Skip to main content

β-Lactoglobulin

  • Chapter
  • First Online:

Abstract

The whey protein β-lactoglobulin (β-Lg), a lipocalin, is widely distributed amongst mammals and is a small soluble protein found both as monomers and dimers, the latter being predominant in ruminant milks. β-Lg binds a wide variety of small, generally hydrophobic, molecules at a major internal binding site, although external sites have also been identified. The bovine protein undergoes several conformational changes and has a free sulphydryl group that appears to be responsible for polymerisation through disulphide interchange on heating. The biochemical properties of β-Lg are discussed with reference to the enormous literature that has been published over the last 75 years.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, J.J., Anderson, B.F., Norris, G.E., Creamer, L.K. and Jameson, G.B. (2006). Structure of bovine β-lactoglobulin (variant A) at very low ionic strength. J. Struct. Biol. 154, 246–254.

    Google Scholar 

  • Åkerström, B., Borregaard, N., Flower, D.R. and Salier, J.-P. (2006). Lipocalins. Landes Bioscience, Georgetown.

    Google Scholar 

  • Alexander, L.J. and Pace, C.N. (1971). A comparison of the denaturation of bovine β-lactoglobulins A and B and goat β-lactoglobulin. Biochemistry 10, 2738–2743.

    Google Scholar 

  • Alexander, L.J., Hayes, G., Pearse, M.J., Beattie, C.W., Stewart, A.F., Willis, I.M. and Mackinlay, A.G. (1989). Complete sequence of the bovine β-lactoglobulin cDNA. Nucleic Acids Res. 17, 6739.

    Google Scholar 

  • Ali, S. and Clark, A.J. (1988). Characterization of the gene encoding ovine β-lactoglobulin. Similarity to the genes for retinol binding protein and other secretory proteins. J. Mol. Biol. 199, 415–426.

    Google Scholar 

  • Ando, K., Mori, M., Kato, I., Yuas, K. and Goda, K. (1979). General composition and chemical properties of the main components of Yezo brown bear (Ursus arctos yesonensis) milks. J. College Dairying (Ehetsu) 8, 9–21.

    Google Scholar 

  • Aoki, T., Iskandar, S., Yoshida, T., Takahashi, K. and Hattori, M. (2006). Reduced immunogenicity of β-lactoglobulin by conjugating with chitosan. Biosci. Biotech. Bioch. 70, 2349–2356.

    Google Scholar 

  • Aouzelleg, A., Bull, L.A., Price, N.C. and Kelly, S.M. (2004). Molecular studies of pressure/temperature-induced structural changes in bovine β-lactoglobulin. J. Sci. Food Agr. 84, 398–404.

    Google Scholar 

  • Arai, M., Ikura, T., Semisotnov, G.V., Kihara, H., Amemiya, Y. and Kuwajima, K. (1998). Kinetic refolding of β-lactoglobulin. Studies by synchrotron X-ray scattering, and circular dichroism, absorption and fluorescence spectroscopy. J. Mol. Biol. 275, 149–162.

    Google Scholar 

  • Arakawa, T. and Timasheff, S.N. (1987). Abnormal solubility behaviour of β-lactoglobulin: salting-in by glycine and NaCl. Biochemistry 26, 5147–5153.

    Google Scholar 

  • Arakawa, T., Kita, Y. and Timasheff, S.N. (2007). Protein precipitation and denaturation by dimethyl sulfoxide. Biophys. Chem. 131, 62–70.

    Google Scholar 

  • Ariyaratne, K.A.N.S., Brown, R., Dasgupta, A., de Jonge, J., Jameson, G.B., Loo, T.S., Weinberg, C. and Norris, G.E. (2002). Expression of bovine β-lactoglobulin as a fusion protein in Escherichia coli: a tool for investigating how structure affects function. Int. Dairy J. 12, 311–318.

    Google Scholar 

  • Armstrong, J.M. and McKenzie, H.A. (1967). A method for modification of carboxyl groups in proteins: its application to the association of bovine β-lactoglobulin A. Biochim. Biophys. Acta 147, 93–99.

    Google Scholar 

  • Armstrong, J.M., McKenzie, H.A. and Sawyer, W.H. (1967). On the fractionation of β-lactoglobulin and α-lactalbumin. Biochim. Biophys. Acta 147, 60–72.

    Google Scholar 

  • Arnoux, P., Morosinotto, T., Saga, G., Bassi, R. and Pignol, D. (2009). A structural basis for the pH-dependent xanthophyll cycle in Arabidopsis thaliana. Plant Cell 21, 2036–2044.

    Google Scholar 

  • Aschaffenburg, R. and Drewry, J. (1955). Occurrence of different β-lactoglobulins in cow’s milk. Nature 176, 218–219.

    Google Scholar 

  • Aschaffenburg, R. and Drewry, J. (1957). Improved method for the preparation of crystalline β-lactoglobulin and α-lactalbumin from cow’s milk. Biochem. J. 65, 273–277.

    Google Scholar 

  • Aschaffenburg, R., Green, D.W. and Simmons, R.M. (1965). Crystal forms of β-lactoglobulin. J. Mol. Biol. 13, 194–201.

    Google Scholar 

  • Attwood, T.K., Bradley, P., Flower, D.R., Gaulton, A., Maudling, N., Mitchell, A., Moulton, G., Nordle, A., Paine, K., Taylor, P., Uddin, A. and Zygouri, C. (2003). PRINTS and its automatic supplement, prePRINTS. Nucleic Acids Res. 31, 400–402.

    Google Scholar 

  • Axelsson, I., Jakobsson, I., Lindberg, T. and Benediktsson, B. (1986). Bovine β-lactoglobulin in the human milk—a longitudinal-study during the whole lactation period. Acta Paediatr. Scand. 75, 702–707.

    Google Scholar 

  • Aymard, P., Durand, D. and Nicolai, T. (1996). The effect of temperature and ionic-strength on the dimerization of β-lactoglobulin. Int. J .Biol. Macromol. 19, 213–221.

    Google Scholar 

  • Azuma, N. and Yamauchi, K. (1991). Identification of α-lactalbumin and β-lactoglobulin in cynomolgus monkey (Macaca fascicularis) milk. Comp. Biochem. Phys. B 99, 917–921.

    Google Scholar 

  • Bain, J.A. and Deutsch, H.F. (1948). Studies on lactoglobulins. Arch. Biochem. Biophys. 16, 221–229.

    Google Scholar 

  • Ballester, M., Sanchez, A. and Folch, J.M. (2005). Polymorphisms in the goat β-lactoglobulin gene. J. Dairy Res. 72, 379–384.

    Google Scholar 

  • Bansal, B. and Chen, X.D. (2006). A critical review of milk fouling in heat exchangers. Compr. Rev. Food Sci. F 5, 27–33.

    Google Scholar 

  • Bao, Z.J., Wang, S.J., Shi, W., Dong, S. and Ma, H. (2007). Selective modification of Trp19 in β-lactoglobulin by a new diazo fluorescence probe. J. Proteome Res. 6, 3835–3841.

    Google Scholar 

  • Batt, C.A., Rabson, L.D., Wong, D.W.S. and Kinsella, J.E. (1990). Expression of recombinant bovine β-lactoglobulin in Escherichia coli. Agric. Biol. Chem. 54, 949–955.

    Google Scholar 

  • Batt, C.A., Brady, J. and Sawyer, L. (1994). Design improvements of β-lactoglobulin. Trends Food Sci. Tech. 5, 261–265.

    Google Scholar 

  • Bawden, W.S., Passey, R.J. and Mackinlay, A.G. (1994). The genes encoding the major milk-specific proteins and their use in transgenic studies and protein engineering, in, Biotechnology and Genetic Engineering Reviews, Vol. 12, M.P. Tombs, ed., Intercept Ltd, UK. pp. 89–137.

    Google Scholar 

  • Bell, K. and McKenzie, H.A. (1964). β-Lactoglobulins. Nature 204, 1275–1279.

    Google Scholar 

  • Bell, K. and McKenzie, H.A. (1967). The isolation and properties of bovine β-lactoglobulin C. Biochim. Biophys. Acta 147, 109–122.

    Google Scholar 

  • Bell, K., McKenzie, H.A. and Shaw, D.C. (1981a). Porcine β-lactoglobulin A and C. Mol. Cell. Biochem. 35, 103–111.

    Google Scholar 

  • Bell, K., McKenzie, H.A. and Shaw, D.C. (1981b). Bovine β-lactoglobulin E, F and G of Bali (Banteng) Cattle, Bos (Bibos) javanicus. Aust. J. Biol. Sci. 34, 133–147.

    Google Scholar 

  • Bell, K., McKenzie, H.A., Muller, V., Rogers, C. and Shaw, D.C. (1981c). Equine whey proteins. Comp. Biochem. Phys. B 68, 225–236.

    Google Scholar 

  • Bello, M., Perez-Hernandez, G., Fernandez-Velasco, D.A., Arreguin-Espinosa, R. and Garcia-Hernandez, E. (2008). Energetics of protein homodimerization: effects of water sequestering on the formation of β-lactoglobulin dimer. Proteins 70, 1475–1487.

    Google Scholar 

  • Bello, M., Portillo-Tellez, M.D. and Garcia-Hernandez, E. (2011). Energetics of ligand recognition and self-association of bovine β-lactoglobulin: differences between variants A and B. Biochemistry 50, 151–161.

    Google Scholar 

  • Belloque, J. and Smith, G.M. (1998). Thermal denaturation of β-lactoglobulin. A H-1 NMR study. J. Agric. Food Chem. 46, 1805–1813.

    Google Scholar 

  • Belloque, J., Lopez-Fandino, R. and Smith, G.M. (2000). A H-1-NMR study on the effect of high pressures on β-lactoglobulin. J. Agric. Food Chem. 48, 3906–3912.

    Google Scholar 

  • Bertino, E., Prandi, G.M., Fabris, C., Cavaletto, M., Dimartino, S., Cardaropoli, S., Calderone, V. and Conti, A. (1996). Human-milk proteins may interfere in ELISA measurements of bovine β-lactoglobulin in human-milk. Acta Paediatr. 85, 543–549.

    Google Scholar 

  • Bertonati, C., Honig, B. and Alexov, E. (2007). Poisson-Boltzmann calculations of nonspecific salt effects on protein-protein binding free energies. Biophys. J. 92, 1891–1899.

    Google Scholar 

  • Beste, G., Schmidt, F.S., Stibora, T. and Skerra, A. (1999). Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. Proc. Natl. Acad. Sci. U S A 96, 1898–1903.

    Google Scholar 

  • Bewley, M.C., Qin, B.Y., Jameson, G.B., Sawyer, L. and Baker, E.N. (1997). Bovine β-lactoglobulin and its variants: a three-dimensional perspective, in, Milk Protein Polymorphism, J.P. Hill and M. Boland, eds., International Dairy Federation, Brussels. pp. 100–109.

    Google Scholar 

  • Bhattacharjee, C., Saha, S., Biswas, A., Kundu, M., Ghosh, L. and Das, K.P. (2005). Structural changes of β-lactoglobulin during thermal unfolding and refolding—an FT-IR and circular dichroism study. Protein J. 24, 27–35.

    Google Scholar 

  • Bohr, H. and Bohr, J. (2000). Microwave-enhanced folding and denaturation of globular proteins. Phys. Rev. E. Part B 61, 4310–4314.

    Google Scholar 

  • Boye, J.I., Ma, C.Y. and Ismail, A. (2004). Thermal stability of β-lactoglobulins A and B: effect of SDS, urea, cysteine and N-ethylmaleimide. J. Dairy Res. 71, 207–215.

    Google Scholar 

  • Brans, G., Schroen, C.G.P.H., van der Sman, R.G.M. and Boom, R.M. (2004). Membrane fractionation of milk: state of the art and challenges. J. Membrane. Sci. 243, 263–272.

    Google Scholar 

  • Braunitzer, G., Chen, R., Schrank, B. and Stangl, A. (1972). Automatische Sequenzanalyse eines Proteins (β-Lactoglobulin AB). Hoppe-Seyler’s Z. Physiol. Chem. 353, 832–834.

    Google Scholar 

  • Braunschweig, M.H. (2007). Duplication in the 5′-flanking region of the β-lactoglobulin gene is linked to the BLG A allele. J. Dairy Sci. 90, 5780–5783.

    Google Scholar 

  • Breustedt, D.A., Korndorfer, I.P., Redl, B. and Skerra, A. (2005). The 1.8Å crystal structure of human tear lipocalin reveals an extended branched cavity with capacity for multiple ligands. J. Biol. Chem. 280, 484–493.

    Google Scholar 

  • Brew, K. and Campbell, P.N. (1967). The characterization of the whey proteins of guinea-pig milk. Biochem. J. 102, 258–264.

    Google Scholar 

  • Brown, E.M. and Farrell, H.M., Jr. (1978). Interaction of β-lactoglobulin and cytochrome c: complex formation and iron reduction. Arch. Biochem. Biophys. 185, 156–164.

    Google Scholar 

  • Brownlow, S., Cabral, J.H.M., Cooper, R., Flower, D.R., Yewdall, S.J., Polikarpov, I., North, A.C.T. and Sawyer, L. (1997). Bovine β-lactoglobulin at 1.8 Å resolution—still an enigmatic lipocalin. Structure 5, 481–495.

    Google Scholar 

  • Buetler, T.M., Leclerc, E., Baumeyer, A., Latado, H., Newell, J., Adolfsson, O., Parisod, V., Richoz, J., Maurer, S., Foata, F., Piguet, D., Junod, S., Heizmann, C.W. and Delatour, T. (2008). N-ε-Carboxymethyl­lysine-modified proteins are unable to bind to RAGE and activate an inflammatory response. Mol. Nutr. Food Res. 52, 370–378.

    Google Scholar 

  • Bull, H.B. and Currie, B.T. (1946). Osmotic pressure of β-lactoglobulin solutions. J. Am. Chem. Soc. 68, 742–748.

    Google Scholar 

  • Burova, T.V., Choiset, Y., Tran, V. and Haertlé, T. (1998). Role of free Cys121 in stabilization of bovine β-lactoglobulin B. Protein Eng. 11, 1065–1073.

    Google Scholar 

  • Burova, T.V., Grinberg, N.V., Visschers, R.W., Grinberg, V.Y. and de Kruif, C.G. (2002). Thermodynamic stability of porcine β-lactoglobulin—a structural relevance. Eur. J. Biochem. 269, 3958–3968.

    Google Scholar 

  • Busti, P., Gatti, C.A. and Delorenzi, N.J. (1998). Some aspects of β-lactoglobulin structural properties in solution studied by fluorescence quenching. Int. J. Biol. Macromol. 23, 143–148.

    Google Scholar 

  • Busti, P., Scarpeci, S., Gatti, C.A. and Delorenzi, N.J. (2005). Binding of alkylsulfonate ligands to bovine β-lactoglobulin: effects on protein denaturation by urea. Food Hydrocoll. 19, 249–255.

    Google Scholar 

  • Caillard, R., Boutin, Y. and Subirade, M. (2011). Characterization of succinylated β-lactoglobulin and its application as the excipient in novel delayed release tablets. Int. Dairy J. 21, 27–33.

    Google Scholar 

  • Cane, K.N., Arnould, J.P.Y. and Nicholas, K.R. (2005). Characterisation of proteins in the milk of fur seals. Comp. Biochem. Physiol. B 141, 111–120.

    Google Scholar 

  • Caroli, A.M., Chessa, S. and Erhardt, G.J. (2009). Invited review: Milk protein polymorphisms in cattle: effect on animal breeding and human nutrition. J. Dairy Sci. 92, 5335–5352.

    Google Scholar 

  • Carrotta, R., Arleth, L., Pedersen, J.S. and Bauer, R. (2003). Small-angle X-ray scattering studies of metastable intermediates of β-lactoglobulin isolated after heat-induced aggregation. Biopolymers 70, 377–390.

    Google Scholar 

  • Casal, H.L., Kohler, U. and Mantsch, H.N. (1988). Structural and conformational changes of β-lactoglobulin B: an infrared spectroscopic study of the effect of pH and temperature. Biochim. Biophys. Acta 957, 11–20.

    Google Scholar 

  • Cecil, R. and Ogston, A.G. (1949). The sedimentation constant, diffusion constant and molecular weight of lactoglobulin. Biochem. J. 44, 33–35.

    Google Scholar 

  • Chakraborty, J., Das, N., Das, K.P. and Halder, U.C. (2009). Loss of structural integrity and hydrophobic ligand binding capacity of acetylated and succinylated bovine β-lactoglobulin. Int. Dairy. J. 19, 43–49.

    Google Scholar 

  • Chamani, J. (2006). Comparison of the conformational stability of the non-native α-helical intermediate of thiol-modified β-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH. J. Colloid Interf. Sci. 299, 636–646

    Google Scholar 

  • Chaneton, L., Saez, J.M.P. and Bussmann, L.E. (2011). Antimicrobial activity of bovine β-lactoglobulin against mastitis-causing bacteria. J. Dairy Sci. 94, 138–145.

    Google Scholar 

  • Changani, S.D., Belmar-Beiny, M.T. and Fryer, P.J. (1997). Engineering and chemical factors associated with fouling and cleaning in milk processing. Exp. Therm. Fluid Sci. 14, 392–406.

    Google Scholar 

  • Chatel, J.M., Bernard, H., Clement, G., Frobert, Y., Batt, C.A., Gavalchin, J., Peltre, G. and Wal, J.M. (1996). Expression, purification and immunochemical characterization of recombinant bovine β-lactoglobulin, a major cow milk allergen. Mol. Immunol. 33, 1113–1118.

    Google Scholar 

  • Chessa, S., Chiatti, F., Ceriotti, G., Caroli, A., Consolandi, C., Pagnacco, G. and Castiglioni, B. (2007). Development of a single nucleotide polymorphism genotyping microarray platform for the identification of bovine milk protein genetic polymorphisms. J. Dairy Sci. 90, 451–464.

    Google Scholar 

  • Chiancone, E. and Gattoni, M. (1993). Selective removal of β-lactoglobulin directly from cow’s milk and preparation of hypoallergenic formulas—a bioaffinity method. Biotechnol. Appl. Bioch. 18, 1–8.

    Google Scholar 

  • Chicon, R., Belloque, J., Alonso, E. and Lopez-Fandino, R. (2009). Antibody binding and functional properties of whey protein hydrolysates obtained under high pressure. Food Hydrocoll. 23, 593–599.

    Google Scholar 

  • Cho, Y.J., Batt, C.A. and Sawyer, L. (1994a). Probing the retinol-binding site of bovine β-lactoglobulin. J. Biol. Chem. 269, 11102–11107.

    Google Scholar 

  • Cho, Y.J., Gu, W., Watkins, S., Lee, S.P., Kim, T.R., Brady, J.W. and Batt, C.A. (1994b). Thermostable variants of bovine β-lactoglobulin. Protein Eng. 7, 263–270.

    Google Scholar 

  • Christensen, L.K. (1952). Denaturation and enzymic hydrolysis of lactoglobulin. C. R. Lab. Carlsberg (Ser. Chim.) 28, 37–174.

    Google Scholar 

  • Chu, L., MacLeod, A. and Ozimek, L. (1996). Effect of charcoal delipidization treatment of β-lactoglobulin on kinetics of β-lactoglobulin/retinoic acid complex and its tryptic hydrolysis. Milchwissenschaft 51, 252–255.

    Google Scholar 

  • Clark, D.C., Wilde, P.J., Wilson, D.R. and Wustneck, R. (1992). The interaction of sucrose esters with β-lactoglobulin and β-casein from bovine-milk. Food Hydrocoll. 6, 173–186.

    Google Scholar 

  • Clement, G., Boquet, D., Frobert, Y., Bernard, H., Negroni, L., Chatel, J.M., Adel-Patient, K., Creminon, C., Wal, J.M. and Grassi, J. (2002). Epitopic characterization of native bovine β-lactoglobulin. J. Immunol. Methods 266, 67–78.

    Google Scholar 

  • Collet, C. and Joseph, R. (1995). Exon organization and sequence of the genes encoding α-lactalbumin and β-lactoglobulin from the tammar wallaby (Macro­podidae, Marsupialia). Biochem. Genet. 33, 61–72.

    Google Scholar 

  • Collini, M., D’Alfonso, L. and Baldini, G. (2000). New insight on β-lactoglobulin binding sites by 1-anilinonaphthalene-8-sulfonate fluorescence decay. Protein Sci. 9, 1968–1974.

    Google Scholar 

  • Collini, M., D’Alfonso, L., Molinari, H., Ragona, L., Catalano, M. and Baldini, G. (2003). Competitive binding of fatty acids and the fluorescent probe 1-8-anilinonaphthalene sulfonate to bovine β-lactoglobulin. Protein Sci. 12, 1596–1603.

    Google Scholar 

  • Considine, T., Patel, H.A., Singh, H. and Creamer, L.K. (2005). Influence of binding of sodium dodecyl sulfate, all-trans-retinol, palmitate, and 8-anilino-1-naphthalenesulfonate on the heat-induced unfolding and aggregation of β-lactoglobulin B. J. Agric. Food Chem. 53, 3197–3205.

    Google Scholar 

  • Considine, T., Patel, H.A., Anema, S.G., Singh, H. and Creamer, L.K. (2007). Interactions of milk proteins during heat and high hydrostatic pressure treatments—a review. Innov. Food Sci. Emerg. 8, 1–23.

    Google Scholar 

  • Conti, A., Giuffrida, M.G., Napolitano, L., Quaranta, S., Bertino, E., Coscia, A., Costa, S. and Fabris, C. (2000). Identification of the human β-casein C-terminal fragments that specifically bind to purified antibodies to bovine β-lactoglobulin. J. Nutr. Biochem. 11, 332–337.

    Google Scholar 

  • Cowan, S.W., Newcomer, M.E. and Jones, T.A. (1990). Crystallographic refinement of human serum retinol binding-protein at 2Å resolution. Proteins 8, 44–61.

    Google Scholar 

  • Creamer, L.K. (1995). Effect of sodium dodecyl-sulfate and palmitic acid on the equilibrium unfolding of bovine β-lactoglobulin. Biochemistry 34, 7170–7176.

    Google Scholar 

  • Creamer, L.K., Bienvenue, A., Nilsson, H., Paulsson, M., van Wanroij, M., Lowe, E.K., Anema, S.G., Boland, M.J. and Jimenez-Flores, R. (2004). Heat-induced redistribution of disulfide bonds in milk proteins. 1. Bovine β-lactoglobulin. J. Agric. Food Chem. 52, 7660–7668.

    Google Scholar 

  • Criscione, A., Cunsolo, V., Bordonaro, S., Guastella, A.M., Saletti, R., Zuccaro, A., D’Urso, G. and Marletta, D. (2009). Donkeys’ milk protein fraction investigated by electrophoretic methods and mass spectrometric analysis. Int. Dairy J. 19, 190–197.

    Google Scholar 

  • Crittenden, R.G. and Bennett, L.E. (2005). Cow’s milk allergy: a complex disorder. J. Am. Coll. Nutr. 24, 582S–591S.

    Google Scholar 

  • Crossett, B., Allen, W.R. and Stewart, F. (1996). A 19 kDa protein secreted by the endometrium of the mare is a novel member of the lipocalin family. Biochem. J. 320, 137–143.

    Google Scholar 

  • Cupo, J.F. and Pace, C.N. (1983). Conformational stability of mixed disulphide derivatives of β-lactoglobulin B. Biochemistry 22, 2654–2658.

    Google Scholar 

  • D’Alfonso, L., Collini, M. and Baldini, G. (1999). Evidence of heterogeneous 1-anilinonaphthalene-8-sulfonate binding to β-lactoglobulin from fluorescence spectroscopy. Biochim. Biophys. Acta 1432, 194–202.

    Google Scholar 

  • D’Alfonso, L., Collini, M. and Baldini, G. (2002). Does β-lactoglobulin denaturation occur via an intermediate state? Biochemistry 41, 326–333 and 2884.

    Google Scholar 

  • D’Alfonso, L., Collini, M., Ragona, L., Ugolini, R., Baldini, G. and Molinari, H. (2005). Porcine β-lactoglobulin chemical unfolding: identification of a non-native α-helical intermediate. Proteins 58, 70–79.

    Google Scholar 

  • Dar, T.A., Singh, L.R., Islam, A., Anjum, F., Moosavi-Movahedi, A.A. and Ahmad, F. (2007). Guanidinium chloride and urea denaturations of β-lactoglobulin A at pH 2.0.and 25 degrees C: the equilibrium intermediate contains non-native structures (helix, tryptophan and hydrophobic patches). Biophys. Chem. 127, 140–148.

    Google Scholar 

  • Davidovic, M., Mattea, C., Qvist, J. and Halle, B. (2009). Protein cold denaturation as seen from the solvent. J. Am. Chem. Soc. 131, 1025–1036.

    Google Scholar 

  • Davies, D.T. (1974). The quantitative partition of the albumin fraction of milk serum proteins by gel chromatography. J. Dairy Res. 41, 217–228.

    Google Scholar 

  • Davis, B.D. and Dubos, R.J. (1947). The binding of fatty acids by serum albumin, a protective growth factor in bacteriological media. J. Exp. Med. 86, 215–228.

    Google Scholar 

  • Davis, P.J. and Williams, S.C. (1998). Protein modification by thermal processing. Allergy 53, 102–105.

    Google Scholar 

  • de Frutos, M., Cifuentes, A. and Díez-Masa, J.C. (1997) Multiple peaks in high-performance liquid chromatography of proteins - beta-lactoglobulins eluted in a hydrophobic interaction chromatography system. J. Chromatogr. A. 778, 43–52.

    Google Scholar 

  • de Luis, R., Perez, M.D., Sanchez, L., Lavilla, M. and Calvo, M. (2007). Development of two immunoassay formats to detect β-lactoglobulin: influence of heat treatment on β-lactoglobulin immunoreactivity and assay applicability in processed food. J. Food Protect. 70, 1691–1697.

    Google Scholar 

  • de Wit, J.N. (2009). Thermal behaviour of bovine β-lactoglobulin at temperatures up to 150º C. A review. Trends Food Sci .Tech. 20, 27–34.

    Google Scholar 

  • de Wit, J.N. and Klarenbeek, G. (1981). A differential scanning calorimetric study of the thermal behaviour of bovine β-lactoglobulin at temperatures up to 160°C. J. Dairy Res. 48, 293-302.

    Google Scholar 

  • de Wolf, F.A. and Brett, G.M. (2000). Ligand-binding proteins: their potential for application in systems for controlled delivery and uptake of ligands. Pharmacol. Rev. 52, 207–236.

    Google Scholar 

  • Denton, H., Husi, H., Smith, M.H., Uhrin, D., Barlow, P.N., Batt, C.A. and Sawyer, L. (1998). Preparation of double labelled protein for NMR studies from Pichia pastoris. Protein Expr. Purif. 14, 97–103.

    Google Scholar 

  • Diaz de Villegas, M.C., Oria, R., Sala, F.J. and Calvo, M.(1987). Lipid binding by b-lactoglobulin of cow milk. Milchwissenschaft 42, 357–358.

    Google Scholar 

  • Donald, A.M. (2008). Aggregation in β-lactoglobulin. Soft Matter 4, 1147–1150.

    Google Scholar 

  • Dong, A., Matsuura, J., Allison, S.D., Chrisman, E., Manning, M.C. and Carpenter, J.F. (1996). Infrared and circular-dichroism spectroscopic characterization of structural differences between β-lactoglobulin-A and β-lactoglobulin-B. Biochemistry 35, 1450–1457.

    Google Scholar 

  • Dorji, T., Namikawa, T., Mannen, H. and Kawamoto, Y. (2010). Milk protein polymorphisms in cattle (Bos indicus), mithun (Bos frontalis) and yak (Bos grunniens) breeds and their hybrids indigenous to Bhutan. Anim. Sci. J. 81, 523–529.

    Google Scholar 

  • Dufour, E. and Haertlé, T. (1991). Binding of retinoids and β-carotene to β-lactoglobulin—influence of protein modifications. Biochim. Biophys. Acta 1079, 316–320.

    Google Scholar 

  • Dufour, E. and Haertlé, T. (1993). Temperature-induced folding changes of β-lactoglobulin in hydro-methanolic solutions. Int. J. Biol. Macromol. 15, 293–297.

    Google Scholar 

  • Dufour, E., Marden, M.C. and Haertlé, T. (1990). β-Lactoglobulin binds retinol and protoporphyrin-IX at 2 different binding-sites. FEBS Lett. 277, 223–226.

    Google Scholar 

  • Dufour, E., Bertrand-Harb, C. and Haertlé, T. (1993). Reversible effects of medium dielectric-constant on structural transformation of β-lactoglobulin and its retinol binding. Biopolymers 33, 589–598.

    Google Scholar 

  • Dufour, E., Genot, C. and Haertlé, T. (1994). β-Lactoglobulin binding-properties during its folding changes studied by fluorescence spectroscopy. Biochim. Biophys. Acta 1205, 105–112.

    Google Scholar 

  • Dunnill, P. and Green, D.W. (1965). Sulphydryl groups and the N-R conformational change in β-lactoglobulin. J. Mol. Biol. 15, 147–151.

    Google Scholar 

  • Eberini, I., Baptista, A.M., Gianazza, E., Fraternali, F. and Beringhelli, T. (2004). Reorganization in apo- and holo-β-lactoglobulin upon protonation of Glu89: molecular dynamics and pK α calculations Proteins 54, 744–758.

    Google Scholar 

  • Eberini, I., Fantucci, P., Rocco, A.G., Gianazza, E., Galluccio, L., Maggioni, D., Dal Ben, I., Galliano, M., Mazzitello, R., Gaiji, N. and Beringhelli, T. (2006). Computational and experimental approaches for assessing the interactions between the model calycin β-lactoglobulin and two antibacterial fluoroquinolones. Proteins 65, 555–567.

    Google Scholar 

  • Edelbauer, M., Loibichler, C., Nentwich, I., Gerstmayr, M., Urbanek, R. and Szepfalusi, Z. (2004). Maternally delivered nutritive allergens in cord blood and in placental tissue of term and preterm neonates. Clin. Exp. Allergy 34, 189–193.

    Google Scholar 

  • Edwards, P.J.B., Jameson, G.B., Palmano, K.P. and Creamer, L.K. (2002). Heat-resistant structural features of bovine β-lactoglobulin A revealed by NMR H/D exchange observations. Int. Dairy J. 12, 331–344.

    Google Scholar 

  • Edwards, P.B., Creamer, L.K. and Jameson, G.B. (2009). Structure and stability of whey proteins, in, Milk Proteins—From Expression to Food, A. Thompson, M. Boland and H. Singh, eds., Elsevier, Amsterdam. pp. 163–203.

    Google Scholar 

  • Eichinger, A., Nasreen, A., Kim, H.J. and Skerra, A. (2007). Structural insight into the dual ligand specificity and mode of high density lipoprotein association of apolipoprotein D. J. Biol. Chem. 282, 31068–31075.

    Google Scholar 

  • Eissa, A.S., Puhl, C., Kadla, J.F. and Khan, S.A. (2006). Enzymatic cross-linking of β-lactoglobulin: conformational properties using FTIR spectroscopy. Biomacromolecules 7, 1707–1713.

    Google Scholar 

  • Elsik, C.G., Tellam, R.L., Worley, K.C., et al. and Zhu, B. (2009). The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324, 522–528.

    Google Scholar 

  • Evans, T.R.J. and Kaye, S.B. (1999). Retinoids: present role and future potential. Br. J. Cancer 80, 1–8.

    Google Scholar 

  • Farrell, H.M. Jr., and Thompson, M.P. (1990). β-Lactoglobulin and α-lactalbumin as potential modulators of mammary cellular-activity—a Ca2+-responsive model system using acid phosphoprotein phosphatases. Protoplasma 159, 157–167.

    Google Scholar 

  • Farrell, H.M. Jr., Behe, M.J. and Enyaert, J.A. (1987). Binding of p-nitrophenyl phosphate and other aromatic compounds by β-lactoglobulin. J. Dairy Sci. 70, 252–258.

    Google Scholar 

  • Farrell, H.M. Jr., Jimenez-Flores, R., Bleck, G.T., Brown, E.M., Butler, J.E., Creamer, L.K., Hicks, C.L., Hollar, C.M., Ng-Kwai-Hang, K.F. and Swaisgood, H.E. (2004). Nomenclature of the proteins of cows’ milk—sixth revision. J. Dairy Sci. 87, 1641–1674.

    Google Scholar 

  • Feligini, M., Parma, P., Aleandri, R., Greppi, G.F. and Enne, G. (1998). PCR-RFLP test for direct determination of β-lactoglobulin genotype in sheep. Anim. Genet. 29, 473–474.

    Google Scholar 

  • Fernandez, F.M. and Oliver, G. (1988). Proteins present in llama milk. I. Quantitative aspects and general characteristics. Milchwissenschaft 43, 299–302.

    Google Scholar 

  • Fernandez-Espla, M.D., Lopez-Galvez, G. and Ramos, M. (1993). Isolation of ovine β-lactoglobulin genetic-variants by chromatofocusing—heterogeneity of β-lactoglobulin-A. Chromatographia 37, 43–46.

    Google Scholar 

  • Ferry, J.D. and Oncley, J.L. (1941). Studies on the dielectric properties of protein solutions. III Lactoglobulin. J. Am. Chem. Soc. 63, 272–278.

    Google Scholar 

  • Flower, D.R. (1996). The lipocalin protein family—structure and function. Biochem. J. 318, 1–14.

    Google Scholar 

  • Fluckinger, M., Merschak, P., Hermann, M., Haertlé, T. and Redl, B. (2008). Lipocalin-interacting-membrane-receptor (LIMR) mediates cellular internalization of β-lactoglobulin. Biochim. Biophys. Acta—Biomembranes 1778, 342–347.

    Google Scholar 

  • Foegeding, E.A. (2006). Food biophysics of protein gels: a challenge of nano and macroscopic proportions. Food Biophys. 1, 41–50.

    Google Scholar 

  • Fogolari, F., Ragona, L., Zetta, L., Romagnoli, S., Dekruif, K.G. and Molinari, H. (1998). Monomeric bovine β-lactoglobulin adopts a β-barrel fold at pH 2. FEBS Lett. 436, 149–154.

    Google Scholar 

  • Fogolari, F., Ragona, L., Licciardi, S., Romagnoli, S., Michelutti, R., Ugolini, R. and Molinari, H. (2000). Electrostatic properties of bovine β-lactoglobulin. Proteins 39, 317–330.

    Google Scholar 

  • Folch, J.M., Coll, A., Hayes, H.C. and Sanchez, A. (1996). Characterization of a caprine β-lactoglobulin pseudogene, identification and chromosomal localization by in situ hybridization in goat, sheep and cow. Gene 177, 87–91.

    Google Scholar 

  • Forge, V., Hoshino, M., Kuwata, K., Arai, M., Kuwajima, K., Batt, C.A. and Goto, Y. (2000). Is folding of β-lactoglobulin non-hierarchic? Intermediate with native-like β-sheet and non-native α-helix. J. Mol. Biol. 296, 1039–1051.

    Google Scholar 

  • Fox, P.F. (1995). Heat induced changes in milk, 2nd edn. IDF Special Issue No. 9501. International Dairy Federation, Brussels.

    Google Scholar 

  • Frapin, D., Dufour, E. and Haertlé, T. (1993). Probing the fatty-acid-binding site of β-lactoglobulins. J. Protein Chem. 12, 443–449.

    Google Scholar 

  • Fraser, R.M., Keszenman-Pereyra, D., Simmen, M.W. and Allan, J. (2009). High-resolution mapping of sequence-directed nucleosome positioning on genomic DNA. J. Mol. Biol. 390, 292–305.

    Google Scholar 

  • Fugate, R.D. and Song, P.-S. (1980). Spectroscopic characterization of β-lactoglobulin-retinol complex. Biochim. Biophys. Acta 625, 28–42.

    Google Scholar 

  • Fujiwara, K., Arai, M., Shimizu, A., Ikeguchi, M., Kuwajima, K. and Sugai, S. (1999). Folding-unfolding equilibrium and kinetics of equine β-lactoglobulin: equivalence between the equilibrium molten globule state and a burst-phase folding intermediate. Biochemistry 38, 4455–4463.

    Google Scholar 

  • Fujiwara, K., Ikeguchi, M. and Sugai, S. (2001). A partially unfolded state of equine β-lactoglobulin at pH 8.7. J. Protein Chem. 20, 131–137.

    Google Scholar 

  • Fukushima, Y., Kawata, Y., Onda, T. and Kitagawa, M. (1997). Consumption of cow milk and egg by lactating women and the presence of β-lactoglobulin and ovalbumin in breast milk. Am. J. Clin. Nutr. 65, 30–35.

    Google Scholar 

  • Futterman, S. and Heller, J. (1972). The enhancement of fluorescence and the decreased susceptibility to enzymic oxidation of bovine serum albumin, β-lactoglobulin and the retinol-binding protein of human plasma. J. Biol. Chem. 247, 5168–5172.

    Google Scholar 

  • Ganai, N.A., Bovenhuis, H., van Arendonk, J.A.M. and Visker, M.H.P.W. (2009). Novel polymorphisms in the bovine β-lactoglobulin gene and their effects on β-lactoglobulin protein concentration in milk. Anim. Genet. 40, 127–133.

    Google Scholar 

  • Garde, J., Bell, S.C. and Eperon, I.C. (1991). Multiple forms of messenger-RNA encoding human pregnancy-associated endometrial α-2u-globulin, a β-lactoglobulin homolog. Proc. Natl. Acad. Sci. U S A 88, 2456–2460.

    Google Scholar 

  • Gaye, P., Hue-Delahaie, D., Mercier, J.-C., Soulier, S., Vilotte, J.L. and Furet, J.P. (1986). Ovine β-lactoglobulin messenger RNA: nucleotide sequence and mRNA levels during functional differentiation of the mammary gland. Biochimie 68, 1097–1107.

    Google Scholar 

  • Georges, C. and Guinand, S. (1960). Sur la dissociation reversible de la β-lactoglobuline, à des pH superieurs à 5.5. 1. Étude par la diffusion de la lumiere. J. Chim. Phys. 57, 606–614.

    Google Scholar 

  • Georges, C., Guinand, S. and Tonnelat, J. (1962). Étude thermodynamique de la dissociation reversible de la β-lactoglobuline B pour des pH superieurs à 5.5. Biochim. Biophys. Acta 59, 737–739.

    Google Scholar 

  • German, T. and Barash, I. (2002). Characterization of an epithelial cell line from bovine mammary gland. In Vitro Cell. Dev. Biol. Anim. 38, 282–292.

    Google Scholar 

  • Gestin, M., Desbois, C., Le Huërou-Luron, I., Romé, V., Le Dréan, G., Lengagne, T., Roger, L., Mendy, F. and Guilloteau, P. (1997). In vitro hydrolysis by pancreatic elastases I and II reduces β-lactoglobulin antigenicity. Lait 77, 399–409.

    Google Scholar 

  • Gezimati, J., Creamer, L.K. and Singh, H. (1997). Heat-induced interactions and gelation of mixtures of β-lactoglobulin and α-lactalbumin. J. Agric. Food Chem. 45, 1130–1136.

    Google Scholar 

  • Ghose, A.C., Chaudhuri, S. and Sen, A. (1968). Hydrogen ion equilibria and sedimentation behaviour of goat β-lactoglobulins. Arch. Biochem. Biophys. 126, 232–243.

    Google Scholar 

  • Godovac-Zimmermann, J., Conti, A., Liberatori, J. and Braunitzer, G. (1985). The amino acid sequence of β-lactoglobulin II from horse colostrum (Equus caballus, Perissodactyla): β-lactoglobulins are retinol-binding proteins. Biol. Chem. Hoppe-Seyler 366, 601–608.

    Google Scholar 

  • Godovac-Zimmermann, J., Conti, A. and Napolitano, L. (1987). The complete amino acid sequence of dimeric β-lactoglobulin from mouflon (Ovis ammon musimon) milk. Biol. Chem. Hoppe-Seyler 368, 1313–1319.

    Google Scholar 

  • Godovac-Zimmermann, J., Conti, A., James, L. and Napolitano, L. (1988). Microanalysis of the amino acid sequence of monomeric β-lactoglobulin I from donkey (Equus asinus) milk. Biol. Chem. Hoppe-Seyler 369, 171–179.

    Google Scholar 

  • Godovac-Zimmermann, J., Krause, I., Buchberger, J., Weiss, G. and Klostermeyer, H. (1990). Genetic-variants of bovine β-lactoglobulina novel wild-type β-lactoglobulin W and its primary sequence. Biol. Chem. Hoppe-Seyler 371, 255–260.

    Google Scholar 

  • Godovac-Zimmermann, J., Krause, I., Baranyi, M., Fischer-Fruhholz, S., Juszczak, J., Erhardt, G., Buchberger, J. and Klostermeyer, H. (1996). Isolation and rapid sequence characterization of two novel bovine β-lactoglobulins I and J. J. Protein Chem. 15, 743–750.

    Google Scholar 

  • Gordon, E.J., Leonard, G.A., McSweeney, S. and Zagalsky, P.F. (2001). The C-1 subunit of α-crustacyanin: the de novo phasing of the crystal structure of a 40 kDa homodimeric protein using the anomalous scattering from S atoms combined with direct methods. Acta Crystallogr. D57, 1230-1237.

    Google Scholar 

  • Gottschalk, M., Nilsson, H., Roos, H. and Halle, B. (2003). Protein self-association in solution: the bovine β-lactoglobulin dimer and octamer. Protein Sci. 12, 2404-2411.

    Google Scholar 

  • Green, D.W. and Aschaffenburg, R. (1959). Twofold symmetry of the β-lactoglobulin molecule in crystals. J. Mol. Biol. 1, 54-64.

    Google Scholar 

  • Green, D.W., North, A.C.T. and Aschaffenburg, R. (1956). Crystallography of β-lactoglobulin from cow’s milk. Biochim. Biophys. Acta 21, 583-585.

    Google Scholar 

  • Green, D.W., Aschaffenburg, R., Camerman, A., Coppola, J.C., Diamand, R.D., Dunnill, P., Simmons, R.M., Komorowski, E.S., Sawyer, L., Turner, E.M.C. and Woods, K.F. (1979). Structure of bovine β-lactoglobulin at 6Å resolution. J. Mol. Biol. 131, 375-397.

    Google Scholar 

  • Grönwall, A. (1942). Studies on the solubility of lactoglobulin. C.R. Trav. Lab. Carls. Ser. Chim. 24, 185-200.

    Google Scholar 

  • Grosclaude, F., Mahe, M.-F., Mercier, J.-C., Bonnemarie, J. and Teissier, J.H. (1976). Polymorphisme des lactoproteines de bovines nepalais. Ann. Genet. Sel. Anim. 8, 461-479.

    Google Scholar 

  • Groves, M.L., Hipp, N.J. and McMeekin, T.L. (1951). Effect of pH on the denaturation of β-lactoglobulin and its dodecyl sulphate derivative. J. Am. Chem. Soc. 73, 2790-2793.

    Google Scholar 

  • Grzyb, J., Latowski, D. and Strzalka, K. (2006). Lipocalins—a family portrait. J. Plant Physiol. 163, 895-915.

    Google Scholar 

  • Guichard, E. (2006). Flavour retention and release from protein solutions. Biotechnol. Adv. 24, 226-229.

    Google Scholar 

  • Gulzar, M., Croguennec, T., Jardin, J., Piot, M. and Bouhallab, S. (2009). Copper modulates the heat-induced sulfhydryl/disulfide interchange reactions of β-lactoglobulin. Food Chem. 116, 884-891.

    Google Scholar 

  • Guo, M.R., Fox, P.F., Flynn, A. and Kindstedt, P.S. (1995). Susceptibility of β-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. J. Dairy Sci. 78, 2336-2344.

    Google Scholar 

  • Guo, H.Y., Pang, K., Zhang, X.Y., Zhao, L., Chen, S.W., Dong, M.L. and Ren, F.Z. (2007). Composition, physiochemical properties, nitrogen fraction distribution, and amino acid profile of donkey milk. J. Dairy Sci. 90, 1635-1643.

    Google Scholar 

  • Guth, H. and Fritzler, R. (2004). Binding studies and computer-aided modelling of macromolecule/ odorant interactions. Chem. Biodivers. 1, 2001-2023

    Google Scholar 

  • Hajoubi, S., Rival-Gervier, S., Hayes, H., Floriot, S., Eggen, A., Piumi, F., Chardon, P., Houdebine, L.M. and Thepot, D. (2006). Ruminants genome no longer contains whey acidic protein gene but only a pseudogene. Gene 370, 104-112.

    Google Scholar 

  • Hall, A.J., Masel, A., Bell, K., Halliday, J.A., Shaw, D.C. and VandeBerg, J.L. (2001). Characterization of baboon (Papio hamadryas) milk proteins. Biochem. Genet. 39, 59-71.

    Google Scholar 

  • Hallberg, R.K. and Dubin, P.L. (1998). Effect of pH on the binding of β-lactoglobulin to sodium polystyrenesulfonate. J. Phys. Chem. B 102, 8629-8633.

    Google Scholar 

  • Halliday, J.A., Bell, K. and Shaw, D.C. (1991). The complete amino acid sequence of feline β-lactoglobulin-II and a partial revision of the equine β-lactoglobulin-II sequence. Biochim. Biophys. Acta 1077, 25-30.

    Google Scholar 

  • Hamada, D. and Goto, Y. (1997). The equilibrium intermediate of β-lactoglobulin with non-native α-helical structure. J. Mol. Biol. 269, 479-487.

    Google Scholar 

  • Hamada, D., Kuroda, Y., Tanaka, T. and Goto, Y. (1995). High helical propensity of the peptide-fragments derived from β-lactoglobulin, a predominantly β-sheet protein. J. Mol. Biol. 254, 737-746.

    Google Scholar 

  • Hamada, D., Segawa, S. and Goto, Y. (1996). Non-native α-helical intermediate in the refolding of β-lactoglobulin, a predominantly β-sheet protein. Nat. Struct. Biol. 3, 868-873.

    Google Scholar 

  • Hamada, D., Tanaka, T., Tartaglia, G.G., Pawar, A., Vendruscolo, M., Kawamura, M., Tamura, A., Tanaka, N. and Dobson, C.M. (2009). Competition between folding, native-state dimerisation and amyloid aggregation in β-lactoglobulin. J. Mol. Biol. 386, 878-890.

    Google Scholar 

  • Hambling, S.G., McAlpine, A.S. and Sawyer, L. (1992). β-lactoglobulin, in, Advanced Dairy Chemistry I, P.F. Fox, ed., Elsevier, Amsterdam. pp. 140-191.

    Google Scholar 

  • Harvey, B.J., Bell, E. and Brancaleon, L. (2007). A tryptophan rotamer located in a polar environment probes pH-dependent conformational changes in bovine β-lactoglobulin A. J. Phys. Chem. B 111, 2610-2620.

    Google Scholar 

  • Hattori, M., Ametani, A., Katakura, Y., Shimizu, M. and Kaminogawa, S. (1993). Unfolding/ refolding studies on bovine β-lactoglobulin with monoclonal antibodies as probes—does a renatured protein completely refold? J. Biol. Chem. 268, 22414-22419.

    Google Scholar 

  • Hattori, M., Miyakawa, S., Ohama, Y., Kawamura, H., Yoshida, T., To-O, K., Kuriki, T. and Takahashi, K. (2004). Reduced immunogenicity of β-lactoglobulin by conjugation with acidic oligosaccharides. J. Agric. Food Chem. 52, 4546-4553.

    Google Scholar 

  • Hazebrouck, S., Pothelune, L., Azevedo, V., Corthier, G., Wal, J.-M. and Langella, P. (2007). Efficient production and secretion of bovine β-lactoglobulin by Lactobacillus casei. Microb. Cell Fact. 6, Article Number: 12.

    Google Scholar 

  • Heddleson, R.A., Allen, J.C., Wang, Q.W. and Swaisgood, H.E. (1997). Purity and yield of β-lactoglobulin isolated by an n-retinyl-celite bioaffinity column. J. Agric. Food Chem. 45, 2369-2373.

    Google Scholar 

  • Heikura, J., Suutari, T., Rytkonen, J., Nieminen, M., Virtanen, V. and Valkonen, K. (2005). A new procedure to isolate native β-lactoglobulin from reindeer milk. Milchwissenschaft 60, 388-392.

    Google Scholar 

  • Hemley, R., Kohler, B.E. and Siviski, P. (1979). Absorption spectra for the complexes formed from vitamin-A and β-lactoglobulin. Biophys. J. 28, 447-455.

    Google Scholar 

  • Hemung, B.-O., Li-Chan, E.C.Y. and Yongsawatdigul, J. (2009). Identification of glutaminyl sites on β-lactoglobulin for threadfin bream liver and microbial transglutaminase activity by MALDI-TOF mass spectrometry. Food Chem. 115, 149-154.

    Google Scholar 

  • Hennighausen, L.G. and Sippel, A.E. (1982). Mouse whey acidic protein is a novel member of the family of ‘four-disulphide core’ proteins. Nucleic Acids Res. 10, 2677-2684.

    Google Scholar 

  • Hernandez-Ledesma, B., Recio, I. and Amigo, L. (2008). β-Lactoglobulin as source of bioactive peptides. Amino Acids 35, 257-265.

    Google Scholar 

  • Herskovits, T.T., Townend, R. and Timasheff, S.N. (1964). Molecular interactions in β-lactoglobulin. IX. Optical rotatory dispersion of the genetic variants in different states of association. J. Am. Chem. Soc. 86, 4445-4452.

    Google Scholar 

  • Hill, A.R. (1989). The β-lactoglobulin-κ-casein complex. Can. Inst. Food Sci. Tech. J. 22, 120-123.

    Google Scholar 

  • Hill, J.P., Boland, M.J., Creamer, L.K., Anema, S.G., Otter, D.E., Paterson, G.R., Lowe, R., Motion, R.L. and Thresher, W.C. (1996). Effect of the bovine β-lactoglobulin phenotype on the properties of β-lactoglobulin, milk composition and dairy products. ACS Symposium Series 650, 281-294.

    Google Scholar 

  • Hirano, A., Maeda, Y., Akasaka, T. and Shiraki, K. (2009). Synergistically enhanced dispersion of native protein-carbon nanotube conjugates by fluoroalcohols in aqueous solution. Chem. Eur. J. 15, 9905-9910.

    Google Scholar 

  • Hodgkin, D.C. and Riley, D.P. (1968). Some ancient history of protein X-ray analysis, in, Structural Chemistry and Molecular Biology, A. Rich and N. Davidson, eds., Freeman, New York. pp. 15-28.

    Google Scholar 

  • Hoedemaeker, F.J., Visschers, R.W., Alting, A.C., de Kruif, K.G., Kuil, M.E. and Abrahams, J.P. (2002). A novel pH-dependent dimerization motif in β-lactoglobulin from pig (Sus scrofa). Acta Crystallogr. D 58, 480-486.

    Google Scholar 

  • Holmes, M.A., Paulsene, W., Jide, X., Ratledge, C. and Strong, R.K. (2005). Siderocalin (LCN 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 13, 29-41.

    Google Scholar 

  • Holt, C., Waninge, R., Sellers, P., Paulsson, M., Bauer, R., Ogendal, L., Roefs, S.P.F.M., vanMill, P., de Kruif, C.G., Leonil, J., Fauquant, J. and Maubois, J.L. (1998). Comparison of the effect of heating on the thermal denaturation of nine different β-lactoglobulin preparations of genetic variants A, B or A/B, as measured by microcalorimetry. Int. Dairy J. 8, 99-104.

    Google Scholar 

  • Holt, C., McPhail, D., Nylander, T., Otte, J., Ipsen, R.H., Bauer, R., Ogendal, L., Olieman, K., de Kruif, K.G., Leonil, J., Molle, D., Henry, G., Maubois, J.L., Perez, M.D., Puyol, P., Calvo, M., Bury, S.M., Kontopidis, G., McNae, I., Sawyer, L., Ragona, L., Zetta, L., Molinari, H., Klarenbeek, B., Jonkman, M.J., Moulin, J. and Chatterton, D. (1999). Some physico-chemical properties of nine commercial or semi-commercial whey protein concentrates, isolates and fractions. Int. J. Food Sci. Technol. 34, 587-601.

    Google Scholar 

  • Hubbard, T.J.P., Aken, B.L., Ayling, S., et al. Flicek, P. (2009). Ensembl 2009. Nucleic Acids Res. 37, D690-D697.

    Google Scholar 

  • Huber, R., Schneider, M., Mayer, I., Muller, R., Deutzmann, R., Suter, F., Zuber, H., Falk, H. and Kayser, H. (1987). Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 Å. J. Mol. Biol. 198, 499-513.

    Google Scholar 

  • Hudson, G.J., Bailey, P.A., John, P.M.V., Monsalve, L., Delcampo, A.L.G., Taylor, D.C. and Kay, J.D.S. (1984). Composition of milk from Ailuropoda melanoleuca, the giant panda. Vet. Record 115, 252-252.

    Google Scholar 

  • Hui Bon Hoa, G., Guinand, S., Douzou, P. and Pantaloni, C. (1973). Transformations alcalines de la β-lactoglobulies en milieau hydro-alcoolique à basses temperatures. Biochimie 55, 269-276.

    Google Scholar 

  • Hunziker, H.G. and Tarassuk, N.P. (1965). Chromato­graphic evidence for heat induced interaction of α-lactalbumin and β-lactoglobulin. J. Dairy Sci. 48, 733-744.

    Google Scholar 

  • Hyttinen, J.M., Korhonen, V.P., Hiltunen, M.O., Myohanen, S. and Janne, J. (1998). High-level expression of bovine β-lactoglobulin gene in transgenic mice. J. Biotechnol. 61, 191-198.

    Google Scholar 

  • Iametti, S., Transidico, P., Bonomi, F., Vecchio, G., Pittia, P., Rovere, P. and DallAglio, G. (1997). Molecular modifications of β-lactoglobulin upon exposure to high pressure. J. Agric. Food Chem. 45, 23-29.

    Google Scholar 

  • Iametti, S., Scaglioni, L., Mazzini, S., Vecchio, G. and Bonomi, F. (1998). Structural features and reversible association of different quaternary structures of β-lactoglobulin. J. Agric. Food Chem. 46, 2159-2166.

    Google Scholar 

  • Ibanez, E., Folch, J.M., Vidal, F., Coll, A., Santalo, J., Egozcue, J. and Sanchez, A. (1997). Expression of caprine β-lactoglobulin in the milk of transgenic mice. Transgenic Res. 6, 69-74.

    Google Scholar 

  • Ikeguchi, M., Kato, S., Shimizu, A. and Sugai, S. (1997). Molten globule state of equine β-lactoglobulin. Proteins 27, 567-575.

    Google Scholar 

  • Imre, T., Zsila, F. and Szabo, P.T. (2003). Electrospray mass spectrometric investigation of the binding of cis-parinaric acid to bovine β-lactoglobulin and study of the ligand-binding site of the protein using limited proteolysis. Rapid Comm. Mass Spect. 17, 2464-2470.

    Google Scholar 

  • Invernizzi, G., Ragona, L., Brocca, S., Pedrazzoli, E., Molinari, H., Morandini, P., Catalano, M. and Lotti, M. (2004). Heterologous expression of bovine and porcine β-lactoglobulins in Pichia pastoris: towards a comparative functional characterization. J. Biotechnol. 109, 169-178.

    Google Scholar 

  • Invernizzi, G., Samalikova, M., Brocca, S., Lotti, M., Molinari, H. and Grandori, R. (2006). Comparison of bovine and porcine β-lactoglobulin: a mass spectrometric analysis. J. Mass Spect. 41, 717-727.

    Google Scholar 

  • Invernizzi, G., Annoni, E., Natalello, A., Doglia, S.M. and Lotti, M. (2008). In vivo aggregation of bovine β-lactoglobulin is affected by Cys at position 121. Protein Expr. Purif. 62, 111-115.

    Google Scholar 

  • Ivanov, V.N., Judinkova, E.S. and Gorodetsky, S.I. (1988). Molecular cloning of bovine β-lactoglobulin cDNA. Biol. Chem. Hoppe-Seyler 369, 425-429.

    Google Scholar 

  • Izquierdo, F. J., Alli, I., Yaylayan, V. and Gomez, R. (2007). Microwave-assisted digestion of β-lactoglobulin by pronase, α-chymotrypsin and pepsin. Int. Dairy J. 17, 465-470.

    Google Scholar 

  • Jadot, M., Laloux, J., Burny, A. and Kettmann, R. (1992). Detection of bovine β-lactoglobulin genomic variants by the polymerase chain-reaction method and molecular hybridization. Anim. Genet. 23, 77–79.

    Google Scholar 

  • Jakob, E. and Puhan, Z. (1992). Technological properties of milk as influenced by genetic polymorphism of milk proteins—a review. Int. Dairy J. 2, 157–178.

    Google Scholar 

  • Jameson, G.B., Adams, J.J., Creamer, L.K. (2002). Flexibility, functionality and hydrophobicity of bovine β-lactoglobulin. Int. Dairy J. 12, 319–329.

    Google Scholar 

  • Jamieson, A.C., Vandeyar, M.A., Kang, Y.C., Kinsella, J.E. and Batt, C.A. (1987). Cloning and nucleotide-sequence of the bovine β-lactoglobulin gene. Gene 61, 85–90.

    Google Scholar 

  • Jang, H.D. and Swaisgood, H.E. (1990). Analysis of ligand-binding and β-lactoglobulin denaturation by chromatography on immobilized trans-retinal. J. Dairy Sci. 73, 2067–2074.

    Google Scholar 

  • Jarvinen, K.M., Chatchatee, P., Bardina, L., Beyer, K. and Sampson, H.A. (2001). IgE and IgG binding epitopes on α-lactalbumin and β-lactoglobulin in cow’s milk allergy. Int. Arch. Allergy Immunol. 126, 111–118.

    Google Scholar 

  • Jayat, D., Gaudin, J.-C., Chobert, J.-M., Burova, T.V., Holt, C., McNae, I., Sawyer, L. and Haertlé, T. (2004). A C121S mutation of bovine β-lactoglobulin leads to decreased stability of the protein to peptic digestion, reducing agents and heating. Biochemistry 43, 6312–6321.

    Google Scholar 

  • Jenness, R. (1979). Comparative aspects of milk proteins. J. Dairy Res. 46, 197–210.

    Google Scholar 

  • Jenness, R. (1985). Biochemical and nutritional aspects of milk and colostrums, in, Lactation, B.L. Larson, ed., The Iowa State University Press, Ames. pp. 164–197.

    Google Scholar 

  • Jenness, R., Erickson, A.W. and Craighead, J.J. (1972). Some comparative aspects of milk from 4 species of bears. J. Mammal. 53, 34–47.

    Google Scholar 

  • Jeyarajah, S. and Allen, J.C. (1994). Calcium binding and salt-induced structural changes of native and preheated β-lactoglobulin. J. Agric. Food Chem. 42, 80–85.

    Google Scholar 

  • Jiang, H.R. and Liu, N. (2010). Self-assembled β-lactoglobulin-conjugated linoleic acid complex for colon cancer-targeted substance. J. Dairy Sci. 93, 3931–3939.

    Google Scholar 

  • Jones, S.B. and Kalan, E.B. (1971). Modified procedure for isolation of a major swine whey protein. J. Dairy Sci. 54, 288–291.

    Google Scholar 

  • Joss, J.L., Molloy, M.P., Hinds, L. and Deane, E. (2009). A longitudinal study of the protein components of marsupial milk from birth to weaning in the tammar wallaby (Macropus eugenii). Dev. Comp. Immunol. 33, 152–161.

    Google Scholar 

  • Jouenne, E. and Crouzet, J. (2000). Determination of apparent binding constants for aroma compounds with β-lactoglobulin by dynamic coupled column liquid chromatography. J. Agric. Food Chem. 48, 5396–5400.

    Google Scholar 

  • Jun, S. and Puri, V.M. (2005). Fouling models for heat exchangers in dairy processing: a review. J. Food Process Eng. 28, 1–34.

    Google Scholar 

  • Kaddouri, H., Mimoun, S., El-Mecherfi, K.E., Chekroun, A., Kheroua, O. and Saidi, D. (2008). Impact of γ-radiation on antigenic properties of cow’s milk β-lactoglobulin. J. Food Protect. 71, 1270–1272.

    Google Scholar 

  • Kalan, E.B. and Basch, J.J. (1969). Preparation of goat β-lactoglobulin. J. Dairy Sci. 49, 406–409.

    Google Scholar 

  • Kalidas, C., Joshi, L. and Batt, C.A. (2001). Characterization of glycosylated variants of β-lactoglobulin expressed in Pichia pastoris. Protein Eng. 14, 201–207.

    Google Scholar 

  • Kaminogawa, S., Shimizu, M., Ametani, A., Hattori, M., Ho, O., Hachimura, S., Nakamura, Y., Totsuka, M. and Yamauchi, K. (1989). Monoclonal-antibodies as probes for monitoring the denaturation process of bovine β-lactoglobulin. Biochim. Biophys. Acta 998, 50–56.

    Google Scholar 

  • Kappeler, S.R., Farah, Z. and Puhan, Z. (2003). 5¢-Flanking regions of camel milk genes are highly similar to homologue regions of other species and can be divided into two distinct groups. J. Dairy Sci. 86, 498–508.

    Google Scholar 

  • Katakura, Y., Totsuka, M., Ametani, A. and Kaminogawa, S. (1994). Tryptophan-19 of β-lactoglobulin, the only residue completely conserved in the lipocalin superfamily, is not essential for binding retinol, but relevant to stabilizing bound retinol and maintaining its structure. Biochim. Biophys. Acta 1207, 58–67.

    Google Scholar 

  • Katakura, Y., Totsuka, M., Ametani, A. and Kaminogawa, S. (1997). A small variance in the antigenicity but not function of recombinant β-lactoglobulin purified from the culture supernatant of transformed yeast cells. Cytotechnology 23, 133–141.

    Google Scholar 

  • Katou, H., Hoshino, M., Kamikubo, H., Batt, C.A. and Goto, Y. (2001). Native-like β-hairpin retained in the cold-denatured state of bovine β-lactoglobulin. J. Mol. Biol. 310, 471–484.

    Google Scholar 

  • Kessler, E. and Brew, K. (1970). The whey proteins of pig’s milk isolation and characterization of a β-lactoglobulin. Biochim. Biophys. Acta 200, 449–458.

    Google Scholar 

  • Kim, T.R., Goto, Y., Hirota, N., Kuwata, K., Denton, H., Wu, S.Y., Sawyer, L. and Batt, C.A. (1997). High-level expression of bovine β-lactoglobulin in Pichia pastoris and characterisation of its physical properties. Protein Eng. 10, 1339–1345.

    Google Scholar 

  • Kinsella, J.E. and Whitehead, D.M. (1989). Proteins in whey: chemical, physical and functional properties. Adv. Food Nutr. Res. 33, 343-438.

    Google Scholar 

  • Kobayashi, T., Ikeguchi, M. and Sugai, S. (2000). Molten globule structure of equine β-lactoglobulin probed by hydrogen exchange. J. Mol. Biol. 299, 757–770.

    Google Scholar 

  • Kobayashi, T., Ikeguchi, M. and Sugai, S. (2002). Construction and characterization of β-lactoglobulin chimeras. Proteins 49, 297–301.

    Google Scholar 

  • Kolde, H.J., Liberatori, J. and Braunitzer, G. (1981). The amino-acid-sequence of the water buffalo β-lactoglobulin. Milchwissenschaft 36, 83–86.

    Google Scholar 

  • Kontopidis, G., Holt, C. and Sawyer, L. (2002). Retinol binding to bovine β-lactoglobulin. J. Mol. Biol. 318, 1043–1055.

    Google Scholar 

  • Kontopidis, G., Holt, C. and Sawyer, L. (2004). Invited Review: β-Lactoglobulin: binding properties, structure, and function. J. Dairy Sci. 87, 785–796.

    Google Scholar 

  • Konuma, T., Sakurai, K. and Goto, Y. (2007). Promiscuous binding of ligands by β-lactoglobulin involves hydrophobic interactions and plasticity. J. Mol. Biol. 368, 209–218.

    Google Scholar 

  • Kotresh, A.M., Arunkumar, G.B., Kanthraj, C., Saxena, M. and Sharma, B. (2009). Structural features of the 5¢-flanking region of the β-lactoglobulin gene of buffalo (Bubalus bubalis). Buffalo Bull. 28, 34–39.

    Google Scholar 

  • Krebs, M.R.H., Devlin, G.L. and Donald, A.M. (2007). Protein particulates: another generic form of protein aggregation? Biophys. J. 92, 1336–1342.

    Google Scholar 

  • Krebs, M.R.H., Domike, K.R. and Donald, A.M. (2009). Protein aggregation: more than just fibrils. Biochem. Soc. Trans. 37, 682–686.

    Google Scholar 

  • Kristiansen, K.R., Otte, J., Ipsen, R. and Qvist, K.B. (1998). Large-scale preparation of β-lactoglobulin A and B by ultrafiltration and ion-exchange chromatography. Int. Dairy J. 8, 113–118.

    Google Scholar 

  • Kühn, J., Considine, T. and Singh, H. (2006). Interactions of milk proteins and volatile flavor compounds: implications in the development of protein foods. J. Food Sci. 71, R72–R82.

    Google Scholar 

  • Kumasaka, T., Aritake, K., Ago, H., Irikura, D., Tsurumura, T., Yamamoto, M., Miyano, M., Urade, Y. and Hayaishi, O. (2009). Structural basis of the catalytic mechanism operating in open-closed conformers of lipocalin type prostaglandin D synthase. J. Biol. Chem. 284, 22344–22352.

    Google Scholar 

  • Kunz, C. and Lönnerdal, B. (1994). Isolation and characterization of a 21 kDa whey-protein in rhesus-monkey (Macaca mulatta) milk. Comp. Biochem. Physiol. B 108, 463–469.

    Google Scholar 

  • Kurisaki, J., Nakamura, S., Kaminogawa, S. and Yamauchi, K. (1982). The antigenic properties of β-lactoglobulin examined with mouse IgE antibody. Agric. Biol. Chem. 46, 2069–2075.

    Google Scholar 

  • Kurisaki, J., Nakamura, S., Kaminogawa, S., Yamauchi, K., Watanabe, S., Hotta, K. and Hattori, M. (1985). Antigenicity of modified β-lactoglobulin examined by three different assays. Agric. Biol. Chem. 49, 1733–1737.

    Google Scholar 

  • Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S. and Nagamura, T. (1987). Rapid formation of secondary structure framework in protein folding studied by stopped-flow circular dichroism. FEBS Lett. 221, 115–118.

    Google Scholar 

  • Kuwata, K., Hoshino, M., Era, S., Batt, C.A. and Goto, Y. (1998). α→ β transition of β-lactoglobulin as evidenced by heteronuclear NMR. J. Mol. Biol. 283, 731–739.

    Google Scholar 

  • Kuwata, K., Hoshino, M., Forge, V., Era, S., Batt, C.A. and Goto, Y. (1999). Solution structure and dynamics of bovine β-lactoglobulin A. Protein Sci. 8, 2541–2545.

    Google Scholar 

  • Kuwata, K., Shastry, R., Cheng, H., Hoshino, M., Batt, C.A., Goto, Y. and Roder, H. (2001). Structural and kinetic characterization of early folding events in β-lactoglobulin. Nat. Struct. Biol. 8, 151–155.

    Google Scholar 

  • Laligant, A., Marti, J., Cheftel, J.C., Dumay, E. and Cuq, J.L. (1995). Detection of conformational modifications of heated β-lactoglobulin by immunochemical methods. J. Agric. Food Chem. 43, 2896–2903.

    Google Scholar 

  • Lamiot, E., Dufour, E. and Haertlé, T. (1994). Insect sex-pheromone binding by bovine β-lactoglobulin. J. Agric. Food Chem. 42, 695–699.

    Google Scholar 

  • Lange, D.C., Kothari, R., Patel, R.C. and Patel, S.C. (1998). Retinol and retinoic acid bind to a surface cleft in bovine β-lactoglobulin: a method of binding site determination using fluorescence resonance energy transfer. Biophys. Chem. 74, 45–51.

    Google Scholar 

  • Lebenthal, E., Laor, J., Lewitus, Z., Matoth, Y. and Freier, S. (1970). Gastrointestinal protein loss in allergy to cows milk β-lactoglobulin. Isr. J. Med. Sci. 6, 506–510.

    Google Scholar 

  • Lemay, D.G., Lynn, D.J., Martin, W.F., et al. and Rijnkels, M. (2009). The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol. 10(4), Article R43.

    Google Scholar 

  • Leonil, J., Molle, D., Gaucheron, F., Arpino, P., Guenot, P. and Maubois, J.L. (1995). Analysis of major bovine-milk proteins by online high-performance liquid-chromatography and electrospray-ionization mass-spectrometry. Lait 75, 193–210.

    Google Scholar 

  • Li, C.H. (1946). Electrophoretic inhomogeneity of crystalline β-lactoglobulin. J. Am. Chem. Soc. 68, 2746–2747.

    Google Scholar 

  • Li, H., Hardin, C.C. and Foegeding, E.A. (1994). NMR-studies of thermal-denaturation and cation-mediated aggregation of β-lactoglobulin. J. Agric. Food Chem. 42, 2411–2420.

    Google Scholar 

  • Liberatori, J., Guidetti, M.L. and Conti, A. (1979a). Immunochemical studies on β-lactoglobulins. Precipitin reactions of sow’s and mare’s mammary secretions against anti-bovine β-lactoglobulin antiserum. Boll. Soc. It. Biol. Sper. 55, 815–821.

    Google Scholar 

  • Liberatori, J., Guidetti, M.L. and Conti, A. (1979b). Immunological evidence of β-lactoglobulins. In human colostrums and milk. Boll. Soc. It. Biol. Sper. 55, 822–825.

    Google Scholar 

  • Liberatori, J., Guidetti, M.L., Conti, A. and Napolitano, L. (1979c). β-Lactoglobulins in the mammary secretions of camel (Camelus dromedarius) and she-ass. Immunological detection and preliminary physico-chemical characterization. Boll. Soc. It. Biol. Sper. 55, 1369–1373.

    Google Scholar 

  • Lien, S., Alestrom, P., Steine, T., Langsrud, T., Vegarud, G. and Rogne, S. (1990). A method for β-lactoglobulin genotyping of cattle. Livest. Prod. Sci. 25, 173–176.

    Google Scholar 

  • Loch, J., Polit, A., Gorecki, A., Bonarek, P., Kurpiewska, K., Dziedzicka-Wasylewska, M. and Lewinski, K. (2011). Two modes of fatty acid binding to bovine β-lactoglobulin-crystallographic and spectroscopic studies. J. Mol. Recog. 24, 341–349.

    Google Scholar 

  • Loch, J.I., Polit, A., Bonarek, P., Olszewska, D., Kurpiewska, K., Dziedzicka-Wasylewska, M. and Lewinski, K. (2012). Structural and thermodynamic studies of binding saturated fatty acids to bovine beta-lactoglobulin. Int. J. Biol. Macromol. 50, 1095–1102.

    Google Scholar 

  • Loveday, S.M. and Singh, H. (2008). Recent advances in technologies for vitamin A protection in foods. Trends Food Sci. Tech. 19, 657–668.

    Google Scholar 

  • Lovrien, R. and Anderson, W.F. (1969). Resolution of binding sites in β-lactoglobulin. Arch. Biochem. Biophys. 131, 139–144.

    Google Scholar 

  • Lowe, R., Anema, S.G., Paterson, G.R. and Hill, J.P. (1995). Simultaneous separation of the β-lactoglobulin-A, β-lactoglobulin-B and β-lactoglobulin-C variants using polyacrylamide-gel electrophoresis. Milchwissenschaft 50, 663–666.

    Google Scholar 

  • Lowe, E.K., Anema, S.G., Bienvenue, A., Boland, M.J., Creamer, L.K. and Jimenez-Flores, R. (2004). Heat-induced redistribution of disulfide bonds in milk proteins. 2. Disulfide bonding patterns between bovine β-lactoglobulin and kappa-casein. J. Agric. Food Chem. 52, 7669–7680.

    Google Scholar 

  • Lozano, J.M., Giraldo, G.I. and Romero, C.M. (2008). An improved method for isolation of β-lactoglobulin. Int. Dairy J. 18, 55–63.

    Google Scholar 

  • Lu, R.C., Cao, A.N., Lai, L.H. and Xiao, J.X. (2006). Interactions of β-lactoglobulin with sodium decylsulfonate, decyltriethylammonium bromide, and their mixtures. J. Colloid Interf. Sci. 299, 617–625.

    Google Scholar 

  • Lübke, M., Guichard, E., Tromelin, A. and Le Quere, J.L. (2002). Nuclear magnetic resonance spectroscopic study of β-lactoglobulin interactions with two flavor compounds, γ-decalactone and β-ionone J. Agric. Food Chem. 50, 7094–7099.

    Google Scholar 

  • Lyster, R.L.J. (1972). Reviews of the progress of dairy science. Section C. Chemistry of milk proteins. J. Dairy Res. 39, 279–318.

    Google Scholar 

  • Lyster, R.L.J., Jenness, R., Phillips, N.I. and Sloan, R.E. (1966). Comparative biochemical studies of milks. 3. Immunoelectrophoretic comparisons of milk proteins of Artiodactyla. Comp. Biochem. Physiol. 17, 967–971.

    Google Scholar 

  • MacLeod, A., Fedio, W.M., Chu, L. and Ozimek, L. (1996). Binding of retinoic acid to β-lactoglobulin variant-A and variant- B—effect of peptic and tryptic digestion on the protein ligand complex. Milchwissenschaft 51, 3–7.

    Google Scholar 

  • Magdassi, S., Vinetsky, Y. and Relkin, P. (1996). Formation and structural heat-stability of β-lactoglobulin/surfactant complexes. Colloid Surf. B 6, 353–362.

    Google Scholar 

  • Mailliart, P. and Ribadeau-Dumas, B. (1988). Preparation of β-lactoglobulin and β-lactoglobulin-free proteins from whey retentate by NaCl salting out at low pH. J. Food Sci. 53, 743–745.

    Google Scholar 

  • Manderson, G.A., Hardman, M.J. and Creamer, L.K. (1998). Effect of heat treatment on the conformation and aggregation of β- lactoglobulin A, B and C. J. Agric. Food Chem. 46, 5052–5061.

    Google Scholar 

  • Manderson, G.A., Creamer, L.K. and Hardman, M.J. (1999a). Effect of heat treatment on the circular dichroism spectra of bovine β-lactoglobulin A, B and C. J. Agric. Food Chem. 47, 4557–4567.

    Google Scholar 

  • Manderson, G.A., Hardman, M.J. and Creamer, L.K. (1999b). Effect of heat treatment on bovine β-lactoglobulin A, B and C explored using thiol availability and fluorescence. J. Agric. Food Chem. 47, 3617–3627.

    Google Scholar 

  • Mansouri, A., Haertle, T., Gerard, A., Gerard, H. and Gueant, J.L. (1997). Retinol free and retinol complexed β-lactoglobulin binding sites in bovine germ cells. Biochim. Biophys. Acta—Mol. Cell Res. 1357, 107–114.

    Google Scholar 

  • Marden, M.C., Dufour, E., Christova, P., Huang, Y., Leclerc-Lhostis, E. and Haertlé, T. (1994). Binding of heme-CO to bovine and porcine β-lactoglobulins. Arch. Biochem. Biophys. 311, 258–262.

    Google Scholar 

  • Martins, P.A.T., Gomes, F., Vaz, W.L.C. and Moreno, M. J. (2008). Binding of phospholipids to β-lactoglobulin and their transfer to lipid bilayers. Biochim. Biophys. ActaBiomembranes 1778, 1308–1315.

    Google Scholar 

  • Matsumura, Y., Li, J., Ikeguchi, M. and Kihara, H. (2008). Helix-rich transient and equilibrium intermediates of equine β-lactoglobulin in alkaline buffer. Biophys. Chem. 134, 84–92.

    Google Scholar 

  • Maubois, J.L., Pion, R. and Ribadeau-Dumas, B. (1965). Preparation et etude de la β-lactoglobulin de brebis crystallisée B. Biochim. Biophys. Acta 107, 501–510.

    Google Scholar 

  • McAlpine, A.S. and Sawyer, L. (1990). β-lactoglobulin: a protein drug carrier? Biochem. Soc. Trans. 18, 879.

    Google Scholar 

  • McClenaghan, M., Hitchin, E., Stevenson, E.M., Clark, A.J., Holt, C. and Leaver, J. (1999). Insertion of a casein kinase recognition sequence induces phosphorylation of ovine β-lactoglobulin in transgenic mice. Protein Eng. 12, 259–264.

    Google Scholar 

  • McDougall, E.I. and Stewart, J.C. (1976). Whey proteins of milk of red deer (Cervus elaphus L)—homologue of bovine β-lactoglobulin. Biochem. J. 153, 647–655.

    Google Scholar 

  • McKenzie, H.A. (1967). Milk proteins. Adv. Protein Chem. 22, 56–234.

    Google Scholar 

  • McKenzie, H.A. (1971). β-lactoglobulins, in, Milk Proteins: Chemistry and Molecular Biology, Vol. 2, H.A. McKenzie, ed., Academic, New York. pp. 257–330.

    Google Scholar 

  • McKenzie, H.A. and Sawyer, W.H. (1967). Effect of pH on β-lactoglobulins. Nature 214, 1101–1104.

    Google Scholar 

  • McKenzie, H.A. and Shaw, D.C. (1972). Alternative positions for the sulphydryl group in β-lactoglobulin: the significance for sulphydryl location in other proteins. Nature New Biol. 238, 147–149.

    Google Scholar 

  • McKenzie, H.A., Ralston, G.B. and Shaw, D.C. (1972). Location of sulphydryl and disulphide groups in bovine ß-lactoglobulins and effects of urea. Biochemistry 11, 4539–4547.

    Google Scholar 

  • McKenzie, H.A., Muller, V.J. and Treacy, G.B. (1983). “Whey” proteins of milk of the red (Macropus rufus) and Eastern grey (Macropus giganteus) kangaroo. Comp. Biochem. Physiol. B 74, 259–271.

    Google Scholar 

  • Mendieta, J., Folque, H. and Tauler, R. (1999). Two-phase induction of the nonnative α-helical form of β-lactoglobulin in the presence of trifluoroethanol. Biophys. J. 76, 451–457.

    Google Scholar 

  • Mercadé-Prieto, R., Wilson, D.I. and Paterson, W.R. (2008). Effect of the NaOH concentration and temperature on the dissolution mechanisms of β-lactoglobulin gels in alkali. Int. J. Food Eng. 4(5), Article 9.

    Google Scholar 

  • Mercier, J.C., Gaye, P., Soulier, S., Hue-Delahaie, D. and Vilotte, J.L. (1985). Construction and identification of recombinant plasmids carrying cDNAs coding for ovine αs1-, αs2-, β-, κ-casein and β-lactoglobulin. Nucleotide sequence of αs1-casein cDNA. Biochimie 67, 959–971.

    Google Scholar 

  • Mierzejewska, D. and Kubicka, E. (2006). Effect of temperature on immunoreactive properties of the cow milk whey protein β-lactoglobulin. Milchwissenschaft 61, 69–72.

    Google Scholar 

  • Mills, O.E. and Creamer, L.K. (1975). Conformational changes of bovine β-lactoglobulin at low pH. Biochim. Biophys. Acta 379, 618–626.

    Google Scholar 

  • Miranda, G. and Pelissier, J.-P. (1983). Kinetic studies of in vivo digestion of bovine unheated skim-milk proteins in rat stomach. J. Dairy Res. 50, 27–36.

    Google Scholar 

  • Miranda, G., Mahe, M.F., Leroux, C. and Martin, P. (2004). Proteomic tools to characterize the protein fraction of Equidae milk. Proteomics 4, 2496–2509.

    Google Scholar 

  • Mohammadzadeh, K.A., Feeney, R.E. and Smith, L.M. (1969). Hydrophobic binding of hydrocarbons by proteins. I. Relationship of hydrocarbon structure. Biochim. Biophys. Acta 194, 246–255.

    Google Scholar 

  • Molinari, H., Ragona, L., Varani, L., Musco, G., Consonni, R., Zetta, L. and Monaco, H.L. (1996). Partially folded structure of monomeric bovine β-lactoglobulin. FEBS Lett. 381, 237–243.

    Google Scholar 

  • Monaci, L., Tregoat, V., van Hengel, A.J. and Anklam, E. (2006). Milk allergens, their characteristics and their detection in food: a review. Eur. Food Res. Technol. 223, 149–179.

    Google Scholar 

  • Monaco, H.L., Zanotti, G., Spadon, P., Bolognesi, M., Sawyer, L. and Eliopoulos, E.E. (1987). Crystal-structure of the trigonal form of bovine β-lactoglobulin and of its complex with retinol at 2.5 Å resolution. J. Mol. Biol. 197, 695–706.

    Google Scholar 

  • Moreno, F.J. (2007). Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed. Pharmacother. 61, 50–60.

    Google Scholar 

  • Nakagawa, K., Tokushima, A., Fujiwara, K. and Ikeguchi, M. (2006). Proline scanning mutagenesis reveals non-native fold in the molten globule state of equine β-lactoglobulin. Biochemistry 45, 15468–15473.

    Google Scholar 

  • Nakagawa, K., Yamada, Y., Fujiwara, K. and Ikeguchi, M. (2007). Interactions responsible for secondary structure formation during folding of equine β-lactoglobulin. J. Mol. Biol. 367, 1205–1214.

    Google Scholar 

  • Narayan, M. and Berliner, L.J. (1997). Fatty acids and retinoids bind independently and simultaneously to β-lactoglobulin. Biochemistry 36, 1906–1911.

    Google Scholar 

  • Narayan, M. and Berliner, L.J. (1998). Mapping fatty acid binding to β-lactoglobulin: ligand binding is restricted by modification of Cys 121. Protein Sci. 7, 150–157.

    Google Scholar 

  • Nath, N.C., Hussain, A. and Rahman, F. (1993). Milk characteristics of a captive Indian rhinoceros (Rhinoceros unicornis). J. Zoo Wildlife Med. 24, 528–533.

    Google Scholar 

  • Neurath, A.R., Jiang, S.B., Strick, N., Lin, K., Li, Y.Y. and Debnath, A.K. (1996). Bovine β-lactoglobulin modified by 3-hydroxyphthalic anhydride blocks the CD4 cell-receptor for HIV. Nat. Med. 2, 230–234.

    Google Scholar 

  • Niemi, M., Jylha, S., Laukkanen, M.L., Soderlund, H., Makinen-Kiljunen, S., Kallio, J.M., Hakulinen, N., Haahtela, T., Takkinen, K. and Rouvinen, J. (2007). Molecular interactions between a recombinant IgE antibody and the β-lactoglobulin allergen. Structure 15, 1413–1421.

    Google Scholar 

  • Nieuwenhuizen, W.F., Dekker, H.L., Groneveld, T., de Koster, C.G. and de Jong, G.A.H. (2004). Transglutaminase-mediated modification of glutamine and lysine residues in native bovine β-lactoglobulin. Biotech. Bioeng. 85, 248–258.

    Google Scholar 

  • North, A.C.T. (1989). Three-dimensional arrangement of conserved amino acids in a superfamily of specific ligand-binding proteins. Int. J. Biol. Macromol. 11, 56–58.

    Google Scholar 

  • North, A.C.T. (1991). Structural homology in ligand specific transport proteins. Biochem. Soc. Symp. 57, 35–48.

    Google Scholar 

  • O’Neill, T. and Kinsella, J.E. (1988). Effect of heat-treatment and modification on conformation and flavor binding by β-lactoglobulin. J. Food Sci. 53, 906–909.

    Google Scholar 

  • Ochirkhuyag, B., Chobert, J.M., Dalgalarrondo, M., Choiset, Y. and Haertlé, T. (1998). Characterization of whey proteins from mongolian yak, khainak and bactrian camel. J. Food Biochem. 22, 105–124.

    Google Scholar 

  • Ohtomo, H., Konuma, T., Utsunomiya, H., Tsuge, H. and Ikeguchi, M. (2011). Structure and stability of Gyuba, a β-lactoglobulin chimera. Protein Sci. 20, 1867–1875.

    Google Scholar 

  • Oksanen, E., Jaakola, V.P., Tolonen, T., Valkonen, K., Akerstrom, B., Kalkkinen, N., Virtanen, V. and Goldman, A. (2006). Reindeer β-lactoglobulin crystal structure with pseudo-body-centred noncrystallographic symmetry. Acta Crystallogr. D 62, 1369–1374.

    Google Scholar 

  • Oliveira, K.M.G., Valente-Mesquita, V.L., Botelho, M.M., Sawyer, L., Ferreira, S.T. and Polikarpov, I. (2001). Crystal structures of bovine β-lactoglobulin in the orthorhombic space group C222(1)—structural differences between genetic variants A and B and features of the Tanford transition. Eur. J. Biochem. 268, 477–483.

    Google Scholar 

  • Oliveira, C.L.P., de la Hoz, L., Silva, J.C., Torriani, I.L. and Netto, F.M. (2006). Effects of γ radiation on β-lactoglobulin: oligomerization and aggregation. Biopolymers 85, 284–294; and correction: 87, 93–93.

    Google Scholar 

  • O’Neill, T.E. and Kinsella, J.E. (1987). Binding of alkanone flavors to β-lactoglobulin: effects of conformational and chemical modification. J. Agric. Food Chem. 35, 770–774.

    Google Scholar 

  • Ortlund, E., Parker, C.L., Schreck, S.F., Ginell, S., Minor, W., Sodetz, J.M. and Lebioda, L. (2002). Crystal structure of human complement protein C8γ at 1.2 Å resolution reveals a lipocalin fold and a distinct ligand binding site. Biochemistry 41, 7030–7037.

    Google Scholar 

  • Otte, J.A.H.J., Kristiansen, K.R., Zakora, M. and Qvist, K.B. (1994). Separation of individual whey proteins and measurement of α-lactalbumin and β-lactoglobulin by capillary zone electrophoresis. Neth. Milk Dairy J. 48, 81–97.

    Google Scholar 

  • Ouwehand, A.C., Salminen, S.J., Skurnik, M. and Conway, P.L. (1997). Inhibition of pathogen adhesion by β-lactoglobulin. Int. Dairy J. 7, 685–692.

    Google Scholar 

  • Pace, N.C. and Tanford, C. (1968). Thermodynamics of the unfolding of β-lactoglobulin A in aqueous urea solutions between 5 and 55. Biochemistry 7, 198-208.

    Google Scholar 

  • Palmer, A.H. (1934). The preparation of a crystalline globulin from the albumin fraction of cow’s milk. J. Biol. Chem. 104, 359–372.

    Google Scholar 

  • Palupi, N.S., Franck, P., Guimont, C., Linden, G., Dumas, D., Stoltz, J., Nabet, P., Belleville-Nabet, F. and Dousset, B. (2000). Bovine β-lactoglobulin receptors on transformed mammalian cells (hybridomas MARK-3): characterization by flow cytometry. J. Biotechnol. 78, 171–184.

    Google Scholar 

  • Panick, G., Malessa, R. and Winter, R. (1999). Differences between the pressure- and temperature-induced denaturation and aggregation of β-lactoglobulin A, B and AB monitored by FTIR spectroscopy and small-angle x-ray scattering. Biochemistry 38, 6512–6519.

    Google Scholar 

  • Papiz, M.Z., Sawyer, L., Eliopoulos, E.E., North, A.C.T., Findlay, J.B.C., Sivaprasadarao, R., Jones, T.A., Newcomer, M.E. and Kraulis, P.J. (1986). The structure of β-lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324, 383–385.

    Google Scholar 

  • Passey, R.J. and Mackinlay, A.G. (1995). Characterization of a 2nd, apparently inactive, copy of the bovine β-lactoglobuln gene. Eur. J. Biochem. 233, 736–743.

    Google Scholar 

  • Paterson, G.R., Otter, D.E. and Hill, J.P. (1995). Application of capillary electrophoresis in the identification of phenotypes containing the β-lactoglobulin-C variant. J. Dairy Sci. 78, 2637–2644.

    Google Scholar 

  • Pellegrini, A. (2003). Antimicrobial peptides from food proteins. Curr. Pharm. Design 9, 1225–1238.

    Google Scholar 

  • Pelletier, E., Sostmann, K. and Guichard, E. (1998). Measurement of interactions between β-lactoglobulin and flavor compounds (esters, acids and pyrazines) by affinity and exclusion size chromatography. J. Agric. Food Chem. 46, 1506–1509.

    Google Scholar 

  • Pena, R.N. and Whitelaw, C.B.A. (2005). Duplication of Stat5-binding sites within the β-lactoglobulin promoter compromises transcription in vivo. Biochimie 87, 523–528.

    Google Scholar 

  • Pena, R.N., Sanchez, A., Coll, A. and Folch, J.M. (1999). Isolation, sequencing and relative quantitation by fluorescent-ratio PCR of feline β-lactoglobulin I, II and III cDNAs. Mamm. Genome 10, 560–564.

    Google Scholar 

  • Pérez, M.D. and Calvo, M. (1995). Interaction of β-lactoglobulin with retinol and fatty acids and its role as a possible biological function for this protein: a review. J. Dairy Sci. 78, 978–988.

    Google Scholar 

  • Pérez, M.D., Devillegas, C.D., Sanchez, L., Aranda, P., Ena, J.M. and Calvo, M. (1989). Interaction of fatty-acids with β-lactoglobulin and albumin from ruminant milk. J. Biochem. 106, 1094–1097.

    Google Scholar 

  • Pérez, M.D., Sanchez, L., Aranda, P., Ena, J.M., Oria, R. and Calvo, M. (1992). Effect of β-lactoglobulin on the activity of pregastric lipase—a possible role for this protein in ruminant milk. Biochim. Biophys. Acta 1123, 151–155.

    Google Scholar 

  • Pérez, M.D., Puyol, P., Ena, J.M. and Calvo, M. (1993). Comparison of the ability to bind lipids of β-lactoglobulin and serum-albumin of milk from ruminant and non-ruminant species. J. Dairy Res. 60, 55–63.

    Google Scholar 

  • Perez-Miller, S., Zou, Q., Novotny, M.V. and Hurley, T.D. (2010). High resolution X-ray structures of mouse major urinary protein nasal isoform in complex with pheromones. Protein Sci. 19, 1469–1479.

    Google Scholar 

  • Pervaiz, S. and Brew, K. (1985). Homology of β-lactoglobulin, serum retinol-binding protein and protein HC. Science 228, 335–337.

    Google Scholar 

  • Pervaiz, S. and Brew, K. (1986). Purification and characterization of the major whey proteins from the milks of the bottlenose dolphin (Tursiops truncatus), the Florida manatee (Trichechus manatus latirostris) and the beagle (Canis familiaris). Arch. Biochem. Biophys. 246, 846–854.

    Google Scholar 

  • Pervaiz, S. and Brew, K. (1987). Homology and structure-function correlations between α(1)-acid glycoprotein and serum retinol-binding protein and its relatives. FASEB J. 1, 209–214.

    Google Scholar 

  • Pessen, H., Purcell, J.M. and Farrell, H.M. Jr. (1985). Proton relaxation rates of water in dilute solutions of β-lactoglobulin: determination of cross relaxation and correlation with structural changes by the use of two genetic variants of a self-associating globular protein. Biochim. Biophys. Acta 828, 1–12.

    Google Scholar 

  • Phelan, P. and Malthouse, J.P.G. (1994). C-13 NMR of the cyanylated β-lactoglobulins—evidence that Cys-121 provides the thiol group of β-lactoglobulins A and B. Biochem. J. 302, 511–516.

    Google Scholar 

  • Phillips, N.I., Jenness, R. and Kalan, E.B. (1968). Immunochemical comparison of β-lactoglobulins. J. Immunol. 100, 307–313.

    Google Scholar 

  • Piazza, R., Iacopini, S. and Galliano, M. (2002). BLGA protein solutions at high ionic strength: vanishing attractive interactions and “frustrated” aggregation. Europhys. Lett. 59, 149–154.

    Google Scholar 

  • Piez, K.A., Davie, E.W., Folk, J.E. and Gladner, J.A. (1961). β-Lactoglobulins A and B. J. Biol. Chem. 236, 2912–2916.

    Google Scholar 

  • Piotte, C.P., Hunter, A.K., Marshall, C.J. and Grigor, M.R. (1998). Phylogenetic analysis of three lipocalin-like proteins present in the milk of Trichosurus vulpecula (Phalangeridae, Marsupialia). J. Mol. Evol. 46, 361–369.

    Google Scholar 

  • Polis, P.D., Schmuckler, H.W., Custer, J.H. and McMeekin, T.L. (1950). Isolation of an electrophoretically homogenous crystalline component of β-lactoglobulin. J. Am. Chem. Soc. 72, 4965–4968.

    Google Scholar 

  • Ponniah, K., Loo, T.S., Edwards, P.J.B., Pascal, S.M., Jameson, G.B. and Norris, G.E. (2010). The production of soluble and correctly folded recombinant bovine β-lactoglobulin variants A and B in Escherichia coli for NMR studies. Protein Expr. Purif. 70, 283–289.

    Google Scholar 

  • Préaux, G. and Lontie, R. (1972). Revised number of the free cysteine residues and of the disulphide bridges in the sequence of β-lactoglobulins A and B. Arch. Int. Physiol. Biochim. 80, 980–981.

    Google Scholar 

  • Préaux, G., Braunitzer, G., Schrank, B. and Stangl, A. (1979). The amino acid sequence of goat β-lactoglobulin. Hoppe Seyler’s Z. Physiol. Chem. 360, 1595–1604.

    Google Scholar 

  • Presnell, B., Conti, A., Erhardt, G., Krause, I. and Godovac-Zimmermann, J. (1990). A rapid microbore HPLC method for determination of primary structure of β-lactoglobulin genetic variants. J. Biochem. Biophys. Meth. 20, 325–333.

    Google Scholar 

  • Prinzenberg, E.M. and Erhardt, G. (1999). Molecular genetic characterization of ovine β-lactoglobulin C allele and detection by PCR-rflp. J. Anim. Breed. Genet. 116, 9–14.

    Google Scholar 

  • Purcell, J.M. and Susi, H. (1984). Solvent denaturation of proteins as observed by resolution-enhanced Fourier transform infrared spectroscopy. J. Biochem. Biophys. Meth. 9, 193–199.

    Google Scholar 

  • Puyol, P., Pérez, M.D., Ena, J.M. and Calvo, M. (1991). Interaction of bovine β-lactoglobulin and other bovine and human whey proteins with retinol and fatty-acids. Agric. Biol. Chem. 55, 2515–2520.

    Google Scholar 

  • Puyol, P., Pérez, M.D., Sanchez, L., Ena, J.M. and Calvo, M. (1995). Uptake and passage of β-lactoglobulin, palmitic acid and retinol across the Caco-2 monolayer. Biochim. Biophys. Acta 1236, 149–154.

    Google Scholar 

  • PyMOL. (2008). The PyMOL Molecular Graphics System, Version 1.1r1, Schrödinger, LLC.

    Google Scholar 

  • Qi, X.L., Brownlow, S., Holt, C. and Sellers, P. (1995). Thermal-denaturation of β-lactoglobulin—effect of protein-concentration at pH 6.75 and pH 8.05. Biochim. Biophys. Acta 1248, 43–49.

    Google Scholar 

  • Qi, X.L., Holt, C., McNulty, D., Clarke, D.T., Brownlow, S. and Jones, G.R. (1997). Effect of temperature on the secondary structure of β-lactoglobulin at pH 6.7, as determined by CD and IR spectroscopy: a test of the molten globule hypothesis. Biochem. J. 324, 341–346.

    Google Scholar 

  • Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, H.M., Baker, E.N. and Jameson, G.B. (1998a). Structural basis of the Tanford transition of bovine β-lactoglobulin. Biochemistry 37, 14014–14023.

    Google Scholar 

  • Qin, B.Y., Creamer, L.K., Baker, E.N. and Jameson, G.B. (1998b). 12-Bromododecanoic acid binds inside the calyx of bovine β-lactoglobulin. FEBS Lett. 438, 272–278.

    Google Scholar 

  • Qin, B.Y., Bewley, M.C., Creamer, L.K., Baker, E.N. and Jameson, G.B. (1999). Functional implications of structural differences between variants A and B of bovine β-lactoglobulin. Protein Sci. 8, 75–83.

    Google Scholar 

  • Qvist, J., Davidovic, M., Hamelberg, D. and Halle, B. (2008). A dry ligand-binding cavity in a solvated protein. Proc. Natl. Acad. Sci. U S A 105, 6296–6301.

    Google Scholar 

  • Rachagani, S., Gupta, I.D., Gupta, N. and Gupta, S.C. (2006). Genotyping of β-lactoglobulin gene by PCR-RFLP in Sahiwal and Tharparkar cattle breeds. BMC Genetics 7, 31.

    Google Scholar 

  • Ragona, L., Pusterla, F., Zetta, L., Monaco, H.L. and Molinari, H. (1997). Identification of a conserved hydrophobic cluster in partially folded bovine β-lactoglobulin at pH 2. Fold. Des. 2, 281–290.

    Google Scholar 

  • Ragona, L., Fogolari, F., Romagnoli, S., Zetta, L., Maubois, J.L. and Molinari, H. (1999). Unfolding and refolding of bovine β-lactoglobulin monitored by hydrogen exchange measurements. J. Mol. Biol. 293, 953–969.

    Google Scholar 

  • Ragona, L., Fogolari, F., Zetta, L., Perez, D.M., Puyol, P., De Kruif, K., Lohr, F., Ruterjans, H. and Molinari, H. (2000). Bovine β-lactoglobulin: interaction studies with palmitic acid. Protein Sci. 9, 1347–1356.

    Google Scholar 

  • Ragona, L., Fogolari, F., Catalano, M., Ugolini, R., Zetta, L. and Molinari, H. (2003). EF loop conformational change triggers ligand binding in β-lactoglobulins. J. Biol. Chem. 278, 38840–38846.

    Google Scholar 

  • Ray, A. and Chatterjee, R. (1967). Interactions of β-lactoglobulins with large organic ions, in, Conformation of Biopolymers, Vol. 1. G.N. Ramachandran, ed., Academic, London. pp. 235–252.

    Google Scholar 

  • Reichenstein, M., German, T. and Barash, I. (2005). BLG-e1—a novel regulatory element in the distal region of the β-lactoglobulin gene promoter. FEBS Lett. 579, 2097–2104.

    Google Scholar 

  • Reiners, J., Nicklaus, S. and Guichard, E. (2000). Interactions between β-lactoglobulin and flavour compounds of different chemical classes. Impact of the protein on the odour perception of vanillin and eugenol. Lait 80, 347–360.

    Google Scholar 

  • Relkin, P. (1996). Thermal unfolding of β-lactoglobulin, α-lactalbumin and bovine serum-albumin—a thermodynamic approach. Crit. Rev. Food Sci. Nutr. 36, 565–601.

    Google Scholar 

  • Relkin, P. and Vermersh, J. (2001). Binding properties of vanillin to whey proteins: effect on protein conformational stability and foaming properties, in, Food Colloids—Fundamentals of Formulation, E. Dickinson and R. Miller, eds., Royal Society of Chemistry Special Publications, London. pp. 282–292.

    Google Scholar 

  • Renard, D., Lefebvre, J., Griffin, M.C.A. and Griffin, W.G. (1998). Effects of pH and salt environment on the association of β-lactoglobulin revealed by intrinsic fluorescence studies. Int. J. Biol. Macromol. 22, 41–49.

    Google Scholar 

  • Restani, P., Gaiaschi, A., Plebani, A., Beretta, B., Cavagni, G., Fiocchi, A., Poiesi, C., Velona, T., Ugazio, A.G. and Galli, C.L. (1999). Cross-reactivity between milk proteins from different animal species. Clin. Exp. Allergy 29, 997–1004.

    Google Scholar 

  • Richards, F.M. (1991). The protein folding problem. Sci. Am. 264, 54–62.

    Google Scholar 

  • Riihimaki, L., Galkinab, A., Finel, M., Heikura, J., Valkonen, K., Virtanen, V., Laaksonen, R., Slotte, J.P. and Vuorela, P. (2008). Transport properties of bovine and reindeer β-lactoglobulin in the Caco-2 cell model. Int. J. Pharm. 347, 1–8.

    Google Scholar 

  • Robillard, K.A. and Wishnia, A. (1972). Aromatic hydrophobes and β-lactoglobulin A. Kinetics of binding by nuclear magnetic resonance. Biochemistry 11, 3841–3845.

    Google Scholar 

  • Rocha, T.L., Paterson, G., Crimmins, K., Boyd, A., Sawyer, L. and Fothergill-Gilmore, L.A. (1996). Expression and secretion of recombinant ovine β-lactoglobulin in Saccharomyces cerevisiae and Kluyveromyces lactis. Biochem. J. 313, 927–932.

    Google Scholar 

  • Roels, H., Preaux, G. and Lontie, R. (1966). Stabilization of β-lactoglobulin A and B at pH 8.9 by blocking the thiol groups. Arch. Int. Biochem. 74, 522–523.

    Google Scholar 

  • Rosen, J.M., Wyszomierski, S.L. and Hadsell, D. (1999). Regulation of milk protein gene expression. Ann. Rev. Nutr. 19, 407–436.

    Google Scholar 

  • Roufik, S., Gauthier, S.F., Leng, X.J. and Turgeon, S.L. (2006). Thermodynamics of binding interactions between bovine β-lactoglobulin A and the antihypertensive peptide β-Lg f142-148. Biomacromolecules 7, 419–426.

    Google Scholar 

  • Rouvinen, J., Rautiainen, J., Virtanen, T., Zeiler, T., Kauppinen, J., Taivainen, A. and Mantyjarvi, R. (1999). Probing the molecular basis of allergy—three-dimensional structure of the bovine lipocalin allergen Bos-d2. J. Biol. Chem. 274, 2337–2343.

    Google Scholar 

  • Said, H.M., Ong, D.E. and Shingleton, J.L. (1989). Intestinal uptake of retinol: enhancement by bovine milk β-lactoglobulin. Am. J. Clin. Nutr. 49, 690–694.

    Google Scholar 

  • Sakai, K., Sakurai, K., Sakai, M., Hoshino, M. and Goto, Y. (2000). Conformation and stability of thiol-modified bovine β-lactoglobulin. Prot. Sci. 9, 1719–1729.

    Google Scholar 

  • Sakurai, K. and Goto, Y. (2002). Manipulating monomer-dimer equilibrium of bovine β-lactoglobulin by amino acid substitution. J. Biol. Chem. 277, 25735–25740.

    Google Scholar 

  • Sakurai, K. and Goto, Y. (2006). Dynamics and mechanism of the Tanford transition of bovine β-lactoglobulin studied using heteronuclear NMR spectroscopy. J. Mol. Biol. 356, 483–496.

    Google Scholar 

  • Sakurai, K. and Goto, Y.J. (2007). Principal component analysis of the pH-dependent conformational transitions of bovine β-lactoglobulin monitored by heteronuclear NMR. Proc. Natl. Acad. Sci. U S A 104, 15346–15351.

    Google Scholar 

  • Sakurai, K., Oobatake, M. and Goto, Y. (2001). Salt-dependent monomer-dimer equilibrium of bovine β-lactoglobulin at pH 3. Prot. Sci. 10, 2325–2335.

    Google Scholar 

  • Sakurai, K., Konuma, T., Yagi, M. and Goto, Y. (2009). Structural dynamics and folding of β-lactoglobulin probed by heteronuclear NMR. Biochim. Biophys. Acta—Gen. Subjects 1790, 527–537.

    Google Scholar 

  • Salier, J.P. (2000). Chromosomal location, exon/intron organization and evolution of lipocalin genes. Biochim. Biophys. Acta—Protein Struct. Mol. Enz. 1482, 25–34.

    Google Scholar 

  • Sanchez, D., Ganfornina, M.D., Gutierrez, G., Gauthier-Juneau, A.-C., Risler, J.-L. and Salier, J.-P. (2006). Lipocalin genes and their evolutionary history, in, Lipocalins, B. Åkerström, N. Borregaard, D.R. Flower and J.-P. Salier, eds., Landes Bioscience, Georgetown. pp. 5–16.

    Google Scholar 

  • Saufi, S.A. and Fee, C.J. (2009). Fractionation of β-lactoglobulin from whey by mixed matrix membrane ion exchange chromatography. Biotech. Bioeng. 103, 138–147.

    Google Scholar 

  • Sawyer, W.H. (1969). Complex between β-lactoglobulin and κ-casein. A review. J. Dairy Sci. 52, 1347–1355.

    Google Scholar 

  • Sawyer, L. (1987). One fold among many. Nature 327, 659.

    Google Scholar 

  • Sawyer, L. (2003). β-Lactoglobulin, in, Advanced Dairy Chemistry—I Part A, 3rd edn., P.F. Fox and P.L.H. McSweeney, eds., Kluwer Academic/Plenum, New York. pp. 319–386.

    Google Scholar 

  • Sawyer, L. and Green, D.W. (1979). The reaction of cow β-lactoglobulin with tetracyanoaurate(III). Biochim. Biophys. Acta 579, 234–239.

    Google Scholar 

  • Sawyer, L. and Holt, C. (1993). Secondary structure of milk proteins in relation to their biological function. J. Dairy Sci. 76, 3062–3078.

    Google Scholar 

  • Sawyer, L. and James, M.N.G. (1982). Carboxyl-carboxylate interactions in proteins. Nature 295, 79–80.

    Google Scholar 

  • Sawyer, L. and Kontopidis, G. (2000). The core lipocalin, bovine β-lactoglobulin. Biochim.Biophys. Acta 1482, 136–148.

    Google Scholar 

  • Schiefner, A., Chatwell, L., Breustedt, D.A. and Skerra, A. (2010). Structural and biochemical analyses reveal a monomeric state of the bacterial lipocalin Blc. Acta Crystallogr. D 66, 1308–1315.

    Google Scholar 

  • Schlee, P., Krause, I. and Rottmann, O. (1993). Genotyping of ovine β-lactoglobulin alleles A and B using the polymerase chain-reaction. Arch. Tierzucht. 36, 519–523.

    Google Scholar 

  • Schonfeld, D.L., Ravelli, R.B.G., Mueller, U. and Skerra, A. (2008). The 1.8Å crystal structure of α(1)-acid glycoprotein (orosomucoid) solved by UV RIP reveals the broad drug-binding activity of this human plasma lipocalin. J. Mol. Biol. 384, 393–405.

    Google Scholar 

  • Schopen, G.C.B., Koks, P.D., van Arendonk, J.A.M., Bovenhuis, H. and Visker, M.H.P.W. (2009). Whole genome scan to detect quantitative trait loci for bovine milk protein composition. Anim. Genet. 40, 524–537.

    Google Scholar 

  • Senti, F.R. and Warner, R.C. (1948). X-Ray molecular weight of β-lactoglobulin. J. Am. Chem. Soc. 70, 3318–3320.

    Google Scholar 

  • Seppala, M., Koistinen, H., Koistinen, R., Hautala, L., Chiu, P.C. and Yeung, W.S. (2009). Glycodelin in reproductive endocrinology and hormone-related cancer. Eur. J. Endocrinol. 160, 121–133.

    Google Scholar 

  • Sharma, R., Lorenzen, P.C. and Qvist, K.B. (2001). Influence of transglutaminase treatment of skim milk on the formation of ε-(γ-glutamyl)-lysine and the susceptibility of individual proteins towards crosslinking. Int. Dairy J. 11, 785–793.

    Google Scholar 

  • Shimoyamada, M., Yoshimura, H., Tomida, K. and Watanabe, K. (1996). Stabilities of bovine β-lactoglobulin/retinol or retinoic acid complexes against tryptic hydrolysis, heating and light-induced oxidation. LWT—Food Sci. Technol. 29, 763–766.

    Google Scholar 

  • Shortle, D., Stites, W.E. and Meeker, A.K. (1990). Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry 29, 8033–8041.

    Google Scholar 

  • Simons, J.P., McClenaghan, M. and Clark, A.J. (1987). Alteration of the quality of milk by expression of sheep β-lactoglobulin in transgenic mice. Nature 328, 530–532.

    Google Scholar 

  • Simpson, K.J. and Nicholas, K.R. (2002). The comparative biology of whey proteins. J. Mammary Gland Biol. 7, 313–326.

    Google Scholar 

  • Simpson, K.J., Bird, P., Shaw, D. and Nicholas, K.R. (1998). Molecular characterisation and hormone-dependent expression of the porcine whey acidic protein gene. J. Mol. Endocrinol. 20, 27–35.

    Google Scholar 

  • Sitohy, M., Billaudel, S., Haertle, T. and Chobert, J.-M. (2007). Antiviral activity of esterified α-lactalbumin and β-lactoglobulin against herpes simplex virus type 1. Comparison with the effect of acyclovir and L-polylysines. J. Agric. Food Chem. 55, 10214–10220.

    Google Scholar 

  • Sitohy, M., Scanu, M., Besse, B., Mollat, C., Billaudel, S., Haertle, T. and Chobert, J.-M. (2010). Influenza virus A subtype H1N1 is inhibited by methylated β-lactoglobulin. J. Dairy Res. 77, 411–418.

    Google Scholar 

  • Skerra, A. (2008). Alternative binding proteins: anticalins—harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J. 275, 2677–2683.

    Google Scholar 

  • Sostmann, K., and Guichard, E. (1998). Immobilized β-lactoglobulin on a HPLC-column: a rapid way to determine protein-flavour interactions. Food Chem. 62, 509–513.

    Google Scholar 

  • Spector, A.A. and Fletcher, J.E. (1970). Binding of long chain fatty acids to β-lactoglobulin. Lipids 5, 403-411.

    Google Scholar 

  • Sperber, B.L.H.M., Stuart, M.A.C., Schols, H., Voragen, A.G.J. and Norde, W. (2009). Binding of β-lactoglobulin to pectins varying in their overall and local charge density Biomacromolecules 10, 3246–3252.

    Google Scholar 

  • Stirpe, A., Rizzuti, B., Pantusa, M., Bartucci, R., Sportelli, L. and Guzzi, R. (2008). Thermally induced denaturation and aggregation of BLG-A: effect of the Cu2+ and Zn2+ metal ions. Eur. Biophys. J. Biophys. 37, 1351–1360.

    Google Scholar 

  • Strange, E.D., Malin, E.L. and Vanhekken, D.L. (1992). Chromatographic and electrophoretic methods used for analysis of milk-proteins. J. Chromatogr. 624, 81–102.

    Google Scholar 

  • Subramaniam, V., Steel, D.G. and Gafni, A. (1996). In vitro renaturation of bovine β-lactoglobulin A leads to a biologically active but incompletely refolded state. Prot. Sci. 5, 2089–2094.

    Google Scholar 

  • Suutari, T.J., Valkonen, K.H., Karttunen, T.J., Ehn, B.-M., Ekstrand, B., Bengtsson, U., Virtanen, V., Nieminen, M. and Kokkonen, J. (2006). IgE cross reactivity between reindeer and bovine milk β-lactoglobulins in cow’s milk allergic patients. J. Invest. Allergy Clin. 16, 296–302.

    Google Scholar 

  • Svedberg, T. and Pedersen, K.O. (1940). The Ultracentrifuge. Oxford University Press, London.

    Google Scholar 

  • Swaisgood, H.E. (1982). Chemistry of milk proteins, in, Developments in Dairy Chemistry—I, P.F. Fox, ed., Applied Science Publishers, London. pp. 1–59.

    Google Scholar 

  • Szepfalusi, Z., Loibichler, C., Pichler, J., Reisenberger, K., Ebner, C. and Urbanek, R. (2000). Direct evidence for transplacental allergen transfer. Pediatric Res. 48, 404–407.

    Google Scholar 

  • Taheri-Kafrani, A., Gaudin, J.C., Rabesona, H., Nioi, C., Agarwal, D., Drouet, M., Chobert, J.-M., Bordbar, A.-K. and Haertlé, T. (2009). Effects of heating and glycation of β-lactoglobulin on its recognition by IgE of sera from cow milk allergy patients. J. Agric. Food Chem. 57, 4974–4982.

    Google Scholar 

  • Takahashi, T., Yamauchi, K. and Kaminogawa, S. (1990). Comparison between the antigenicity of native and unfolded β-lactoglobulin. Agric. Biol. Chem. 54, 691–697.

    Google Scholar 

  • Tanford, C. (1961). Physical Chemistry of Macromolecules. Wiley, New York. p. 394.

    Google Scholar 

  • Tanford, C. and De, P.K. (1961). The unfolding of β-lactoglobulin at pH 3 by urea, formamide and other organic substances. J. Biol. Chem. 236, 1711–1715.

    Google Scholar 

  • Tanford, C. and Taggart, V.G. (1961). Ionization-linked changes in protein conformation. II. The N-R transition in β-lactoglobulin. J. Am. Chem. Soc. 83, 1634–1638.

    Google Scholar 

  • Tanford, C., Bunville, L.G. and Nozaki, Y. (1959). The reversible transformation of β-lactoglobulin at pH 7.5. J. Am. Chem. Soc. 81, 4032–4036.

    Google Scholar 

  • Tatsumi, Y., Sasahara, Y., Kohyama, N., Ayano, Satomi., Endo, M., Yoshida, T., Yamada, K., Totsuka, M. and Hattori, M. (2012). Introducing site-specific glycosylation using protein engineering techniques reduces the immunogenicity of beta-lactoglobulin. Biosci. Biotechnol. Biochem. 76, 478–485.

    Google Scholar 

  • Taulier, N. and Chalikian, T.V. (2001). Characterization of pH-induced transitions of β-lactoglobulin: ultrasonic, densimetric, and spectroscopic studies. J. Mol. Biol. 314, 873–889.

    Google Scholar 

  • Teahan, C.G., McKenzie, H.A. and Griffiths, M. (1991). Some monotreme milk whey and blood proteins. Comp. Biochem. Physiol. B 99, 99–118.

    Google Scholar 

  • Tegoni, M., Ramoni, R., Bignetti, E., Spinelli, S. and Cambillau, C. (1996). Domain swapping creates a third putative combining site in bovine odorant binding protein dimer. Nat. Struct. Biol. 3, 863–867.

    Google Scholar 

  • Thalmann, C.R.and Lotzbeyer, T. (2002). Enzymatic cross-linking of proteins with tyrosinase. Eur. Food Res. Technol. 214, 276–281.

    Google Scholar 

  • The Uniprot Consortium. (2008). The Universal Protein Resource (UniProt). Nucleic Acids Res. 36(Suppl 1), D190–D195.

    Google Scholar 

  • Thompson, M.P. and Farrell, H.M. Jr. (1974). Genetic variants of milk proteins, in, Lactation: A Comprehensive Treatise, Vol. III, B.L. Larson and V.R. Smith, eds., Academic, New York. pp. 109–134.

    Google Scholar 

  • Thompson, A., Boland, M. and Singh, H. (2009). Milk Proteins—From Expression to Food. Elsevier, Amsterdam.

    Google Scholar 

  • Thresher, W. and Hill, J.P. (1997). Thermodynamic characterisation of β-lactoglobulin A, B and C subunit interactions using analytical affinity chromatography, in, Milk Protein Polymorphism, J.P. Hill and M. Boland, eds., International Dairy Federation, Brussels. pp. 189–193.

    Google Scholar 

  • Tian, F., Johnson, K., Lesar, A.E., Moseley, H., Ferguson, J., Samuel, I.D.W., Mazzini, A. and Brancaleon, L. (2006). The pH-dependent conformational transition of β-lactoglobulin modulates the binding of protoporphyrin IX. Biochim. Biophys. Acta—Gen. Subjects 1760, 38–46.

    Google Scholar 

  • Tilley, J.M.A. (1960). The chemical and physical properties of bovine β-lactoglobulin. Dairy Science Abstr. 22, 111–125.

    Google Scholar 

  • Timasheff, S.N. and Townend, R. (1961). Molecular interactions in β-lactoglobulin. V. The association of the genetic species of β-lactoglobulin below the isoelectric point. J. Am. Chem. Soc. 83, 464–469.

    Google Scholar 

  • Timasheff, S.N. and Townend, R. (1964). Structure of the β-lactoglobulin tetramer. Nature 203, 517–519.

    Google Scholar 

  • Timasheff, S.N., Mescanti, L., Basch, J.J. and Townend, R. (1966a). Conformational transitions of bovine β-lactoglobulins A, B and C. J. Biol. Chem. 241, 2496–2501.

    Google Scholar 

  • Timasheff, S.N., Townend, R. and Mescanti, L. (1966b). The optical rotatory dispersion of β-lactoglobulins. J. Biol. Chem. 241, 1863–1870.

    Google Scholar 

  • Tolkach, A. and Kulozik, U. (2007). Reaction kinetic pathway of reversible and irreversible thermal denaturation of β-lactoglobulin. Lait 87, 301–315.

    Google Scholar 

  • Townend, R. and Timasheff, S.N. (1960). Molecular interactions in β-lactoglobulin III. Light scattering investigation of the stoichiometry of the association between pH 3.7 and 5.2. J. Am. Chem. Soc. 82, 3168–3174.

    Google Scholar 

  • Townend, R., Weinberger, L. and Timasheff, S.N. (1960a). Molecular interactions in β-lactoglobulin. IV. The dissociation of β-lactoglobulin below pH 3.5. J. Am. Chem. Soc. 82, 3175–3179.

    Google Scholar 

  • Townend, R., Winterbottom, R.J. and Timasheff, S.N. (1960b). Molecular interactions in β-lactoglobulin. II. Ultracentrifugal and electrophoretic studies of the association of β-lactoglobulin below its isoelectric point. J. Am. Chem. Soc. 82, 3161–3168.

    Google Scholar 

  • Townend, R., Herskovits, T.T., Swaisgood, H.E. and Timasheff, S.N. (1964). Solution properties of β-lactoglobulin C. J. Biol. Chem. 239, 4196–4201.

    Google Scholar 

  • Townend, R., Kumosinski, T.F. and Timasheff, S.N. (1967). The circular dichroism of variants of β-lactoglobulin. J. Biol. Chem. 242, 4538–4545.

    Google Scholar 

  • Townend, R., Herskovits, T.T., Timasheff, S.N. and Gorbunoff, M.J. (1969). The state of amino acid residues in β-lactoglobulin. Arch. Biochem. Biophys. 129, 567–580.

    Google Scholar 

  • Treece, J.M., Sheinson, R.S. and McMeekin, T.L. (1964). The solubilities of β-lactoglobulins A, B and AB. Arch. Biochem. Biophys. 108, 99–108.

    Google Scholar 

  • Tromelin, A. and Guichard, E. (2006). Interaction between flavour compounds and β-lactoglobulin: approach by NMR and 2D/3D-QSAR studies of ligands. Flavour Frag. J. 21, 13–24.

    Google Scholar 

  • Ugolini, R., Ragona, L., Silletti, E., Fogolari, F., Visschers, R.W., Alting, A.C. and Molinari, H. (2001). Dimerization, stability and electrostatic properties of porcine β-lactoglobulin. Eur. J. Biochem. 268, 4477–4488.

    Google Scholar 

  • Uhrinova, S., Smith, M.H., Jameson, G.B., Uhrin, D., Sawyer, L. and Barlow, P.N. (2000). Structural changes accompanying pH-induced dissociation of the β-lactoglobulin dimer. Biochemistry 39, 3565–3574.

    Google Scholar 

  • Uniacke-Lowe, T., Huppertz, T. and Fox, P.F. (2010). Equine milk proteins: chemistry, structure and nutritional significance. Int. Dairy J. 20, 609–629.

    Google Scholar 

  • Veledo, M.T., de Frutos, M. and Diez-Masa, J.C. (2005). Analysis of trace amounts of bovine beta-lactoglobulin in infant formulas by capillary electrophoresis with on-capillary derivatization and laser-induced fluorescence detection. J. Sep. Sci. 28, 941–947.

    Google Scholar 

  • Verheul, M., Pedersen, J.S., Roefs, S.P.F.M. and deKruif, K.G. (1999). Association behaviour of native β-lactoglobulin. Biopolymers 49, 11–20.

    Google Scholar 

  • Vijayalakshmi, L., Krishna, R., Sankaranarayanan, R. and Vijayan, M. (2008). An asymmetric dimer of β-lactoglobulin in a low humidity crystal form—structural changes that accompany partial dehydration and protein action. Proteins 71, 241–249.

    Google Scholar 

  • Vincent, F., Lobel, D., Brown, K., Spinelli, S., Grote, P., Breer, H., Cambillau, C. and Tegoni, M. (2001). Crystal structure of aphrodisin, a sex pheromone from female hamster. J. Mol. Biol. 305, 459–469.

    Google Scholar 

  • Voet, D. and Voet, J.G. (2004). Biochemistry, 3rd edn. Wiley, New York. p. 132.

    Google Scholar 

  • Vopel, S., Muhlbach, H. and Skerra, A. (2005). Rational engineering of a fluorescein-binding anticalin for improved ligand affinity. Biol. Chem. 386, 1097–1104.

    Google Scholar 

  • Vyas, H.K., Izco, J.M. and Jimenez-Flores, R. (2002). Scale-up of native β-lactoglobulin affinity separation process. J. Dairy Sci. 85, 1639–1645.

    Google Scholar 

  • Waissbluth, M.D. and Grieger, R.A. (1973). Activation volumes of fast protein reactions: the binding of bromophenol blue to β-lactoglobulin. Arch. Biochem. Biophys. 159, 639–645.

    Google Scholar 

  • Wang, Q.W., Allen, J.C. and Swaisgood, H.E. (1997). Binding of vitamin D and cholesterol to β-lactoglobulin. J. Dairy Sci. 80, 1054–1059.

    Google Scholar 

  • Wang, Q.W., Allen, J.C. and Swaisgood, H.E. (1998). Protein concentration dependence of palmitate binding to β-lactoglobulin. J. Dairy Sci. 81, 76–81.

    Google Scholar 

  • Waninge, R., Paulsson, M., Nylander, T., Ninham, B. and Sellers, P. (1998). Binding of sodium dodecyl sulphate and dodecyl trimethyl ammonium chloride to β-lactoglobulin: a calorimetric study. Int. Dairy J. 8, 141–148.

    Google Scholar 

  • Warren, W.C., Hillier, L.W., Graves, J.A.M., et al. and Wilson, R.K. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183.

    Google Scholar 

  • Watson, R.P., Demmer, J., Baker, E.N. and Arcus, V.L. (2007). Three-dimensional structure and ligand binding properties of trichosurin, a metatherian lipocalin from the milk whey of the common brushtail possum Trichosurus vulpecula. Biochem. J. 408, 29–38.

    Google Scholar 

  • Weichsel, A., Andersen, J.F., Champagne, D.E., Walker, F.A. and Montfort, W.R. (1998). Crystal structures of a nitric oxide transport protein from a blood-sucking insect. Nat. Struct. Biol. 5, 304–309.

    Google Scholar 

  • Whitelaw, B. (1999). Towards designer milk. Nat. Biotech. 17, 135–136.

    Google Scholar 

  • Whitelaw, C.B.A., Harris, S., McClenaghan, M., Simons, J.P. and Clark, A.J. (1992). Position-independent expression of the ovine β-lactoglobulin gene in transgenic mice. Biochem. J. 286, 31–39.

    Google Scholar 

  • Williams, S.C., Badley, R.A., Davis, P.J., Puijk, W.C. and Meloen, R.H. (1998). Identification of epitopes within β-lactoglobulin recognised by polyclonal antibodies using phage display and pepscan. J. Immunol. Methods 213, 1–17.

    Google Scholar 

  • Willis, I.M., Stewart, A.F., Caputo, A., Thompson, A.R. and Mackinlay, A.G. (1982). Construction and identification by partial nucleotide sequence analysis of bovine casein and β-lactoglobulin cDNA clones. DNA 1, 375–386.

    Google Scholar 

  • Wishnia, A. and Pinder, T.W., Jr. (1966). Hydrophobic interactions in proteins. The alkane binding site of β-lactoglobulins A and B. Biochemistry 5, 1534–1542.

    Google Scholar 

  • Witz, J., Timasheff, S.N. and Luzzati, V. (1964). Molecular interaction in β-lactoglobulin. VIII. Small-angle X-ray scattering investigation of the geometry of β-lactoglobulin A tetramerisation. J. Am. Chem. Soc. 86, 168–173.

    Google Scholar 

  • Woodlee, G.L., Gooley, A.A., Collet, C. and Cooper, D.W. (1993). Origin of late lactation protein from β-lactoglobulin in the tammar wallaby. J. Heredity 84, 460–465.

    Google Scholar 

  • Wu, S.Y., Perez, M.D., Puyol, P. and Sawyer, L. (1999). β-Lactoglobulin binds palmitate within its central cavity. J. Biol. Chem. 274, 170–174.

    Google Scholar 

  • Yagi, M., Sakurai, K., Kalidas, C., Batt, C.A. and Goto, Y. (2003). Reversible unfolding of bovine β-lactoglobulin mutants without a free thiol group. J. Biol. Chem. 278, 47009–47015.

    Google Scholar 

  • Yamada, Y., Yajima, T., Fujiwara, K., Arai, M., Ito, K., Shimizu, A., Kihara, H., Kuwajima, K., Amemiya, Y. and Ikeguchi, M. (2005). Helical and expanded conformation of equine β-lactoglobulin in the cold-denatured state. J. Mol. Biol. 350, 338–348.

    Google Scholar 

  • Yamada, Y., Nakagawa, K., Yajima, T., Saito, K., Tokushima, A., Fujiwara, K. and Ikeguchi, M. (2006). Structural and thermodynamic consequences of removal of a conserved disulfide bond from equine β-lactoglobulin. Proteins 63, 595–602.

    Google Scholar 

  • Yang, M.C., Guan, H.H., Liu, M.Y., Lin, Y.-H., Yang, J.-M., Chen, W.-L., Chen, C.-J. and Mao, S.J.T. (2008). Crystal structure of a secondary vitamin D-3 binding site of milk β-lactoglobulin. Proteins 71, 1197–1210.

    Google Scholar 

  • Yang, M.C., Chen, N.C., Chen, C.J., Wu, C.Y. and Mao, S.J.T. (2009). Evidence for β-lactoglobulin involvement in vitamin D transport in vivo- role of the γ-turn (Leu-Pro-Met) of β-lactoglobulin in vitamin D binding. FEBS J. 276, 2251–2265.

    Google Scholar 

  • Zappacosta, F., Diluccia, A., Ledda, L. and Addeo, F. (1998). Identification of C-terminally truncated forms of β-lactoglobulin in whey from Romagnola cows’ milk by two dimensional electrophoresis coupled to mass spectrometry. J. Dairy Res. 65, 243–252.

    Google Scholar 

  • Zhang, H., Yao, J., Zhao, D., Liu, H., Li, J. and Guo, M. (2005). Changes in chemical composition of Alxa bactrian camel milk during lactation. J. Dairy Sci. 88, 3402–3410.

    Google Scholar 

  • Zimmerman, J.K., Barlow, G.H. and Klotz, I.M. (1970). Dissociation of β-lactoglobulin near neutral pH. Arch. Biochem. Biophys. 138, 101–109.

    Google Scholar 

  • Zsila, F. (2003). A new ligand for an old lipocalin: induced circular dichroism spectra reveal binding of bilirubin to bovine β-lactoglobulin. FEBS Lett. 539, 85–90.

    Google Scholar 

  • Zsila, F., Imre, T., Szabo, P.T., Bikadi, Z. and Simonyi, M. (2002). Induced chirality upon binding of cis-parinaric acid to bovine β-lactoglobulin: spectroscopic characterization of the complex. FEBS Lett. 520, 81–87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Sawyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sawyer, L. (2013). β-Lactoglobulin. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_7

Download citation

Publish with us

Policies and ethics