospective study of perinatal transmission of Chlamydia trachomatis. JAMA 255:3374–3377PubMedCrossRefGoogle Scholar
  50. 50.
    Datta P, Laga M, Plummer FA, Ndinya-Achola JO, Piot P, Maitha G et al (1988) Infection and disease after perinatal exposure to Chlamydia trachomatis in Nairobi, Kenya. J Infect Dis 158:524–528PubMedCrossRefGoogle Scholar
  51. 51.
    Alexander ER, Harrison HR (1983) Role of Chlamydia trachomatis in perinatal infection. Rev Infect Dis 5:713–719PubMedCrossRefGoogle Scholar
  52. 52.
    Rours IG, Hammerschlag MR, Ott A, De Faber TJ, Verbrugh HA, de Groot R et al (2008) Chlamydia trachomatis as a cause of neonatal conjunctivitis in Dutch infants. Pediatrics 121:e321–326PubMedCrossRefGoogle Scholar
  53. 53.
    Chandler JW, Alexander ER, Pheiffer TA, Wang SP, Holmes KK, English M (1977) Ophthalmia neonatorum associated with maternal Chlamydial infections. Trans Am Acad Ophthalmol Otola 83:302–308Google Scholar
  54. 54.
    Persson K, Ronnerstam R, Svanberg L, Pohla MA (1983) Neonatal Chlamydial eye infection: an epidemiological and clinical study. Br J Ophthalmol 67:700–704PubMedCrossRefGoogle Scholar
  55. 55.
    Beem MO, Saxon EM (1977) Respiratory-tract colonization and a distinctive pneumonia syndrome in infants infected with Chlamydia trachomatis. N Engl J Med 296:306–310PubMedCrossRefGoogle Scholar
  56. 56.
    Schachter J, Lum L, Gooding CA, Ostler B (1975) Pneumonitis following inclusion blennorrhea. J Pediatr 87:779–780PubMedCrossRefGoogle Scholar
  57. 57.
    Rours GI, Hammerschlag MR, Van Doornum GJ, Hop WC, de Groot R, Willemse HF et al (2009) Chlamydia trachomatis respiratory infection in Dutch infants. Arch Dis Child 94:705–707PubMedCrossRefGoogle Scholar
  58. 58.
    Tipple MA, Beem MO, Saxon EM (1979) Clinical characteristics of the afebrile pneumonia associated with Chlamydia trachomatis infection in infants less than 6 months of age. Pediatrics 63:192–197PubMedGoogle Scholar
  59. 59.
    Johnson RE, Newhall WJ, Papp JR, Knapp JS, Black CM, Gift TL et al (2002) Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections–2002. MMWR Recomm Rep 51:1–38PubMedGoogle Scholar
  60. 60.
    Blake DR, Lemay CA, Gaydos CA, Quinn TC (2005) Performance of urine leukocyte esterase in asymptomatic male youth: another look with nucleic acid amplification testing as the gold standard for Chlamydia detection. J Adolesc Health 36:337–341PubMedCrossRefGoogle Scholar
  61. 61.
    Black CM (1997) Current methods of laboratory diagnosis of Chlamydia trachomatis infections. Clin Microbiol Rev 10:160–184PubMedGoogle Scholar
  62. 62.
    Schachter J, Stamm WE, Quinn TC, Andrews WW, Burczak JD, Lee HH (1994) Ligase chain reaction to detect Chlamydia trachomatis infection of the cervix. J Clin Microbiol 32:2540–2543PubMedGoogle Scholar
  63. 63.
    Jaschek G, Gaydos CA, Welsh LE, Quinn TC (1993) Direct detection of Chlamydia trachomatis in urine specimens from symptomatic and asymptomatic men by using a rapid polymerase chain reaction assay. J Clin Microbiol 31:1209–1212PubMedGoogle Scholar
  64. 64.
    Rours GI, Verkooyen RP, Willemse HF, van der Zwaan EA, van Belkum A, de Groot R et al (2005) Use of pooled urine samples and automated DNA isolation to achieve improved sensitivity and cost-effectiveness of large-scale testing for Chlamydia trachomatis in pregnant women. J Clin Microbiol 43:4684–4690PubMedCrossRefGoogle Scholar
  65. 65.
    Shafer MA, Moncada J, Boyer CB, Betsinger K, Flinn SD, Schachter J (2003) Comparing first-void urine specimens, self-collected vaginal swabs, and endocervical specimens to detect Chlamydia trachomatis and Neisseria gonorrhoeae by a nucleic acid amplification test. J Clin Microbiol 41:4395–4399PubMedCrossRefGoogle Scholar
  66. 66.
    Knox J, Tabrizi SN, Miller P, Petoumenos K, Law M, Chen S et al (2002) Evaluation of self-collected samples in contrast to practitioner-collected samples for detection of Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis by polymerase chain reaction among women living in remote areas. Sex Transm Dis 29:647–654PubMedCrossRefGoogle Scholar
  67. 67.
    Hammerschlag MR, Roblin PM, Gelling M, Tsumura N, Jule JE, Kutlin A (1997) Use of polymerase chain reaction for the detection of Chlamydia trachomatis in ocular and nasopharyngeal specimens from infants with conjunctivitis. Pediatr Infect Dis J 16:293–297PubMedCrossRefGoogle Scholar
  68. 68.
    Martin DH, Mroczkowski TF, Dalu ZA, McCarty J, Jones RB, Hopkins SJ et al (1992) A controlled trial of a single dose of azithromycin for the treatment of Chlamydial urethritis and cervicitis. N Engl J Med 327:921–925PubMedCrossRefGoogle Scholar
  69. 69.
    Gaydos CA, Crotchfelt KA, Howell MR, Kralian S, Hauptman P, Quinn TC (1998) Molecular amplification assays to detect Chlamydial infections in urine specimens from high school female students and to monitor the persistence of Chlamydial DNA after therapy. J Infect Dis 177:417–424PubMedCrossRefGoogle Scholar
  70. 70.
    Workowski KA, Berman SM (2006) Sexually transmitted diseases treatment guidelines, 2006. MMWR Recomm Rep 55:1–94PubMedGoogle Scholar
  71. 71.
    Kelsey JJ, Moser LR, Jennings JC, Munger MA (1994) Presence of azithromycin breast milk concentrations: a case report. Am J Obstet Gynecol 170:1375–1376PubMedGoogle Scholar
  72. 72.
    Cates W Jr, Wasserheit JN (1991) Genital Chlamydial infections: Epidemiology and reproductive sequelae. Am J Obstet Gynecol 164(Suppl):1771–1781PubMedGoogle Scholar
  73. 73.
    Stamm WE, Holmes KK, Mardh PA, Sparling PF, Wiesner PJ (1999) Chlamydia trachomatis infections of the adult. Sexually transmitted diseases. Mcgraw-hill book company, New York, p 407–422Google Scholar
  74. 74.
    Westrom L, Joesoef R, Reynolds G, Hagdu A, Thompson SE (1992) Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex Transm Dis 19:185–192PubMedCrossRefGoogle Scholar
  75. 75.
    Gencay M, Koskiniemi M, Ammala P, Fellman V, Narvanen A, Wahlstrom T et al (2000) Chlamydia trachomatis seropositivity is associated both with stillbirth and preterm delivery. APMIS 108:584–588PubMedCrossRefGoogle Scholar
  76. 76.
    Hollegaard S, Vogel I, Thorsen P, Jensen IP, Mordhorst CH, Jeune B (2007) Chlamydia trachomatis C-complex serovars are a risk factor for preterm birth. In Vivo 21:107–112PubMedGoogle Scholar
  77. 77.
    Fejgin MD, Cohen I, Horvat-Kohlmann M, Charles AG, Luzon A, Samra Z (1997) Chlamydia trachomatis infection during pregnancy: can it cause an intrauterine infection? Isr J Med Sci 33:98–102PubMedGoogle Scholar
  78. 78.
    Andrews WW, Goldenberg RL, Mercer B, Iams J, Meis P, Moawad A et al (2000) The Preterm Prediction Study: association of second-trimester genitourinary Chlamydia infection with subsequent spontaneous preterm birth. Am J Obstet Gynecol 183:662–668PubMedCrossRefGoogle Scholar
  79. 79.
    Kovacs L, Nagy E, Berbik I, Meszaros G, Deak J, Nyari T (1998) The frequency and the role of Chlamydia trachomatis infection in premature labor. Int J Gynaecol Obstet 62:47–54PubMedCrossRefGoogle Scholar
  80. 80.
    Rastogi S, Das B, Salhan S, Mittal A (2003) Effect of treatment for Chlamydia trachomatis during pregnancy. Int J Gynaecol Obstet 80:129–137PubMedCrossRefGoogle Scholar
  81. 81.
    Blas MM, Canchihuaman FA, Alva IE, Hawes SE (2007) Pregnancy outcomes in women infected with Chlamydia trachomatis: a population-based cohort study in Washington State. Sex Transm Infect 83:314–378PubMedCrossRefGoogle Scholar
  82. 82.
    Moss NJ, Ahrens K, Kent CK, Klausner JD (2006) The decline in clinical sequelae of genital Chlamydia trachomatis infection supports current control strategies. J Infect Dis 193:1336–1338 (author reply 8–9)PubMedCrossRefGoogle Scholar
  83. 83.
    Brunham RC, Pourbohloul B, Mak S, White R, Rekart ML (2006) Reply to Hagdu and to Moss et al. J Infect Dis 193:1338–1339CrossRefGoogle Scholar
  84. 84.
    Brunham RC, Pourbohloul B, Mak S, White R, Rekart ML (2005) The Unexpected Impact of a Chlamydia trachomatis Infection Control Program on Susceptibility to Reinfection. J Infect Dis 192:1836–1844PubMedCrossRefGoogle Scholar
  85. 85.
    Vickers DM, Osgood ND (2010) Current crisis or artifact of surveillance: insights into rebound Chlamydia rates from dynamic modelling. BMC Infect Dis 10:70PubMedCrossRefGoogle Scholar
  86. 86.
    Hammerschlag MR, Cummings C, Roblin PM, Williams TH, Delke I (1989) Efficacy of neonatal ocular prophylaxis for the prevention of Chlamydial and gonococcal conjunctivitis. N Eng J Med 320:769–772CrossRefGoogle Scholar
  87. 87.
    Cong Y, Jupelli M, Guentzel MN, Zhong G, Murthy AK, Arulanandam BP (2007) Intranasal immunization with Chlamydial protease-like activity factor and CpG deoxynucleotides enhances protective immunity against genital Chlamydia muridarum infection. Vaccine 25:3773–3780PubMedCrossRefGoogle Scholar
  88. 88.
    Ifere GO, He Q, Igietseme JU, Ananaba GA, Lyn D, Lubitz W et al (2007) Immunogenicity and protection against genital Chlamydia infection and its complications by a multisubunit candidate vaccine. J Microbiol Immunol Infect 40:188–200PubMedGoogle Scholar
  89. 89.
    Pal S, Peterson EM, Rappuoli R, Ratti G, De La Maza LM (2006) Immunization with the Chlamydia trachomatis major outer membrane protein, using adjuvants developed for human vaccines, can induce partial protection in a mouse model against a genital challenge. Vaccine 24:766–775PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Pediatric Infectious Diseases, College of MedicineUniversity of Pittsburgh Medical CenterPittsburghUSA

Personalised recommendations