Skip to main content

c-Src and c-Yes are Two Unlikely Partners of Spermatogenesis and their Roles in Blood-Testis Barrier Dynamics

  • Chapter
  • First Online:
Biology and Regulation of Blood-Tissue Barriers

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 763))

Abstract

Src family kinases (SFKs), in particular c-Src and c-Yes, are nonreceptor protein tyrosine kinases that mediate integrin signaling at focal adhesion complex at the cell-extracellular matrix interface to regulate cell adhesion, cell cycle progression, cell survival, proliferation and differentiation, most notably in cancer cells during tumorigenesis and metastasis. Interestingly, recent studies have shown that these two proto-oncogenes are integrated components of the stem cell niche and the cell-cell actin-based anchoring junction known as ectoplasmic specialization (ES) at the: (1) Sertoli cell-spermatid interface known as apical ES and (2) Sertoli-Sertoli cell interface known as basal ES which together with tight junctions (TJ), gap junctions and desmosomes constitute the blood-testis barrier (BTB). At the stem cell niche, these SFKs regulate spermatogonial stem cell (SSC) renewal to maintain the proper population of SSC/spermatogonia for spermatogenesis. At the apical ES and the BTB, c-Src and c-Yes confer cell adhesion either by maintaining the proper phosphorylation status of integral membrane proteins at the site which in turn regulates protein-protein interactions between integral membrane proteins and their adaptors, or by facilitating androgen action on spermatogenesis via a nongenomic pathway which also modulates cell adhesion in the seminiferous epithelium. Herein, we critically evaluate recent findings in the field regarding the roles of these two unlikely partners of spermatogenesis. We also propose a hypothetical model on the mechanistic functions of c-Src and c-Yes in spermatogenesis so that functional experiments can be designed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Rooij DG, Russell LD. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000; 21:776–798.

    PubMed  Google Scholar 

  2. Ren HP, Russell LD. Clonal development of interconnected germ cells in the rat and its relationship to the segmental and subsegmental organization of spermatogenesis. Am J Anat 1991; 192:121–128.

    Article  CAS  PubMed  Google Scholar 

  3. Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and perspectives. Hum Reprod Update 2006; 12:275–282.

    Article  CAS  PubMed  Google Scholar 

  4. de Kretser D, Kerr J. The cytology of the testis. In: Knobil E, Neill J, Ewing L, Greenwald G, Markert C, Pfaff D, eds. The Physiology of Reproduction, Vol. 1. New York: Raven Press, 1988:837–932.

    Google Scholar 

  5. Shaha C, Tripathi R, Mishra DP. Male germ cell apoptosis: regulation and biology. Philos Trans R Soc Lond B Biol Sci 2010; 365:1501–1515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brehm R, Steger K. Regulation of Sertoli cell and germ cell differentation. Adv Anat Embryol Cell Biol 2005; 181:1–93.

    Article  CAS  PubMed  Google Scholar 

  7. Vogl AW, Vaid KS, Guttman JA. The Sertoli cell cytoskeleton. Adv Exp Med Biol 2008; 636:186–211.

    Article  CAS  PubMed  Google Scholar 

  8. Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747–806.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng CY, Mruk DD. Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev 2002; 82:825–874.

    Article  CAS  PubMed  Google Scholar 

  10. O’Donnell L, Nicholls PK, O’Bryan MK et al. Spermiation: The process of sperm release. Spermatogenesis 2011; 1:14–35.

    Article  Google Scholar 

  11. Cheng CY, Mruk DD. A local autocrine axis in the testes that regulates spermatogenesis. Nat Rev Endocrinol 2010; 6:380–395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Russell L. Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat 1977; 148:313–328.

    Article  CAS  PubMed  Google Scholar 

  13. Dym M, Fawcett DW. The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod 1970; 3:308–326.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng CY, Mruk DD. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol 2009; 44:245–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Setchell BP. Blood-testis barrier, junctional and transport proteins and spermatogenesis. Adv Exp Med Biol 2008; 636:212–233.

    Article  CAS  PubMed  Google Scholar 

  16. Setchell BP. The functional significance of the blood-testis barrier. J Androl 1980; 1:3–10.

    Article  CAS  Google Scholar 

  17. Mruk DD, Cheng CY. Tight junctions in the testis: new perspectives. Philos Trans R Soc Lond B Biol Sci 2010; 365:1621–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lie PP, Cheng CY, Mruk DD. The biology of the desmosome-like junction-a versatile anchoring junction and signal transducer in the seminiferous epithelium. Int Rev Cell Mol Biol 2011; 286:223–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Russell L. Observations on rat Sertoli ectoplasmic (‘junctional’) specializations in their association with germ cells of the rat testis. Tissue Cell 1977; 9:475–498.

    Article  CAS  PubMed  Google Scholar 

  20. Wong EWP, Cheng CY. Polarity proteins and cell-cell interactions in the testis. Int Rev Cell Mol Biol 2009; 278:309–353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Siu MKY, Cheng CY. Dynamic cross-talk between cells and the extracellular matrix in the testis. Bioessays 2004; 26:978–992.

    Article  CAS  PubMed  Google Scholar 

  22. Yan HHN, Mruk DD, Lee WM et al. Ectoplasmic specialization: a friend or a foe of spermatogenesis? Bioessays 2007; 29:36–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wong EWP, Mruk DD, Cheng CY. Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochem Biophys Acta 2008; 1778:692–708.

    Article  CAS  PubMed  Google Scholar 

  24. Yan HHN, Mruk DD, Wong EWP et al. An autocrine axis in the testis that coordinates spermiation and blood-testis barrier restructuring during spermatogenesis. Proc Natl Acad Sci USA 2008; 105:8950–8955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Young JS, Guttman JA, Vaid KS et al. Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol Reprod 2009; 80:162–174.

    Article  CAS  PubMed  Google Scholar 

  26. Young JS, Guttman JA, Vaid KS et al. Cortactin (CTTN), N-WASP (WASL) and clathrin (CLTC) are present at podosome-like tubulobulbar complexes in the rat testis. Biol Reprod 2009; 80:153–161.

    Article  CAS  PubMed  Google Scholar 

  27. Kusumi N, Watanabe M, Yamada H et al. Implication of amphiphysin 1 and dynamin 2 in tubulobulbar complex formation and spermatid release. Cell Struct Funct 2007; 32:101–113.

    Article  CAS  PubMed  Google Scholar 

  28. Russell L, Clermont Y. Anchoring device between Sertoli cells and late spermatids in rat seminiferous tubules. Anat Rec 1976; 185:259–278.

    Article  CAS  PubMed  Google Scholar 

  29. Russell LD. Observations on the inter-relationships of Sertoli cells at the level of the blood-testis barrier: evidence for formation and resorption of Sertoli-Sertoli tubulobulbar complexes during the spermatogenic cycle of the rat. Am J Anat 1979; 155:259–279.

    Article  CAS  PubMed  Google Scholar 

  30. Summy JM, Sudol M, Eck MJ et al. Specificity in signaling by c-Yes. Front Biosci 2003; 8:s185–205.

    Article  Google Scholar 

  31. Thomas SM, Brugge JS. Cellular functions regulated by Src family kinases. Annu Rev Cell Dev Biol 1997; 13:513–609.

    Article  CAS  PubMed  Google Scholar 

  32. Engen JR, Wales TE, Hochrein JM et al. Structure and dynamic regulation of Src-family kinases. Cell Mol Life Sci 2008; 65:3058–3073.

    Article  CAS  PubMed  Google Scholar 

  33. Kim LC, Song L, Haura EB. Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 2009; 6:587–595.

    Article  PubMed  CAS  Google Scholar 

  34. Yeatman TJ. A renaissance for SRC. Nat Rev Cancer 2004; 4:470–480.

    Article  CAS  PubMed  Google Scholar 

  35. Martin GS. The hunting of the Src. Nat Rev Mol Cell Biol 2001; 2:467–475.

    Article  CAS  PubMed  Google Scholar 

  36. Koegl M, Zlatkine P, Ley SC et al. Palmitoylation of multiple Src-family kinases at a homologous N-terminal motif. Biochem J 1994; 303:749–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murray D, Ben-Tal N, Honig B et al. Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure 1997; 5:985–989.

    Article  CAS  PubMed  Google Scholar 

  38. Sandilands E, Brunton VG, Frame MC. The membrane targeting and spatial activation of Src, Yes and Fyn is influenced by palmitoylation and distinct RhoB/RhoD endosome requirements. J Cell Sci 2007; 120:2555–2564.

    Article  CAS  PubMed  Google Scholar 

  39. Sato I, Obata Y, Kasahara K et al. Differential trafficking of Src, Lyn, Yes and Fyn is specified by the state of palmitoylation in the SH4 domain. J Cell Sci 2009; 122:965–975.

    Article  CAS  PubMed  Google Scholar 

  40. Oneyama C, Iino T, Saito K et al. Transforming potential of Src family kinases is limited by the cholesterol-enriched membrane microdomain. Mol Cell Biol 2009; 29:6462–6472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cai H, Smith DA, Memarzadeh S et al. Differential transformation capacity of Src family kinases during the initiation of prostate cancer. Proc Natl Acad Sci USA 2011; 108:6579–6584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nusrat A, Parkos CA, Verkade P et al. Tight junctions are membrane microdomains. J Cell Sci 2000; 113:1771–1781.

    CAS  PubMed  Google Scholar 

  43. Summy JM, Qian Y, Jiang BH et al. The SH4-Unique-SH3-SH2 domains dictate specificity in signaling that differentiate c-Yes from c-Src. J Cell Sci 2003; 116:2585–2598.

    Article  CAS  PubMed  Google Scholar 

  44. Patwardhan P, Resh MD. Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol 2010; 30:4094–4107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harris KF, Shoji I, Cooper EM et al. Ubiquitin-mediated degradation of active Src tyrosine kinase. Proc Natl Acad Sci USA 1999; 96:13738–13743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Al-Khalili O, Duke BJ, Zeltwanger S et al. Cloning of the proto-oncogene c-src from rat testis. DNA Seq 2001; 12:425–429.

    Article  CAS  PubMed  Google Scholar 

  47. Ariki M, Tanabe O, Usui H et al. Identification of autophosphorylation sites in c-Yes purified from rat liver plasma membranes. J Biochem 1997; 121:104–111.

    Article  CAS  PubMed  Google Scholar 

  48. Ia KK, Mills RD, Hossain MI et al. Structural elements and allosteric mechanisms governing regulation and catalysis of CSK-family kinases and their inhibition of Src-family kinases. Growth Factors 2010; 28:329–350.

    Article  CAS  PubMed  Google Scholar 

  49. Shvartsman DE, Donaldson JC, Diaz B et al. Src kinase activity and SH2 domain regulate the dynamics of Src association with lipid and protein targets. J Cell Biol 2007; 178:675–686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guarino M. Src signaling in cancer invasion. J Cell Physiol 2010; 223:14–26.

    CAS  PubMed  Google Scholar 

  51. Aleshin A, Finn RS. SRC: a century of science brought to the clinic. Neoplasia 2010; 12:599–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park J, Meisler AI, Cartwright CA. c-Yes tyrosine kinase activity in human colon carcinoma. Oncogene 1993; 8:2627–2635.

    CAS  PubMed  Google Scholar 

  53. Talamonti MS, Roh MS, Curley SA et al. Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. J Clin Invest 1993; 91:53–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rahman MA, Senga T, Ito S et al. S-nitrosylation at cysteine 498 of c-Src tyrosine kinase regulates nitric oxide-mediated cell invasion. J Biol Chem 2010; 285:3806–3814.

    Article  CAS  PubMed  Google Scholar 

  55. Woodcock SA, Rooney C, Liontos M et al. SRC-induced disassembly of adherens junctions requires localized phosphorylation and degradation of the rac activator tiam1. Mol Cell 2009; 33:639–653.

    Article  CAS  PubMed  Google Scholar 

  56. Mathew S, George SP, Wang Y et al. Potential molecular mechanism for c-Src kinase-mediated regulation of intestinal cell migration. J Biol Chem 2008; 283:22709–22722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Avizienyte E, Keppler M, Sandilands E et al. An active Src kinase-b-actin association is linked to actin dynamics at the periphery of colon cancer cells. Exp Cell Res 2007; 313:3175–3188.

    Article  CAS  PubMed  Google Scholar 

  58. Tsygankova OM, Ma C, Tang W et al. Downregulation of Rap1GAP in human tumor cells alters cell/ matrix and cell/cell adhesion. Mol Cell Biol 2010; 30:3262–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wadhawan A, Smith C, Nicholson RI et al. Src-mediated regulation of homotypic cell adhesion: implications for cancer progression and opportunities for therapeutic intervention. Cancer Treat Rev 2011; 37:234–241.

    Article  CAS  PubMed  Google Scholar 

  60. Weis S, Cui J, Barnes L et al. Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. J Cell Biol 2004; 167:223–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kharas MG, Daley GQ. From hen house to bedside: tracing Hanafusa’s legacy from avian leukemia viruses to Src to ABL and beyond. Genes Cancer 2011; 1:1164–1169.

    Article  Google Scholar 

  62. Montero JC, Seoane Ruzo S, Ocana A et al. Inhibition of Src family kinases and receptor tyrosine kinases by dasatinib: possible combinations in solid tumors. Clin Cancer Res 2011; 17:5546–5552.

    Article  CAS  PubMed  Google Scholar 

  63. Sancier F, Dumont A, Sirvent A et al. Specific oncogenic activity of the Src-family tyrosine kinase c-Yes in colon carcinoma cells. PLoS ONE 2011; 6:e17237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hamamura K, Tsuji M, Hotta H et al. Functional activation of SRC family kinase Yes is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J Biol Chem 2011; 286:18526–18537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sandilands E, Frame MC. Endosomal trafficking of Src tyrosine kinase. Trends Cell Biol 2008; 18:322–329.

    Article  CAS  PubMed  Google Scholar 

  66. Kasahara K, Nakayama Y, Yamaguchi N. v-Src and c-Src, nonpalmitoylated Src-family kinases, induce perinuclear accumulation of lysosomes through Rab7 in a kinase activity-independent manner. Cancer Lett 2008; 262:19–27.

    Article  CAS  PubMed  Google Scholar 

  67. Lowell CA, Soriano P. Knockouts of Src-family kinases: stiff bones, wimpy T-cells and bad memories. Genes Dev 1996; 10:1845–1857.

    Article  CAS  PubMed  Google Scholar 

  68. Sudol M, Greulich H, Newman L et al. A novel Yes-related kinase, Yrk, is expressed at elevated levels in neural and hematopoietic tissues. Oncogene 1993; 8:823–831.

    CAS  PubMed  Google Scholar 

  69. Goupil S, La Salle S, Trasler JM et al. Developmental expression of SRC-related tyrosine kinases in the mouse testis. J Androl 2011; 32:95–110.

    Article  CAS  PubMed  Google Scholar 

  70. Bordeleau LJ, Leclerc P. Expression of hck-tr, a truncated form of the src-related tyrosine kinase hck, in bovine spermatozoa and testis. Mol Reprod Dev 2008; 75:828–837.

    Article  CAS  PubMed  Google Scholar 

  71. Kierszenbaum AL, Rivkin E, Talmor-Cohen A et al. Expression of full-length and truncated Fyn tyrosine kinase transcripts and encoded proteins during spermatogenesis and localization during acrosome biogenesis and fertilization. Mol Reprod Dev 2009; 76:832–843.

    Article  CAS  PubMed  Google Scholar 

  72. Lee NP, Cheng CY. Protein kinases and adherens junction dynamics in the seminiferous epithelium of the rat testis. J Cell Physiol 2005; 202:344–360.

    Article  CAS  PubMed  Google Scholar 

  73. Wang W, Wine RN, Chapin RE. Rat testicular Src: normal distribution and involvement in ethylene glycol monomethyl ether-induced apoptosis. Toxicol Appl Pharmacol 2000; 163:125–134.

    Article  CAS  PubMed  Google Scholar 

  74. Wong CH, Cheng CY. The blood-testis barrier: its biology, regulation and physiological role in spermatogenesis. Curr Top Dev Biol 2005; 71:263–296.

    Article  CAS  PubMed  Google Scholar 

  75. Yan HH, Cheng CY. Laminin α3 forms a complex with β3 and γ3 chains that serves as the ligand for α6βb1-integrin at the apical ectoplasmic specialization in adult rat testes. J Biol Chem 2006; 281:17286–17303.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang J, Wong CH, Xia W et al. Regulation of Sertoli-germ cell adherens junction dynamics via changes in protein-protein interactions of the N-cadherin-β-catenin protein complex which are possibly mediated by c-Src and myotubularin-related protein 2: an in vivo study using an androgen suppression model. Endocrinology 2005; 146:1268–1284.

    Article  CAS  PubMed  Google Scholar 

  77. Siu MK, Wong CH, Lee WM et al. Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases. J Biol Chem 2005; 280:25029–25047.

    Article  CAS  PubMed  Google Scholar 

  78. Siu MK, Mruk DD, Lee WM et al. Adhering junction dynamics in the testis are regulated by an interplay of β1-integrin and focal adhesion complex-associated proteins. Endocrinology 2003; 144:2141–2163.

    Article  CAS  PubMed  Google Scholar 

  79. Lie PP, Cheng CY, Mruk DD. Crosstalk between desmoglein-2/desmocollin-2/Src kinase and coxsackie and adenovirus receptor/ZO-1 protein complexes, regulates blood-testis barrier dynamics. Int J Biochem Cell Biol 2010; 42:975–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang CQ, Mruk DD, Lee WM et al. Coxsackie and adenovirus receptor (CAR) is a product of Sertoli and germ cells in rat testes which is localized at the Sertoli-Sertoli and Sertoli-germ cell interface. Exp Cell Res 2007; 313:1373–1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yi Z, Li L, Matsushima GK et al. A novel role for c-Src and STAT3 in apoptotic cell-mediated MerTK-dependent immunoregulation of dendritic cells. Blood 2009; 114:3191–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Li MW, Mruk DD, Lee WM et al. Connexin 43 and plakophilin-2 as a protein complex that regulates blood-testis barrier dynamics. Proc Natl Acad Sci USA 2009; 106:10213–10218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xiao X, Mruk DD, Lee WM et al. c-Yes regulates cell adhesion at the blood-testis barrier and the apical ectoplasmic specialization in the seminiferous epithelium of rat testes. Int J Biochem Cell Biol 2011; 43:651–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Caires K, Broady J, McLean D. Maintaining the male germline: regulation of spermatogoniall stem cells. J Endocrinol 2010; 205:133–145.

    Article  CAS  PubMed  Google Scholar 

  85. Nakagawa T, Nabeshima Y, Yoshida S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 2007; 12:195–206.

    Article  CAS  PubMed  Google Scholar 

  86. Phillips BT, Gassei K, Orwig KE. Spermatogonial stem cell regulation and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1663–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. de Rooij DG. The spermatogonial stem cell niche. Microsc Res Tech 2009; 72:580–585.

    Article  PubMed  CAS  Google Scholar 

  88. Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 2007; 282:25842–25851.

    Article  CAS  PubMed  Google Scholar 

  89. Buageaw A, Sukhwani M, Ben-Yehudah A et al. GDNF family receptor a1 phenotype of spermatogonial stem cells in immature mouse testes. Biol Reprod 2005; 73:1011–1016.

    Article  CAS  PubMed  Google Scholar 

  90. Dettin L, Ravindranath N, Hofmann MC et al. Morphological characterization of the spermatogonial subtypes in the neonatal mouse testis. Biol Reprod 2003; 69:1565–1571.

    Article  CAS  PubMed  Google Scholar 

  91. Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells: influence of GDNF. Dev Biol 2005; 279:114–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Von Schonfeldt V, Wistuba J, Schlatt S. Notch-1, c-kit and GFRa-1 are developmentally regulated markers for premeiotic germ cells. Cytogenet Genome Res 2004; 105:235–239.

    Article  CAS  Google Scholar 

  93. Braydich-Stolle L, Kostereva N, Dym M et al. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol 2007; 304:34–45.

    Article  CAS  PubMed  Google Scholar 

  94. Lee MY, Lee SH, Park JH et al. Interaction of galectin-1 with caveolae induces mouse embryonic stem cell proliferation through the Src, ERas, Akt and mTOR signaling pathways. Cell Mol Life Sci 2009; 66:1467–1478.

    Article  CAS  PubMed  Google Scholar 

  95. Nishio H, Tokuda M, Itano T et al. pp60c-src expression in rat spermatogenesis. Biochem Biophys Res Commun 1995; 206:502–510.

    Article  CAS  PubMed  Google Scholar 

  96. Wine RN, Chapin RE. Adhesion and signaling proteins spatiotemporally associated with spermiation in the rat. J Androl 1999; 20:198–213.

    CAS  PubMed  Google Scholar 

  97. Mruk DD, Wong CH, Silvestrini B et al. A male contraceptive targeting germ cell adhesion. Nat Med 2006; 12:1323–1328.

    Article  CAS  PubMed  Google Scholar 

  98. Mok KW, Mruk DD, Lie PP et al. Adjudin, a potential male contraceptive, exerts its effects locally in the seminiferous epithelium of mammalian testes. Reproduction 2011; 141:571–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cheng CY, Mruk DD, Silvestrini B et al. AF-2364 [1-(2,4-dichlorobenzyl)-1H-indazole-3-carbohydrazide] is a potential male contraceptive: A review of recent data. Contraception 2005; 72:251–261.

    Article  CAS  PubMed  Google Scholar 

  100. Cheng CY, Mruk DD. New frontiers in nonhormonal male contraception. Contraception 2010; 82:476–482.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mruk DD, Silvestrini B, Cheng CY. Anchoring junctions as drug targets: Role in contraceptive development. Pharmacol Rev 2008; 60:146–180.

    Article  CAS  PubMed  Google Scholar 

  102. Palacios F, Tushir JS, Fujita Y et al. Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 2005; 25:389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shen Y, Hirsch DS, Sasiela CA et al. Cdc42 regulates E-cadherin ubiquitination and degradation through an epidermal growth factor receptor to Src-mediated pathway. J Biol Chem 2008; 283:5127–5137.

    Article  CAS  PubMed  Google Scholar 

  104. Kale G, Naren AP, Sheth P et al. Tyrosine phosphorylation of occludin attenuates its interactions with ZO-1, ZO-2 and ZO-3. Biochem Biophys Res Commun 2003; 302:324–329.

    Article  CAS  PubMed  Google Scholar 

  105. Elias BC, Suzuki T, Seth A et al. Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J Biol Chem 2009; 284:1559–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sabath E, Negoro H, Beaudry S et al. Gα12 regulates protein interactions within the MDCK cell tight junction and inhibits tight-junction assembly. J Cell Sci 2008; 121:814–824.

    Article  CAS  PubMed  Google Scholar 

  107. Chen JX, Xu LL, Wang XC et al. Involvement of c-Src/STAT3 signal in EGF-induced proliferation of rat spermatogonial stem cells. Mol Cell Endocrinol 2011; Epub ahead of press.

    Google Scholar 

  108. Chen JX, Wang, XC, Wang JL et al. Proto-oncogene c-Src regulates the viability of rat spermatogonial stem cells in vitro through phosphorylated signal transducer and activator of transcription-3. Sheng Li Xue Bao 2008; 60:391–396.

    CAS  PubMed  Google Scholar 

  109. Walker WH. Non-classical actions of testosterone and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1557–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Walker WH. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis 2011; 1:116–120.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Shupe J, Cheng J, Puri P et al. Regulation of Sertoli-germ cell adhesion and sperm release by FSH and nonclassical testosterone signaling. Mol Endocrinol 2011; 25:238–252.

    Article  CAS  PubMed  Google Scholar 

  112. Chen YH, Lu Q, Goodenough DA et al. Nonreceptor tyrosine kinase c-Yes interacts with occludin during tight junction formation in canine kidney epithelial cells. Mol Biol Cell 2002; 13:1227–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nusrat A, Chen JA, Foley CS et al. The coiled-coil domain of occludin can act to organize structural and functional elements of the epithelial tight junction. J Biol Chem 2000; 275:29816–29822.

    Article  CAS  PubMed  Google Scholar 

  114. Su L, Cheng CY, Mruk DD. Adjudin-mediated Sertoli-germ cell junction disassembly affects Sertoli cell barrier function in vitro and in vivo. Int J Biochem Cell Biol 2010; 42:1864–1875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Xia W, Mruk DD, Lee WM et al. Cytokines and junction restructuring during spermatogenesis—a lesson to learn from the testis. Cytokine Growth Factor Rev 2005; 16:469–493.

    Article  CAS  PubMed  Google Scholar 

  116. Li MWM, Mruk DD, Lee WM et al. Cytokines and junction restructuring events during spermatogenesis in the testis: An emerging concept of regulation. Cytokine Growth Factor Rev 2009; 20:329–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 2010; 20:177–186.

    Article  CAS  PubMed  Google Scholar 

  118. Su L, Mruk DD, Lee WM et al. Differential effects of testosterone and TGF-β3 on endocytic vesicle-mediated protein trafficking events at the blood-testis barrier. Exp Cell Res 2010; 316:2945–2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Luton F, Verges M, Vaerman JP et al. The SRC family protein tyrosine kinase p62yes controls polymeric IgA transcytosis in vivo. Mol Cell 1999; 4:627–632.

    Article  CAS  PubMed  Google Scholar 

  120. Su T, Bryant DM, Luton F et al. A kinase cascade leading to Rab11-FIP5 controls transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 2010; 12:1143–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wong EW, Mruk DD, Lee WM et al. Par3/Par6 polarity complex coordinates apical ectoplasmic specialization and blood-testis barrier restructuring during spermatogenesis. Proc Natl Acad Sci USA 2008; 105:9657–9662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Iden S, Collard JG. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 2008; 9:846–859.

    Article  CAS  PubMed  Google Scholar 

  123. Wong EWP, Sun S, Li MWM et al. 14-3-3 protein regulates cell adhesion in the seminiferous epithelium of rat testes. Endocrinology 2009; 150:4713–4723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wong EWP, Mruk DD, Lee WM et al. Regulation of blood-testis barrier dynamics by TGF-β3 is a Cdc42-dependent protein trafficking event. Proc Natl Acad Sci USA 2010; 107:11399–11404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xia W, Wong CH, Lee NPY et al. Disruption of Sertoli-germ cell adhesion function in the seminiferous epithelium of the rat testis can be limited to adherens junctions without affecting the blood-testis barrier integrity: An in vivo study using an androgen suppression model. J Cell Physiol 2005; 205:141–157.

    Article  CAS  PubMed  Google Scholar 

  126. Siu ER, Wong EWP, Mruk DD et al. An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model. Endocrinology 2009; 150:3336–3344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Siu ER, Wong EWP, Mruk DD et al. Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci USA 2009; 106:9298–9303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Boutros T, Chevet E, Metrakos P. Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: Roles in cell growth, death and cancer. Pharmacol Rev 2008; 60:261–310.

    Article  CAS  PubMed  Google Scholar 

  129. Serrels A, Canel M, Brunton VG et al. Src/FAK-mediated regulation of E-cadherin as a mechanism for controlling collective cell movement: Insights from in vivo imaging. Cell Adh Migr 2011; 5:360–365.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Mitra SK, Schlaepfer DD. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 2006; 18:516–523.

    Article  CAS  PubMed  Google Scholar 

  131. Lee NPY, Cheng CY. Ectoplasmic specialization, a testis-specific cell-cell actin-based adherens junction type: is this a potential target for male contraceptive development. Hum Reprod Update 2004; 10:349–369.

    Article  CAS  PubMed  Google Scholar 

  132. Marcotte R, Smith HW, Sanguin-Gendreau V et al. Mammary epithelial-specific disruption of c-Src impairs cell cycle progression and tumorigenesis. Proc Natl Acad Sci USA 2011; Epub ahead of press.

    Google Scholar 

  133. Kruewel T, Schenone S, Radi M et al. Molecular characterization of c-Abl/c-Src kinase inhibitors targeted against murine tumour progenitor cells that express stem cell markers. PLoS One 2010; 5:e41413.

    Article  CAS  Google Scholar 

  134. Migliaccio A, Castoria G, Auricchio F. Analysis of androgen receptor rapid actions in cellular signaling pathways: receptor/src association. Methods Mol Biol 2011; 776:361–370.

    Article  CAS  PubMed  Google Scholar 

  135. Saad F. Src as a therapeutic target in men with prostate cancer and bone metastases. BJU Int 2009; 103:434–440.

    Article  CAS  PubMed  Google Scholar 

  136. Tan AR, Swain SM. Therapeutic strategies for triple-negative breast cancer. Cancer J 2008; 14:343–351.

    Article  CAS  PubMed  Google Scholar 

  137. Capitani M, Sallese M. The KDEL receptor: new functions for an old protein. FESB Lett 2009; 583:3863–3871.

    Article  CAS  Google Scholar 

  138. Hu J, Mukhopadhyay A, Truesdell P et al. Cdc42-interacting protein 4 is a Src substrate that regulates invadopodia and invasiveness of breast tumors by promoting MT1-MMP endocytosis. J Cell Sci 2011; 124:1739–1751.

    Article  CAS  PubMed  Google Scholar 

  139. Medts T, de Diesbach P, Cominelli A et al. Acute ligand-independent Src activation mimics low EGF-induced EGFR surface signalling and redistribution into recycling endosomes. Exp Cell Res 2010; 316:3239–3253.

    Article  CAS  PubMed  Google Scholar 

  140. Park MA, Reinehr R, Haussinger D et al. Sorafenib activates CD95 and promotes autophagy and cell death via Src family kinases in gastrointestinal tumor cells. Mol Cancer Ther 2010; 9:2220–2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chung BM, Raja SM, Clubb RJ et al. Aberrant trafficking of NSCLC-associated EGFR mutants through the endocytic recycling pathway promotes interaction with Src. BMC Cell Biol 2009; 10:84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Dym M. Basement membrane regulation of Sertoli cells. Endocr Rev 1994; 15:102–115.

    CAS  PubMed  Google Scholar 

  143. Klinghoffer RA, Sachsenmaier C, Cooper JA et al. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 1999; 18:2459–2471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Paul R, Obermaier B, Van Ziffle J et al. Myeloid Src kinases regulate phagocytosis and oxidative burst in pneumococcal meningitis by activating NADPH oxidase. J Leukoc Biol 2008; 84:1141–1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nelson MP, Christmann BS, Werner JL et al. IL-33 and M2a alveolar macrophages promote lung defense against the atypical fungal pathogen pneumocystis murina. J Immunol 2011; 186:2372–2381.

    Article  CAS  PubMed  Google Scholar 

  146. Stein PL, Vogel H, Soriano P. Combined deficiencies of Src, Fyn and Yes tyrosine kinases in mutant mice. Genes Dev 1994; 8:1999–2007.

    Article  CAS  PubMed  Google Scholar 

  147. Calautti E, Cabodi S, Stein PL et al. Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol 1998; 141:1449–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Lowell CA, Niwa M, S oriano P et al. Deficiency of the Hck and Src tyrosine kinases results in extreme levels of extramedullary hematopoiesis. Blood 1996; 87:1780–1792.

    CAS  PubMed  Google Scholar 

  149. Yu CC, Yen TS, Lowell CA et al. Lupus-like kidney disease in mice deficient in the Src family tyrosine kinases Lyn and Fyn. Curr Biol 2001; 11:34–38.

    Article  CAS  PubMed  Google Scholar 

  150. Lowell CA, Fumagalli L, Berton G. Deficiency of Src family kinases p59/61hck and p58c-fgr results in defective adhesion-dependent neutrophil functions. J Cell Biol 1996; 133:895–910.

    Article  CAS  PubMed  Google Scholar 

  151. Lowell CA, Soriano P, Varmus HE. Functional overlap in the src gene family: inactivation of hck and fgr impairs natural immunity. Genes Dev 1994; 8:387–398.

    Article  CAS  PubMed  Google Scholar 

  152. Suen PW, Ilic D, Caveggion E et al. Impaired integrin-mediated signal transduction, altered cytoskeletal structure and reduced motility in Hck/Fgr deficient macrophages. J Cell Sci 1999; 112:4067–4078.

    CAS  PubMed  Google Scholar 

  153. Kim H, Laing M, Muller W. c-Src-null mice exhibit defects in normal mammary gland development and ERα signaling. Oncogene 2005; 24:5629–5636.

    Article  CAS  PubMed  Google Scholar 

  154. Soriano P, Montgomery C, Geske R et al. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64:693–702.

    Article  CAS  PubMed  Google Scholar 

  155. Boyce BF, Yoneda T, Lowe C et al. Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J Clin Invest 1992; 90:1622–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Eliceiri BP, Paul R, Schwartzberg PL et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 1999; 4:915–924.

    Article  CAS  PubMed  Google Scholar 

  157. Eliceiri BP, Puente XS, Hood JD et al. Src-mediated coupling of focal adhesion kinase to integrin α(v) β5 in vascular endothelial growth factor signaling. J Cell Biol 2002; 157:149–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Roby KF, Son DS, Taylor CC et al. Alterations in reproductive function in SRC tyrosine kinase knockout mice. Endocrine 2005; 26:169–176.

    Article  CAS  PubMed  Google Scholar 

  159. Criscuoli ML, Nguyen M, Eliceiri BP. Tumor metastasis but not tumor growth is dependent on Src-mediated vascular permeability. Blood 2005; 105:1508–1514.

    Article  CAS  PubMed  Google Scholar 

  160. Appleby MW, Gross JA, Cooke MP et al. Defective T-cell receptor signaling in mice lacking the thymic isoform of p59fyn. Cell 1992; 70:751–763.

    Article  CAS  PubMed  Google Scholar 

  161. Stein PL, Lee HM, Rich S, Soriano P. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T-cells. Cell 1992; 70:741–750.

    Article  CAS  PubMed  Google Scholar 

  162. Maekawa M, Toyama Y, Yasuda M et al. Fyn tyrosine kinase in Sertoli cells is involved in mouse spermatogenesis. Biol Reprod 2002; 66:211–221.

    Article  CAS  PubMed  Google Scholar 

  163. Luo J, McGinnis LK, Kinsey WH. Role of Fyn kinase in oocyte developmental potential. Reprod Fertil Dev 2010; 22:966–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Umemori H, Sato S, Yagi T et al. Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 1994; 367:572–576.

    Article  CAS  PubMed  Google Scholar 

  165. Molina TJ, Kishihara K, Siderovski DP et al. Profound block in thymocyte development in mice lacking p56lck. Nature 1992; 357:161–164.

    Article  CAS  PubMed  Google Scholar 

  166. Omri B, Blancher C, Neron B et al. Retinal dysplasia in mice lacking p56lck. Oncogene 1998; 16:2351–2356.

    Article  CAS  PubMed  Google Scholar 

  167. Dal Porto JM, Burke K, Cambier JC. Regulation of BCR signal transduction in B-1 cells requires the expression of the Src family kinase Lck. Immunity 2004; 21:443–453.

    Article  CAS  Google Scholar 

  168. Vicentini L, Mazzi P, Caveggion E et al. Fgr deficiency results in defective eosinophil recruitment to the lung during allergic airway inflammation. J Immunol 2002; 168:6446–6454.

    Article  CAS  PubMed  Google Scholar 

  169. Scapini P, Pereira S, Zhang H et al. Multiple roles of Lyn kinase in myeloid cell signaling and function. Immunol Rev 2009; 228:23–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Goldenberg-Furmanov M, Stein I, Pikarsky E et al. Lyn is a target gene for prostate cancer: sequence-based inhibition induces regression of human tumor xenografts. Cancer Res 2004; 64:1058–1066.

    Article  CAS  PubMed  Google Scholar 

  171. Nishizumi H, Taniuchi I, Yamanashi Y et al. Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity 1995; 3:549–560.

    Article  CAS  PubMed  Google Scholar 

  172. Laird RM, Laky K, Hayes SM. Unexpected role for the B cell-specific Src family kinase B lymphoid kinase in the development of IL-17-producing gd T-cells. J Immunol 2010; 185:6518–6527.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Xiao, X., Mruk, D.D., Cheng, F.L., Cheng, C.Y. (2013). c-Src and c-Yes are Two Unlikely Partners of Spermatogenesis and their Roles in Blood-Testis Barrier Dynamics. In: Cheng, C.Y. (eds) Biology and Regulation of Blood-Tissue Barriers. Advances in Experimental Medicine and Biology, vol 763. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4711-5_15

Download citation

Publish with us

Policies and ethics