Advertisement

Immunoglobulins in Mammary Secretions

  • W. L. Hurley
  • P. K. Theil
Chapter

Abstract

Immunoglobulins secreted in colostrum and milk by the lactating mammal are major factors providing immune protection to the newborn. Immunoglobulins in mammary secretions represent the cumulative immune response of the lactating animal to exposure to antigenic stimulation that occurs through interaction with the environment. Extensive species variability exists in how and when maternal immunoglobulins are transferred to the neonate. In addition, there is a range of mechanisms by which the transferred immunoglobulins may play a protective role in the neonate. This chapter reviews the immunoglobulins found in mammary secretions in the context of their diversity of structure, origin, mechanisms of transfer, and function.

Keywords

Mammary Gland Passive Immunity Bovine Colostrum Transepithelial Transport Ungulate Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahouse, J.J., Hagerman, C.L., Mittal, P., Gilbert, D.J., Copeland, N.G., Jenkins, N.A. and Simister, N.E. (1993). A mouse MHC class-I-like Fc receptor encoded outside the MHC. J. Immunol. 151, 6076–6088.Google Scholar
  2. Alisky, J. (2009). Bovine and human-derived passive immunization could help slow a future avian influenza pandemic. Med. Hypotheses, 72, 74–75.CrossRefGoogle Scholar
  3. Anthony, R.M. and Ravetch, J.V. (2010). A novel role for the IgG glycan: the anti-inflammatory activity of sialylated IgG Fcs. J. Clin. Immunol. 30, S9–S14.CrossRefGoogle Scholar
  4. Aynaud, J.M., Bernard, S., Bottreau, E., Lantier, I., Salmon, H. and Vannier, P. (1991). Induction of lactogenic immunity to transmissible gastroenteritis virus of swine using an attenuated coronavirus mutant able to survive in the physicochemical environment of the digestive tract. Vet. Microbiol. 26, 227–239.CrossRefGoogle Scholar
  5. Barrington, G.M. and Parish, S.M. (2001). Bovine neonatal immunology. Vet. Clin. North Am. Food Anim. Pract. 17, 463–475.Google Scholar
  6. Barrington, G.M., Besser, T.E., Davis, W.C., Gay, C.C., Reeves, J.J. and McFadden, T.B. (1997). Expression of immunoglobulin G1 receptors by bovine mammary epithelial cells and mammary leukocytes. J. Dairy Sci. 80, 86–93.CrossRefGoogle Scholar
  7. Barrington, G.M., Besser, T.E., Gay, C.C., Davis, W.C., Reeves, J.J. and McFadden, T.B. (1997). Effect of prolactin on in vitro expression of the bovine mammary immunoglobulin G1 receptor. J. Dairy Sci. 80, 94–100.CrossRefGoogle Scholar
  8. Baumrucker, C.R., Burkett, A.M., Magliaro-Macrina, A.L. and Dechow, C.D. (2009). Colostrogenesis: mass transfer of immunoglobulin G1 into colostrum. J. Dairy Sci. 93, 3031–3038.CrossRefGoogle Scholar
  9. Bazin, H., Beckers, A. and Querinjean, P. (1974). Three classes and four (sub)classes of rat immunoglobulins: IgM, IgA, and IgG1, IgG2a, IgG2b, IgG2c. Eur. J. Immunol. 4, 44–48.CrossRefGoogle Scholar
  10. Bender, B., Bodrogi, L., Mayer, B., Schneider, Z., Zhao, Y., Hammarstrom, L., Eggen, I. and Bosze, Z. (2007). Position independent and copy-number-related expression of the neonatal Fc receptor α-chain in transgenic mice carrying a 102 kb genomic fragment. Transgenic Res. 16, 613–627.CrossRefGoogle Scholar
  11. Bernhisel-Broadbent, J., Yolken, R.H. and Sampson, H.A. (1991). Allergenicity of orally administered preparations in food-allergic children. Pediatrics 87, 208–214.Google Scholar
  12. Bikker, P., Kranendonk, G., Gerritsen, R., Russell, L., Campbell, J., Crenshaw, J., Rodriguez, C., Rodenas, J. and Polo, J. (2010). Absorption of orally supplied immunoglobulins in neonatal piglets. Livest. Sci. 134, 139–142.CrossRefGoogle Scholar
  13. Blum, J.W. (2003). Colostrum—more than just an immunoglobulin supplier. Acta Vet. Scand. 98(Suppl.), 123–124.Google Scholar
  14. Blum, J.W. (2006). Nutritional physiology of neonatal calves. J. Anim. Physiol. Anim. Nutr. 90, 1–11.CrossRefGoogle Scholar
  15. Bovine Alliance on Management and Nutrition. (1995). A Guide to Colostrum and Colostrum Management for Dairy Calves. American Feed Industry Associates, Arlington.Google Scholar
  16. Braathen, R., Hohman, V.S., Brandtzaeg, P. and Johansen, F.E. (2007). Secretory antibody formation: conserved binding interactions between J chain and polymeric Ig receptor from humans and amphibians. J. Immunol. 178, 1589–1597.Google Scholar
  17. Brambell, F.W.R. (1970). The Transmission of Passive Immunity from Mother to Young. North-Holland, Amsterdam.Google Scholar
  18. Brandtzaeg, P. (1985). Role of J chain and secretory component in receptor-mediated glandular and hepatic transport of immunoglobulins in man. Scand. J. Immunol. 22, 111–146.CrossRefGoogle Scholar
  19. Brandtzaeg, P. (2003). Mucosal immunity: integration between mother and the breast-fed infant. Vaccine, 21, 3382–3388.CrossRefGoogle Scholar
  20. Brandtzaeg, P. (2010). The mucosal immune system and its integration with the mammary glands. J. Pediatr. 156, S8–S15.CrossRefGoogle Scholar
  21. Brandtzaeg, P. and Johansen, F.-E. (2007). IgA and intestinal homeostasis, in, Mucosal Immune Defense: Immunoglobulin A, C.S. Kaetzel, ed., Springer, New York. pp. 221–268.Google Scholar
  22. Brock, J.H., Arzabe, F.R., Ortega, F. and Pineiro, A. (1977). The effect of limited proteolysis by trypsin and chymotrypsin on bovine colostral IgG1. Immunology, 32, 215–219.Google Scholar
  23. Burmeister, W.P., Huber, A.H. and Bjorkman, P.J. (1994). Crystal structure of the complex between the rat neonatal Fc receptor and Fc. Nature 372, 379–383.CrossRefGoogle Scholar
  24. Butler, J.E. (1974). Immunoglobulins of the mammary secretions, in Lactation: A Comprehensive Treatise, Vol. 3, B.L. Larson and V.R. Smith, eds., Academic, New York. pp. 217–255.Google Scholar
  25. Butler, J.E. (1981). Concept of humoral immunity among ruminants, in, The Ruminant Immune System, Volume 137 in Series Advances in Experimental Biology and Medicine, J.E. Butler, ed., Plentum Press, New York. pp. 3–55.CrossRefGoogle Scholar
  26. Butler, J.E. (1983). Bovine immunoglobulins: an augmented review. Vet. Immunol. Immunopathol. 4, 43–152.CrossRefGoogle Scholar
  27. Butler, J.E. (1986). Biochemistry and biology of ruminant immunoglobulins, in, Progress in Veterinary Microbiology and Immunology, R. Pandey, ed., Karger AG, Basel. pp. 1–53.Google Scholar
  28. Butler, J.E. (1998). Immunoglobulin diversity, B-cell and antibody repertoire development in large farm animals. Rev. Sci. Tech. 17, 43–70.Google Scholar
  29. Butler, J.E. and Kehrli, M.E., Jr. (2005). Immunoglobulins and immunocytes in the mammary gland and its secretions, in, Mucosal Immunology, 3rd edn., Vol. 2, J. Mestecky, M. Lamm, W. Strober, J. Bienenstock, J.R. McGhee and L. Mayer, eds., Elsevier, Amsterdam. pp. 1764–1793.Google Scholar
  30. Caffin, J.P. and Poutrel, B. (1988). Physiological and pathological factors influencing bovine immunoglobulin G2 concentration in milk. J. Dairy Sci. 71, 2035–2043.CrossRefGoogle Scholar
  31. Calmettes, P., Cser, L. and Rajnavolgy, E. (1991). Temperature and pH dependence of immunoglobulin G conformation. Arch. Biochem. Biophys. 291, 277–283.CrossRefGoogle Scholar
  32. Campbell, B. and Petersen, W.E. (1963). Immune milk—a historical survey. Dairy Sci. Abstr. 25, 345–358.Google Scholar
  33. Cervenak, J. and Kacskovics, I. (2009). The neonatal Fc receptor plays a crucial role in the metabolism of IgG in livestock animals. Vet. Immunol. Immunopathol. 128, 171–177.CrossRefGoogle Scholar
  34. Chen, C.-C. and Chang, H.-M. (1998). Effect of thermal protectants on the stability of bovine milk immunoglobulin G. J. Agric. Food Chem. 46, 3570–3576.CrossRefGoogle Scholar
  35. Chen, C.-C., Tu, Y.-Y. and Chang, H.-M. (2000). Thermal stability of bovine milk immunoglobulin G (IgG) and the effect of added thermal protectants on the stability. J. Food Sci. 65, 188–193.CrossRefGoogle Scholar
  36. Chernishov, V.P. and Slukvin, I.I. (1990). Mucosal immunity of the mammary gland and immunology of mother/newborn interrelation. Arch. Immunol. Ther. Exp. (Warsz.), 38, 145–164.Google Scholar
  37. Chrony, A., Puga, I. and Cerutti, A. (2010). Innate signaling networks in mucosal IgA class switching. Adv. Immunol. 107, 31–69.CrossRefGoogle Scholar
  38. Cianga, P., Medesan, C., Richardson, J.A., Ghetie, V. and Ward, E.S. (1999). Identification and function of neonatal Fc receptor in mammary gland of lactating mice. Eur. J. Immunol. 29, 2515–2523.CrossRefGoogle Scholar
  39. Colker, C.M., Swain, M., Lynch, L. and Gingerich, D.A. (2002). Effects of a milk-based bioactive micronutrient beverage on pain symptoms and activity of adults with osteoarthritis: a double-blind, placebo-controlled clinical evaluation. Nutrition, 18, 388–392.CrossRefGoogle Scholar
  40. Cordle, C.T., Schaller, J.P., Winship, T.R., Candler, E.L., Hilty, M.D., Smith, K.L., Saif, L.J., Kohler, E.M. and Krakowska, S. (1991). Passive immune protection from diarrhea caused by rotavirus or E. coli: an animal model to demonstrate and quantitate efficacy. Adv. Exp. Med. Biol. 310, 317–327.CrossRefGoogle Scholar
  41. Danielsen, M., Pedersen, L.J. and Bendixen, E. (2010). An in vivo characterization of colostrum protein uptake in porcine gut during early lactation. J. Proteomics, 74, 101–109.CrossRefGoogle Scholar
  42. Darton, P.J. and McDowell, G.H. (1980). Selective transfer of IgG1 into milk of ewes following inhibition of milk secretion or acute inflammation. Aust. J. Exp. Biol. Med. Sci. 58, 149–157.CrossRefGoogle Scholar
  43. Davids, B.J., Palm, J.E.D., Housley, M.P., Smith, J.R., Anderson, Y.S., Martin, M.G., Hendrickson, B.A., Johansen, F.-E., Svard, S.G., Gillin, F.D. and Eckmann, L. (2006). Polymeric immunoglobulin receptor in intestinal immune defense against the lumen-dwelling protozoan parasite Giardia. J. Immunol. 177, 6281–6290.Google Scholar
  44. Davidson, G.P. (1996). Passive protection against diarrhea disease. J. Pediatr. Gastroenterol. Nutr. 23, 207–212.CrossRefGoogle Scholar
  45. Davis, C.L. and Drackley, J.K. (1998). The Development, Nutrition, and Management of the Young Calf. Iowa State University Press, Ames.Google Scholar
  46. de Rham, O. and Isliker, H. (1977). Proteolysis of bovine immunoglobulins. Int. Arch. Allergy Appl. Immunol. 55, 61–69.CrossRefGoogle Scholar
  47. DeNise, S.K., Robison, J.D., Stott, G.H. and Armstrong, D.V. (1989). Effects of passive immunity on subsequent production in dairy heifers. J. Dairy Sci. 72, 552–554.CrossRefGoogle Scholar
  48. Devery-Pocius, J.E. and Larson, B.L. (1983). Age and previous lactations as factors in the amount of colostral immunoglobulins. J. Dairy Sci. 67, 2701–2710.Google Scholar
  49. Devillers, N., van Milgen, J., Prunier, A. and Le Dividich, J. (2004). Estimation of colostrum intake in the neonatal pig. Anim. Sci. 78, 305–313.Google Scholar
  50. Dickinson, B.L., Badizadegan, K., Wu, Z., Ahouse, J.C., Zhu, X., Simister, N.E., Blumberg, R.S. and Lencer, W.I. (1999). Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J. Clin. Invest. 104, 903–911.CrossRefGoogle Scholar
  51. Dominguez, E., Perez, M.D. and Calvo, M. (1997). Effect of heat treatment on the antigen-binding activity of anti-peroxidase immunoglobulin in bovine colostrum. J. Dairy Sci. 80, 3182–3187.CrossRefGoogle Scholar
  52. Dominguez, E., Perez, M.D., Puyol, P., Sanchez, L. and Calvo, M. (2001). Effect of pH on antigen-binding activity of IgG from bovine colostrum upon heating. J. Dairy Res. 68, 511–518.CrossRefGoogle Scholar
  53. Donovan, G.A., Badinga, L., Collier, R.J., Wilcox, C.J. and Braun, R.K. (1986). Factors influencing passive transfer in dairy calves. J. Dairy Sci. 69, 754–759.CrossRefGoogle Scholar
  54. Eigel, W.N., Butler, J.E., Ernstrom, C.A., Farrell, H.M., Jr., Harwalkar, V.R., Jenness, R. and Whitney, R.M.L. (1984). Nomenclature of proteins of cow’s milk: fifth revision. J. Dairy Sci. 67, 1599–1631.CrossRefGoogle Scholar
  55. Elizondo-Salazar, J.A., Jayarao, B.M. and Heinrichs, A.J. (2010). Effect of heat treatment of bovine colostrum on bacterial counts, viscosity, and immunoglobulin G concentration. J. Dairy Sci. 93, 961–967.CrossRefGoogle Scholar
  56. Facon, M., Skura, B.J. and Nakai, S. (1993). Potential for immunological supplementation of foods. Food. Agric. Immunol. 5, 85–91.CrossRefGoogle Scholar
  57. Fang, W.D. and Mukkur, T.K.S. (1976). Physicochemical characteristics of proteolytic cleavage fragments of bovine colostral immunoglobulin G1 (IgG1). Biochem. J. 155, 25–30.Google Scholar
  58. Farmer, C. and Quesnel, H. (2009). Nutritional, hormonal, and environmental effects on colostrum in sows. J. Anim. Sci. 87, 56–64.CrossRefGoogle Scholar
  59. Fernandez, M.I., Pedron, T., Tournebize, R., Olivo-Marin, J.-C., Sansonetti, P.J. and Phalipon, A. (2003). Anti-inflammatory role for intracellular dimeric immunoglobulin A by neutralization of lipopolysaccharide in epithelial cells. Immunity 18, 739–749.CrossRefGoogle Scholar
  60. Frenyo, V.L., Butler, J.E. and Guidry, A.J. (1986). The association of extrinsic bovine IgG1, IgG2, SIgA and IgM with the major fractions and cells of milk. Vet. Immunol. Immunopathol. 13, 239–254.CrossRefGoogle Scholar
  61. Fuchs, R. and Ellinger, I. (2004). Endocytic and trans­cytotic processes in villus syncytiotrophoblast: role in nutrient transport to the human fetus. Traffic 5, 725–738.CrossRefGoogle Scholar
  62. Fukumoto, L.R., Skura, B.J. and Nakai, S. (1994). Stability of membrane-sterilized bovine immunoglobulins aseptically added to UHT milk. J. Food Sci. 59, 757–762.CrossRefGoogle Scholar
  63. Gao, W., Chen, L., Xu, L.B. and Huang, X.H. (2010). Specific activity against diarrheagenic bacteria in bovine immune milk and effect of pH on its antigen-binding activity upon heating. J. Dairy Res. 77, 220–224.CrossRefGoogle Scholar
  64. Gapper, L.W., Copstake, D.E.J., Otter, D.E. and Indyk, H.E. (2007). Analysis of bovine immunoglobulin G in milk, colostrum and dietary supplements: a review. Anal. Bioanal. Chem. 389, 93–109.CrossRefGoogle Scholar
  65. Ghetie, V. and Ward, E.S. (1997). FcRn: the MHC class I-related receptor that is more than an IgG transporter. Immunol. Today 18, 592–598.CrossRefGoogle Scholar
  66. Gilbert, R.P., Gaskins, C.T., Hillers, J.K., Brinks, J.S. and Denham, A.H. (1988). Inbreeding and immunoglobulin G1 concentrations in cattle. J. Anim. Sci. 66, 2490–2497.Google Scholar
  67. Gill, H. (2003). Dairy products and the immune function in the elderly, in, Functional Dairy Products, T. Mattila-Sandholm and M. Saarela, eds., CRC, New York. pp. 133–168Google Scholar
  68. Gingerich, D.A. and McPhillips, C.A. (2005). Analytical approach to determination of safety of milk ingredients from hyperimmunized cows. Regul. Toxicol. Pharmacol. 41, 102–112.CrossRefGoogle Scholar
  69. Glass, R.I., Svennerholm, A.-M., Stoll, B.J., Khan, M.R., Hossain, K.M.B., Huq, M.I. and Holmgren, J. (1983). Protection against cholera in breast-fed children by antibodies in breast milk. N. Engl. J. Med. 398, 1389–1392.CrossRefGoogle Scholar
  70. Godden, S.M., Smith, S., Feirtag, J.M., Green, L.R., Wells, S.J. and Fetrow, J.P. (2003). Effect of on-farm commercial batch pasteurization of colostrum on colostrum and serum immunoglobulin concentrations in dairy calves. J. Dairy Sci. 86, 1503–1512.CrossRefGoogle Scholar
  71. Godden, S., McMartin, S., Feirtag, J., Stabel, J., Bey, R., Goyal, S., Metzger, L., Fetrow, J., Wells, S. and Chester-Jones, H. (2006). Heat-treatment of bovine colostrum. II: effects of heating duration on pathogen viability and immunoglobulin G. Dairy Sci. 89, 3476–3483.Google Scholar
  72. Goldman, A.S. (1993). The immune system of human milk: antimicrobial, antiinflammatory and immunomodulating properties. Pediatr. Infect. Dis. J. 12, 664–671.CrossRefGoogle Scholar
  73. Goldman, A.S. and Ogra, P.L. (1999). Anti-infectious and infectious agents in human milk, in, Mucosal Immunology, 2nd edn., P.L. Ogra, J. Mestecky, M.E. Lamm, W. Strober, J. Bienenstock and J.R. McGhee, eds., Academic, New York. pp. 1511–1521.Google Scholar
  74. Goldsmith, S.J., Dickson, J.S., Barnhart, H.M., Toledo, R.T. and Eitenmiller, R.R. (1983). IgA, IgG, IgM and lactoferrin contents of human milk during early lactation and the effect of processing and storage. J. Food Prot. 46, 4–7.Google Scholar
  75. Guarner, F. and Malagelada, J.-R. (2003). Gut flora in health and disease. Lancet 361, 512–519.CrossRefGoogle Scholar
  76. Guidry, A.J. and Miller, R.H. (1986). Immunoglobulin isotype concentrations in milk as affected by stage of lactation and parity. J. Dairy Sci. 69, 1799–1805.CrossRefGoogle Scholar
  77. Guidry, A.J., Butler, J.E., Pearson, R.E. and Weiland, B. (1980). IgA, IgG1, IgG2, IgM and BSA secretion by the bovine mammary gland throughout lactation. Vet. Immunol. Immunopathol. 1, 329–341.CrossRefGoogle Scholar
  78. Guy, M.A., McFadden, T.B., Cockrell, D.C. and Besser, T.E. (1994). Effects of unilateral prepartum milking on concentrations of immunoglobulin G1 and prolactin in colostrum. J. Dairy Sci. 77, 3584–3591.CrossRefGoogle Scholar
  79. Hanson, L.A., Silfverdal, S.-A., Stromback, L., Erling, V., Zaman, S., Olcen, P. and Telemo, E. (2001). The immunological role of breast feeding. Pediatr. Allergy Immunol. 12(Suppl. 14), 15–19.CrossRefGoogle Scholar
  80. Hanson, L.A., Korotkova, M. and Telemo, E. (2005). Human milk: its components and their immunobiologic functions, in, Mucosal Immunology, 3rd edn., Vol. 2, J. Mestecky, M. Lamm, W. Strober, J. Bienenstock, J.R. McGhee and L. Mayer, eds., Elsevier, Amsterdam. pp. 1795–1827Google Scholar
  81. Harmon, R.J., Schanbacher, F.L., Ferguson, L.C. and Smith, K.L. (1976). Changes in lactoferrin, immunoglobulin G, bovine serum albumin, and α-lactalbumin during acute experimental and natural coliform mastitis in cows. Infect. Immun. 13, 533–542.Google Scholar
  82. He, W., Ladinsky, M.S., Huey-Tubman, K.E., Jensen, G.J., McIntosh, R. and Bjorkman, P.J. (2008). FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455, 542–546.CrossRefGoogle Scholar
  83. Heddle, R.J. and Rowley, D. (1975). Dog immunoglobulins. I. Immunochemical characterization of dog serum, parotid saliva, colostrum, milk and small bowel fluid. Immunology 29, 185–195.Google Scholar
  84. Huang, X.H., Chen, L., Gao, W., Zhang, W., Chen, S.J., Xu, L.B. and Zhang, S.Q. (2008). Specific IgG activity of bovine immune milk against diarrhea bacteria and its protective effects on pathogen-infected intestinal damages. Vaccine 26, 5973–5980.CrossRefGoogle Scholar
  85. Hunziker, W. and Kraehenbuhl, J.-P. (1998). Epithelial transcytosis of immunoglobulins. J. Mammary Gland Biol. Neoplasia. 3, 287–302.CrossRefGoogle Scholar
  86. Hurley, W.L. and Theil, P.K. (2011). Perspectives on immunoglobulins in colostrum and milk. Nutrients 3, 442–474.CrossRefGoogle Scholar
  87. Husband, A.J. (1985). Mucosal immune interactions in intestine, respiratory tract and mammary gland. Prog. Vet. Microbiol. Immunol. 1, 25–57.Google Scholar
  88. Husband, A.J., Brandon, M.R. and Lascelles, A.K. (1972). Absorption and endogenous production of immunoglobulins in calves. Aust. J. Exp. Biol. Med. Sci. 50, 491–498.CrossRefGoogle Scholar
  89. Ishikawa, H., Kanamori, Y., Hamada, H. and Kiyono, H. (2005). Development and function of organized gut-associated lymphoid tissues, in, Mucosal Immunology, 3rd ed., Vol. 1, J. Mestecky, M. Lamm, W. Strober, J. Bienenstock, J.R. McGhee and L. Mayer, eds., Elsevier, Amsterdam. pp. 385–405.Google Scholar
  90. Israel, E.J., Taylor, S., Wu, Z., Mizoguchi, E., Blumberg, R.S., Bhan, A. and Simister, E. (1997). Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92, 69–74.CrossRefGoogle Scholar
  91. Iwasaki, A. (2007). Mucosal dendritic cells. Annu. Rev. Immunol. 25, 381–418.CrossRefGoogle Scholar
  92. Jarchum, I. and Pamer, E.C. (2011). Regulation of innate and adaptive immunity by the commensal microbiota. Curr. Opin. Immunol. 23, 1–8.CrossRefGoogle Scholar
  93. Jenkins, M.C., O’Brien, C., Trout, J., Guidry, A. and Fayer, R. (1999). Hyperimmune bovine colostrum specific for recombinant Cryptosporidium parvum antigen confers partial protection against cryptosporidiosis in immunosuppressed adult mice. Vaccine 17, 2453–2460.CrossRefGoogle Scholar
  94. Jensen, A.R., Elnif, J., Burrin, D.G. and Sangild, P.T. (2001). Development of intestinal immunoglobulin absorption and enzyme activity in neonatal pigs is diet dependent. J. Nutr. 131, 3259–3265.Google Scholar
  95. Johansen, F.E., Braathen, R. and Brandtzaeg, P. (2000). Role of J chain in secretory immunoglobulin formation. Scand. J. Immunol. 52, 240–248.CrossRefGoogle Scholar
  96. Johansen, F.E., Braathen, R. and Brandtzaeg, P. (2001). The J chain is essential for polymeric Ig receptor-mediated epithelial transport of IgA. J. Immunol. 167, 5185–5192.Google Scholar
  97. Junghans, R.P. (1997). Finally! The Brambell receptor (FcRB). Immunol. Res. 16, 29–57.CrossRefGoogle Scholar
  98. Junghans, R.P. and Anderson, C.L. (1996). The protection receptor for IgG catabolism is the β2-microglobulin-containing neonatal intestinal transport receptor. Proc. Natl. Acad. Sci. U.S.A. 93, 5512–5516.CrossRefGoogle Scholar
  99. Kacskovics, I. (2004). Fc receptors in livestock species. Vet. Immunol. Immunopathol. 102, 351–362.CrossRefGoogle Scholar
  100. Kaetzel, C.S. and Bruno, M.E.C. (2007). Epithelial transport of IgA by the polymeric immunoglobulin receptor, in, Mucosal Immune Defense: Immunoglobulin A, C.S. Kaetzel, ed., New York: Springer. pp. 43–89Google Scholar
  101. Kelsall, B. and Strober, W. (1999). Gut-associated lymphoid tissue: antigen handling and T-lymphocyte responses, in, Mucosal Immunology, 2nd edn., P.L. Ogra, J. Mestecky, M.E. Lamm, W. Strober, J. Bienenstock and J.R. McGhee, eds., Academic, New York. pp. 293–317.Google Scholar
  102. Kobayashi, K., Ogata, H., Morikawa, M., Iijima, S., Harada, N., Yoshida, T., Brown, W.R., Inoue, N., Hamada, Y., Ishii, H., Watanabe, M. and Hibi, T. (2002). Distribution and partial characterization of IgG Fc binding protein in various mucin producing cells and body fluids. Gut 51, 169–176.CrossRefGoogle Scholar
  103. Korhonen, H., Marnila, P. and Gill, H.S. (2000a). Milk immunoglobulins and complement factors. Br. J. Nutr. 84(Suppl. 1), S75–S80.Google Scholar
  104. Korhonen, H., Marnila, P. and Gill, H.S. (2000b). Bovine milk antibodies for health. Br. J. Nutr. 84(Suppl. 1), S135–S146.Google Scholar
  105. Kortbeek-Jacobs, J.M.C., van Kooten, P.J.S., van der Donk, J.A., van Dijk, J.E. and Rutten, V.P. (1984). The effect of oral immunization on the population of lymphocytes migrating to the mammary gland of the sow. Vet. Microbiol. 9, 287–299.CrossRefGoogle Scholar
  106. Koutras, A.K. and Vigorita, V.J. (1989). Fecal secretory immunoglobulin A in breast milk versus formula feeding in early infancy. J. Pediatr. Gastroenterol. Nutr. 9, 58–61.Google Scholar
  107. Lanza, I., Shoup, D.I. and Saif, L.J. (1995). Lactogenic immunity and milk antibody isotypes to transmissible gastroenteritis virus in sows exposed to porcine respiratory coronavirus during pregnancy. Am. J. Vet. Res. 56, 739–748.Google Scholar
  108. Larson, B.L. (1985). Biosynthesis and cellular secretion of milk, in, Lactation, B.L. Larson, ed., Iowa State University Press, Ames. pp. 155–163.Google Scholar
  109. Larson, B.L. (1992). Immunoglobulins of the mammary secretions, in, Advanced Dairy Chemistry. Proteins, Volume 2, P.F. Fox, ed., Elsevier Applied Science, London. pp. 231–254.Google Scholar
  110. Larson, B.L., Heary, H.L., Jr. and Devery, J.E. (1980). Immunoglobulin production and transport by the mammary gland. J. Dairy Sci. 63, 665–671.CrossRefGoogle Scholar
  111. Lascelles, A.K. (1963). A review of the literature on some aspects of immune milk. Dairy Sci. Abstr. 25, 359–364.Google Scholar
  112. Le Dividich, J., Rooke, J.A. and Herpin, P. (2005). Nutritional and immunological importance of colostrum for the new-born pig. J. Agric. Sci. 143, 469–485.CrossRefGoogle Scholar
  113. Le Dividich, J., Marion, J. and Thomas, F. (2007). Energy and nitrogen utilisation of sow colostrum and milk by the piglet. Can. J. Anim. Sci. 87, 571–577.CrossRefGoogle Scholar
  114. Leary, H.L., Jr., Larson, B.L. and Nelson, D.R. (1982). Immunohistochemical localization of IgG1 and IgG2 in prepartum lactating bovine mammary tissue. Vet. Immunol. Immunopathol. 3, 509–514.CrossRefGoogle Scholar
  115. Levine, M.M. (1991). Vaccines and milk immunoglobulin concentrates for prevention of infectious diarrhea. J. Pediatr. 118, S129–S136.CrossRefGoogle Scholar
  116. Li-Chan, E., Kummer, A., Loso, J.N., Kitts, D.D. and Nakai, S. (1995). Stability of bovine immunoglobulins to thermal treatment and processing. Food Res. Int. 28, 9–16.CrossRefGoogle Scholar
  117. Lilius, E.-M. and Marnila, P. (2001). The role of colostral antibodies in prevention of microbial infections. Curr. Opin. Infect. Dis. 14, 295–300.CrossRefGoogle Scholar
  118. Lin, C., Mahan, D.C., Wu, G. and Kim, S.W. (2009). Protein digestibility of porcine colostrum by neonatal pigs. Livest. Sci. 121, 182–186.CrossRefGoogle Scholar
  119. Lindstrom, P., Paulsson, M., Nylander, T., Elofsson, U. and Lindmark-Månsson, H. (1994). The effect of heat treatment on bovine immunoglobulins. Milchwissenschaft 49, 67–71.Google Scholar
  120. Liongue, C., John, L.B. and Ward, A.C. (2011). Origins of adaptive immunity. Crit. Rev. Immunol. 31, 61–71.CrossRefGoogle Scholar
  121. Lonnerdal, B. (2003). Nutritional and physiological significance of human milk proteins. Am. J. Clin. Nutr. 77, 1537S–1543S.Google Scholar
  122. Lu, W., Zhao, Z., Zhao, Y., Yu, S., Zhao, Y., Fan, B., Kasckovics, I., Hammarstrom, L. and Li, N. (2007). Over-expression of the bovine FcRn in the mammary gland results in increased IgG levels in both milk and serum of transgenic mice. Immunology 122, 401–408.CrossRefGoogle Scholar
  123. Mahe, S., Huneau, J.-F., Marteau, P., Thuille, F. and Tome, D. (1992). Gastroileal nitrogen and electrolyte movements after bovine milk ingestion in humans. Am. J. Clin. Nutr. 56, 410–416.Google Scholar
  124. Mainer, G., Sanchez, L., Ena, J.M. and Calvo, M. (1997). Kinetic and thermodynamic parameters for heat denaturation of bovine milk IgG, IgA and IgM. J. Food Sci. 62, 1034–1038.CrossRefGoogle Scholar
  125. Marchalonis, J.J., Schluter, S.F., Bernstein, R.M., Shen, S. and Edmundson, A.B. (1998). Phylogenetic emergence and molecular evolution of the immunoglobulin family. Adv. Immunol. 70, 417–506.CrossRefGoogle Scholar
  126. Maul, R.W. and Gearhart, P.J. (2010). Controlling somatic hypermutation in immunoglobulin variable and switch regions. Immunol. Res. 47, 113–122.CrossRefGoogle Scholar
  127. Maxson, R.T., Johnson, D.D., Jackson, R.J. and Smith, S.D. (1996). The protective role of enteral IgA supplementation in neonatal gut-origin sepsis. Ann. N.Y. Acad. Sci. 778, 405–407.CrossRefGoogle Scholar
  128. McClelland, D.B.L. (1982). Antibodies in milk. J. Reprod. Fertil. 65, 537–543.CrossRefGoogle Scholar
  129. McFadden, T.B., Besser, T.E. and Barrington, G.M. (1997). Regulation of immunoglobulin transfer into mammary secretions of ruminants, in, Milk Composition, Production and Biotechnology, R.A.S. Welch, D.J.W. Burns, S.R. Davis, A.I. Popay and C.G. Prosser, eds., CAB International, New York. pp. 133–152.Google Scholar
  130. McGhee, J.R., Michalek, S.M. and Ghanta, V.K. (1975). Rat immunoglobulins in serum and secretions: purification of rat IgM, IgA and IgG and their quantitation in serum, colostrum, milk and saliva. Immunochemistry 12, 817–823.CrossRefGoogle Scholar
  131. McGuire, T.C. and Crawford, T.B. (1972). Identification and quantitation of equine serum and secretory immunoglobulin A. Infect. Immun. 6, 610–615.Google Scholar
  132. McMartin, S., Godden, S., Metzger, L., Feirtag, J., Bey, R., Stabel, J., Goyal, S., Fetrow, J., Wells, S. and Chester-Jones, H. (2006). Heat treatment of bovine colostrum. I: effects of temperature on viscosity and immunoglobulin G level. J. Dairy Sci. 89, 2110–2118.Google Scholar
  133. Mehta, R. and Petrova, A. (2010). Biologically active breast milk proteins in association with very preterm delivery and stage of lactation. J. Perinatol. 31, 58–62.CrossRefGoogle Scholar
  134. Mestecky, J. and Russell, M.W. (1998). Passive and active protection against disorders of the gut. Vet. Q. 20, S83–S87.CrossRefGoogle Scholar
  135. Mestecky, J., Moro, I. and Underdown, B.J. (1999). Mucosal immunoglobulins, in, Mucosal Immunology, 2nd edn., P.L. Ogra, J. Mestecky, M.E. Lamm, W. Strober, J. Bienenstock and J.R. McGhee, eds. Academic, New York. pp. 133–152.Google Scholar
  136. Meyer, A., Parng, C.-L., Hansal, S.A., Osborne, B.A. and Goldsby, R.A. (1997). Immunoglobulin gene diversification in cattle. Int. Rev. Immunol. 15, 165–183.CrossRefGoogle Scholar
  137. Michalek, S.M., Rahman, A.F.R. and McGhee, J.R. (1975). Rat immunoglobulins in serum and colostrum: comparison of IgM, IgA and IgG in serum, colostrum, milk and saliva of protein malnourished and normal rats. Proc. Soc. Exp. Biol. Med. 148, 1114–1118.Google Scholar
  138. Mix, E., Goertsches, R. and Zettl, U.K. (2006). Immunoglobulins—basic considerations. J. Neurol. 253, V/9–V/17.Google Scholar
  139. Moon, H.W. and Bunn, T.O. (1993). Vaccines for preventing enterotoxigenic Escherichia coli infections in farm animals. Vaccine, 1, 213–220.CrossRefGoogle Scholar
  140. Morton, H.C., van Egmond, M. and van de Winkel, J.G.J. (1996). Structure and function of human IgA Fc receptors (FcαR). Crit. Rev. Immunol. 16, 423–440.Google Scholar
  141. Moser, M. and Leo, O. (2010). Key concepts in immunology. Vaccine, 28S, C2–C13.CrossRefGoogle Scholar
  142. Mostov, K.E. (1994). Transepithelial transport of immunoglobulins. Annu. Rev. Immunol. 12, 63–84.CrossRefGoogle Scholar
  143. Mostov, K. and Kaetzel, C.S. (1999). Immunoglobulin transport and the polymeric immunoglobulin receptor, in, Mucosal Immunology, 2nd edn., Academic, New York. pp. 181–211.Google Scholar
  144. Muller, L.D. and Ellinger, D.K. (1981). Colostral immunoglobulin concentrations among breeds of dairy cattle. J. Dairy Sci. 64, 1727–1730.CrossRefGoogle Scholar
  145. Newburg, D.S. and Walker, W.A. (2007). Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatr. Res. 61, 2–8.CrossRefGoogle Scholar
  146. Newstead, D.F. (1976). Carotene and immunoglobulin concentrations in the colostrum and milk of pasture-fed cows. J. Dairy Res. 43, 229–237.CrossRefGoogle Scholar
  147. Nickerson, S.C. and Heald, C.W. (1982). Cells in local reaction to experimental Staphylococcus aureus infection in bovine mammary gland. J. Dairy Sci. 65, 105–116.CrossRefGoogle Scholar
  148. Nisonoff, A., Wissler, F.C., Lipman, L.N. and Woernley, D.L. (1960). Separation of univalent fragments from the bivalent rabbit antibody molecule by reduction of disulfide bonds. Arch. Biochem. Biophys. 89, 230–244.CrossRefGoogle Scholar
  149. Nocek, J.E., Braund, D.G. and Warner, R.G. (1984). Influence of neonatal colostrum administration, immunoglobulin, and continued feeding of colostrum on calf gain, health, and serum protein. J. Dairy Sci. 67, 319–333.CrossRefGoogle Scholar
  150. Norman, L.M. and Hohenboken, W.D. (1981). Genetic differences in concentration of immunoglobulins G1 and M in serum and colostrum of cows and in serum of neonatal calves. J. Anim. Sci. 53, 1465–1472.Google Scholar
  151. Oyeniyi, O.O. and Hunter, A.G. (1978). Colostral constituents including immunoglobulins in the first three milkings postpartum. J. Dairy Sci. 61, 44–48.CrossRefGoogle Scholar
  152. Pakkanen, R. and Aalto, J. (1997). Growth factors and antimicrobial factors of bovine colostrum. Int. Dairy J. 7, 285–297.CrossRefGoogle Scholar
  153. Parreño, V., Béjar, C., Vagnozzi, A., Barrandeguy, M., Costantini, V., Craig, M.I., Yuan, L., Hodgins, D., Saif, L. and Ferñandez, F. (2004). Modulation by colostrum-acquired maternal antibodies of systemic and mucosal antibody responses to rotavirus in calves experimentally challenged with bovine rotavirus. Vet. Immunol. Immunopathol. 100, 7–24.CrossRefGoogle Scholar
  154. Parreño, V., Marcoppido, G., Vega, C., Garaicoechea, L., Rodriguez, D., Saif, L. and Ferñandez, F. (2010). Milk supplemented with immune colostrum: protection against rotavirus diarrhea and modulatory effect on the systemic and mucosal antibody responses in calves experimentally challenged with bovine rotavirus. Vet. Immunol. Immunopathol. 136, 12–27.CrossRefGoogle Scholar
  155. Pentsuk, N. and van der Laan, J.W. (2009). An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res. B Dev. Reprod. Toxicol. 85(Part B), 328–344.Google Scholar
  156. Playford, R.J., Macdonald, C.E. and Johnson, W.S. (2000). Colostrum and milk-derived peptide growth factors for the treatment of gastrointestinal disorders. Am. J. Clin. Nutr. 72, 5–14.Google Scholar
  157. Prentice, A. (1987). Breast feeding increases concentrations of IgA in infants’ urine. Arch. Dis. Child. 62, 792–795.CrossRefGoogle Scholar
  158. Pringnitz, D.J., Butler, J.E. and Guidry, A.J. (1985a). In vivo proteolytic activity of the mammary gland. Contribution to the origin of secretory component, β2-microglobulin and bovine-associated mucoprotein (BAMP) in cow’s milk. Vet. Immunol. Immunopathol. 9, 143–160.CrossRefGoogle Scholar
  159. Pringnitz, D.J., Butler, J.E. and Guidry, A.J. (1985b). Quantitation of bovine β2-mircoglobulin: occurrence in body fluids, on fat globules and origin in milk. Mol. Immunol. 22, 779–786.CrossRefGoogle Scholar
  160. Pritchett, L.C., Gay, C.C., Besser, T.E. and Hancock, D.D. (1991). Management and production factors influencing immunoglobulin G1 concentration in colostrum from Holstein cows. J. Dairy Sci. 74, 2336–2341.CrossRefGoogle Scholar
  161. Quigley, J.D., III, Martin, K.R., Dowlen, H.H., Wallis, L.B. and Lamar, K. (1994). Immunoglobulin concentration, specific gravity, and nitrogen fractions of colostrum from Jersey cattle. J. Dairy Sci. 77, 264–269.CrossRefGoogle Scholar
  162. Radaev, S. and Sun, P. (2001). Recognition of immunoglobulins by Fcγ receptors. Mol. Immunol. 38, 1073–1083.CrossRefGoogle Scholar
  163. Raghavan, M. and Bjorkman, P.J. (1996). Fc receptors and their interactions with immunoglobulins. Annu. Rev. Cell Dev. Biol. 12, 181–220.CrossRefGoogle Scholar
  164. Rainard, P., Fromageau, A., Cunha, P. and Gilbert, F.B. (2008). Staphylococcus aureus lipoteichoic acid triggers inflammation in the lactating bovine mammary gland. Vet. Res. 39, 52–64.CrossRefGoogle Scholar
  165. Rejnek, J., Travnicek, J., Kostka, J., Sterzl, J. and Lanc, A. (1968). Study of the effect of antibodies in the intestinal tract of germ-free baby pigs. Folia Microbiol. 13, 36–42.CrossRefGoogle Scholar
  166. Renegar, K.B. and Small, P.A., Jr. (1999). Passive immunization: systemic and mucosal, in, Mucosal Immunology, 2nd edn., P.L. Ogra, J. Mestecky, M.E. Lamm, W. Strober, J. Bienenstock and J.R. McGhee, eds., Academic, New York. pp. 729–738.Google Scholar
  167. Rincheval-Arnold, A., Belair, J. and Djiane, J. (2002). Developmental expression of pIgR gene in sheep mammary gland and hormonal regulation. J. Dairy Res. 69, 13–26.Google Scholar
  168. Robison, J.D., Stott, G.H. and DeNise, S.K. (1988). Effects of passive immunity on growth and survival in the dairy heifer. J. Dairy Sci. 71, 1283–1287.CrossRefGoogle Scholar
  169. Rodewald, R. and Kraehenbuhl, J.P. (1984). Receptor-mediated transport of IgG. J. Cell Biol. 99, 159 S–164 S.CrossRefGoogle Scholar
  170. Rojas, R. and Apodaca, G. (2002). Immunoglobulin transport across polarized epithelia cells. Nat. Rev. Mol. Cell Biol. 3, 1–12.CrossRefGoogle Scholar
  171. Roos, N., Mahe, S., Benamouzig, R., Sick, H., Rautureau, J. and Tome, D. (1995). 15  N-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J. Nutr. 125, 1238–1244.Google Scholar
  172. Rosato, R., Jammes, H., Belair, L., Puissant, C., Kraehenbuhl, J.-P. and Djiane, J. (1995). Polymeric-Ig receptor gene expression in rabbit mammary gland during pregnancy and lactation: evolution and hormonal regulation. Mol. Cell. Endocrinol. 110, 81–87.CrossRefGoogle Scholar
  173. Rouse, E.T. and Ingram, D.G. (1970). The total protein and immunoglobulin profile of equine colostrum and milk. Immunology 19, 901–907.Google Scholar
  174. Rousseaux, J. and Bazin, H. (1979). Rat immunoglobulins. Vet. Immunol. Immunopathol. 1, 61–78.CrossRefGoogle Scholar
  175. Roux, K.H. (1999). Immunoglobulin structure and function as revealed by electron microscopy. Int. Arch. Allergy Immunol. 120, 85–99.CrossRefGoogle Scholar
  176. Ruiz-Palacios, G.M., Calva, J.J., Pickering, L.K., Lopez-Vidal, Y., Volkow, P., Pezzarossi, H. and West, M.S. (1990). Protection of breast-fed infants against Campylobacter diarrhea by antibodies in human milk. J. Pediatr. 116, 707–713.CrossRefGoogle Scholar
  177. Russell, M.W. (2007). Biological functions of IgA, in, Mucosal Immune Defense: Immunoglobulin A,C.S. Kaetzel, ed., Springer, New York. pp. 144–172.Google Scholar
  178. Saif, L.J., Smith, K.L., Landmeier, B.J., Bohl, E.H., Theil, K.W. and Todhunter, D.A. (1984). Immune response of pregnant cows to bovine rotavirus immunization. Am. J. Vet. Res. 45, 49–58.Google Scholar
  179. Saiga, H., Shimada, Y. and Takeda, K. (2011). Innate immune effectors in mycobacterial infection. Clin. Dev. Immunol. 2011, 347594.CrossRefGoogle Scholar
  180. Salmon, H. (1995). Immunité lactogene et protection vaccinale dans l’espece porcine. Vet. Res. 26, 232–237.Google Scholar
  181. Sangild, P.T., Trahair, J.F., Loftager, M.K. and Fowden, A.L. (1999). Intestinal macromolecule absorption in the fetal pig after infusion of colostrum in utero. Pediatr. Res. 45, 595–602.CrossRefGoogle Scholar
  182. Sasaki, M., Larson, B.L. and Nelson, D.R. (1977). Kinetic analysis of the binding of immunoglobulins IgG1 and IgG2 to bovine mammary cells. Biochim. Biophys. Acta, 497, 160–170.CrossRefGoogle Scholar
  183. Schaller, J.P., Saif, L.J., Cordle, C.T., Candler, E., Jr., Winship, T.R. and Smith, K.L. (1992). Prevention of human rotavirus-induced diarrhea in gnotobiotic piglets using bovine antibody. J. Infect. Dis. 165, 623–630.CrossRefGoogle Scholar
  184. Schlissel, M.S. (2003). Regulating antigen-receptor gene assembly. Nat. Rev. Immunol. 3, 890–899.CrossRefGoogle Scholar
  185. Selim, S.A., Smith, B.P., Cullor, J.S., Blanchard, P., Farver, T.B., Hoffman, R., Dilling, G., Roden, L. and Wilgenburg, B. (1995). Serum immunoglobulins in calves: their effects and two easy, reliable means of measurement. Vet. Med. 90, 387–404.Google Scholar
  186. Shimizu, M., Nagashima, H. and Hasimoto, K. (1993). Comparative studies in molecular stability of immunoglobulin G from different species. Comp. Biochem. Physiol. B, 106, 255–261.CrossRefGoogle Scholar
  187. Siccardi, D., Turner, J.R. and Mrsny, R.J. (2005). Regulation of intestinal epithelial function: a link between opportunities for macromolecular drug delivery and inflammatory bowel disease. Adv. Drug Deliv. Rev. 57, 219–235.CrossRefGoogle Scholar
  188. Siggers, R.H., Siggers, J., Thymann, T., Boye, M. and Sangild, P.T. (2011). Nutritional modulation of the gut microbiota and immune system in preterm neonates susceptible to necrotizing enterocolitis. J. Nutr. Biochem. 22, 511–521.CrossRefGoogle Scholar
  189. Simister, N.E. (2003). Placental transport of immunoglobulin G. Vaccine 21, 3365–3369.CrossRefGoogle Scholar
  190. Simister, N.E. and Mostov, K.E. (1989). An Fc receptor structurally related to MHC class I antigens. Nature, 337, 184–187.CrossRefGoogle Scholar
  191. Simister, N.E. and Rees, A.R. (1985). Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur. J. Immunol. 15, 733–738.CrossRefGoogle Scholar
  192. Simister, N.E. and Story, C.M. (1997). Human placental Fc receptors and the transmission of antibodies from mother to fetus. J. Reprod. Immunol. 37, 1–23.CrossRefGoogle Scholar
  193. Smith, K.L., Muir, L.A., Ferguson, L.C. and Conrad, H.R. (1971). Selective transport of IgG1 into the mammary gland: role of estrogen and progesterone. J. Dairy Sci. 54, 1886–1894.CrossRefGoogle Scholar
  194. Sordillo, L.M. and Nickerson, S.C. (1988). Quantification and immunoglobulin classification of plasma cells in nonlactating bovine mammary tissue. J. Dairy Sci. 71, 84–91.CrossRefGoogle Scholar
  195. Sordillo, L.M., Shafer-Weaver, K. and DeRosa, D. (1997). Immunobiology of the mammary gland. J. Dairy Sci. 80, 1851–1865.CrossRefGoogle Scholar
  196. Spenser, J., Boursier, L. and Edgeworth, J.D. (2007). IgA plasma cell development, in, Mucosal Immune Defense: Immunoglobulin A, C.S. Kaetzel ed., Springer, New York. pp. 25–42.Google Scholar
  197. Staley, T.E. and Bush, L.J. (1985). Receptor mechanisms of the neonatal intestine and their relationship to immunoglobulin absorption and disease. J. Dairy Sci. 68, 184–205.CrossRefGoogle Scholar
  198. Stechschulte, D.J. and Austen, K.F. (1970). Immunoglobulins of rat colostrum. J. Immunol. 104, 1052–1062.Google Scholar
  199. Stelwagen, K., Carpenter, E., Haugh, B., Hodgkinson, A. and Wheeler, T.T. (2009). Immune components of bovine colostrum and milk. J. Anim. Sci. 87, 3–9.CrossRefGoogle Scholar
  200. Struff, W.G. and Sprotte, G. (2007). Bovine colostrum as a biologic in clinical medicine; a review—Part I: biotechnological standards, pharmacodynamic and pharmacokinetic characteristics and principles of treatment. Int. J. Clin. Pharmacol. Ther. 45, 193–202.Google Scholar
  201. Struff, W.G. and Sprotte, G. (2008). Bovine colostrum as a biologic in clinical medicine; a review—Part II: clinical studies. Int. J. Clin. Pharmacol. Ther. 46, 211–225.Google Scholar
  202. Sun, J.C., Lopez-Verges, S., Kim, C.C., DeRisi, J.L. and Lanier, L.L. (2011). NK cells and immune “memory”. J. Immunol. 186, 1891–1897.CrossRefGoogle Scholar
  203. Targowski, S.P. (1983). Role of immune factors in protection of mammary gland. J. Dairy Sci. 66, 1781–1789.CrossRefGoogle Scholar
  204. Telemo, E. and Hanson, L.A. (1996). Antibodies in milk. J. Mammary Gland Biol. Neoplasia. 1, 243–249.CrossRefGoogle Scholar
  205. Telleman, P. and Junghans, R.P. (2000). The role of the Brambell receptor (FcRB) in liver: protection of endocytosed immunoglobulin G (IgG) from catabolism in hepatocytes rather than transport of IgG to bile. Immunology 100, 245–251.CrossRefGoogle Scholar
  206. Theil, P.K., Cordero, G., Henckel, P., Puggaard, L., Oksbjerg, N. and Sørensen, M.T. (2011). Effects of gestation and transition diets, piglet birth weight and fasting time on depletion of glycogen pools in liver and 3 muscles of newborn piglets. J. Anim. Sci. 93, 1478–1490.Google Scholar
  207. Tizard, I. (2001). The protective properties of milk and colostrum in non-human species, in, Advances in Nutritional Research. Immunological Properties of Milk, Vol. 10, B. Woodward and H.H. Draper, eds., Kluwer, New York, pp. 139–166.Google Scholar
  208. Uruakpa, F.O., Ismond, M.A.H. and Akobundu, E.N.T. (2002). Colostrum and its benefits: a review. Nutr. Rev. 22, 755–767.Google Scholar
  209. Vaerman, J.-P. and Heremans, J.F. (1969). The immunoglobulins of the dog—II. The immunoglobulins of canine secretions. Immunochemistry 6, 779–786.Google Scholar
  210. Vaerman, J.-P., Querinjean, P. and Heremans, J.F. (1971). Studies on the IgA system of the horse. J. Immunol. 21, 443–454.Google Scholar
  211. van de Perre, P. (2003). Transfer of antibody via mother’s milk. Vaccine 21, 3374–3376.CrossRefGoogle Scholar
  212. Velin, D., Acha Orbea, H. and Kraehenbuhl, J.P. (1996). The neonatal Fc receptor is not required for mucosal infection by mouse mammary tumor virus. J. Virol. 70, 7250–7254.Google Scholar
  213. Weiner, C., Pan, Q., Hurtig, M., Borén, T., Bostwick, E. and Hammarstom, L. (1999). Passive immunity against human pathogens using bovine antibodies. Clin. Exp. Immunol. 116, 193–205.CrossRefGoogle Scholar
  214. Wells, D.J., Dargatz, D.A. and Ott, S.L. (1996). Factors associated with mortality to 21 days of life in dairy heifers in the United States. Prev. Vet. Med. 29, 9–19.CrossRefGoogle Scholar
  215. Wheeler, T.T., Hodgkinson, A.J., Prosser, C.G. and Davis, S.R. (2007). Immune components of colostrum and milk—a historical perspective. J. Mammary Gland Biol. Neoplasia 12, 237–247.CrossRefGoogle Scholar
  216. Whitney, R. McL. (1988). Proteins in milk, in, Fundamentals of Dairy Chemistry, 3rd edn., N.P. Wong, R. Jenness, M. Keeney and E.M. Marth, eds., AVI, Westport. pp. 81–169.Google Scholar
  217. Wilson, M.R., Brown, P. and Svendsen, J. (1972). Immunity to Escherichia coli in pigs: antibody secretion by the mammary gland after intramammary or intramuscular vaccination with E. coli vaccine. Can. J. Comp. Med. 36, 44–48.Google Scholar
  218. Winger, K.L., Gay, C.C. and Besser, T.E. (1995). Immunoglobulin G1 transfer into induced mammary secretions: the effect of dexamethasone. J. Dairy Sci. 78, 1306–1309.CrossRefGoogle Scholar
  219. Xanthou, M., Bines, J. and Walker, W.A. (1995). Human milk and intestinal host defense in newborns: an update. Adv. Pediatr. 42, 171–208.Google Scholar
  220. Xu, R.J. (1996). Development of the newborn GI tract and its relation to colostrum/milk intake: a review. Reprod. Fertil. Dev. 8, 35–48.CrossRefGoogle Scholar
  221. Yoshida, M., Claypool, S.M., Wagner, J.S., Mizoguchi, E., Mizoguchi, A., Roopenian, D.C., Lencer, W.I. and Blumberg, R.S. (2004). Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20, 769–783.CrossRefGoogle Scholar
  222. Yurchak, A.M., Butler, J.E. and Tomasi, T.B., Jr. (1971). Fluorescent localization of immunoglobulins in the tissues of the cow. J. Dairy Sci. 54, 1324–1325.Google Scholar
  223. Yvon, M., Levieux, D., Valluy, M.-C., Pelissier, J.P. and Mirand, P.P. (1993). Colostrum protein digestion in newborn lambs. J. Nutr. 123, 586–596.Google Scholar
  224. Zeitlin, L., Cone, R.A., Moench, T.R. and Whaley, K.J. (2000). Preventing infectious disease with passive immunization. Microbes Infect. 1, 701–708.CrossRefGoogle Scholar
  225. Zhang, R., Zhao, Z., Zhao, Y., Kacskovics, I., van der Eijk, M. and de Groot, N. (2009). Association of FcRn heavy chain encoding gene (FCGRT) polymorphisms with IgG content in bovine colostrum. Anim. Biotechnol. 20, 242–246.CrossRefGoogle Scholar
  226. Zinkernagel, R. (2001). Maternal antibodies, childhood infections, and autoimmune diseases. N. Engl. J. Med. 345, 1331–1335.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Animal SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Animal Health and BioscienceAarhus UniversityTjeleDenmark

Personalised recommendations