Analyses of Complex Genome-Scale Biological Networks

Chapter
Part of the SpringerBriefs in Systems Biology book series (BRIEFSBIOSYS, volume 2)

Abstract

Cellular systems are organized as a complex web of interactions among numerous macromolecules. Among the others, proteins are important since they play important role in virtually every biological process that occurs in the cell. Cellular systems are constantly challenged by fluctuations in the surrounding environment. In response, repertoire of the protein contents in the cell constantly alters, accordingly the interactions among them. Mathematically, these protein–protein interactions (PPIs) can be conceptualized in the form of graph or network for ease in analysis. A node in the graph represents protein and its link with other node is represented by edge. The local and global topological properties of the network reveal organization principles of underlying interactions among total proteins of an organism. The local properties specify importance of a particular protein in the network whereas global properties reflect their organization operational in the cell. Over the years, several graph theoretic and clustering techniques proposed for analysis of complex physical world have been applied to understand dynamic organization of the cellular networks. These methods promise to become more informative as the high quality PPI networks increase by orders of magnitude. This chapter provides an overview on various topological properties of networks and their significance in understanding biological systems.

Keywords

Transportation Macromolecule 

References

  1. 1.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)PubMedCrossRefGoogle Scholar
  2. 2.
    Jeong, H., et al.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)PubMedCrossRefGoogle Scholar
  3. 3.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)PubMedCrossRefGoogle Scholar
  4. 4.
    Faith, J.J., et al.: Many microbe microarrays database: uniformly normalized Affymetrix compendia with structured experimental metadata. Nucl. Acids Res. 36(Database issue), D866–D870 (2008)Google Scholar
  5. 5.
    Barabasi, A.L., Oltvai, Z.N.: Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5(2), 101–113 (2004)PubMedCrossRefGoogle Scholar
  6. 6.
    Jeong, H., et al.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)PubMedCrossRefGoogle Scholar
  7. 7.
    Grigoriev, A.: On the number of protein–protein interactions in the yeast proteome. Nucl. Acids Res. 31(14), 4157–4161 (2003)PubMedCrossRefGoogle Scholar
  8. 8.
    Marcotte, E.M., et al.: Detecting protein function and protein–protein interactions from genome sequences. Science 285(5428), 751–753 (1999)PubMedCrossRefGoogle Scholar
  9. 9.
    Kim, P.M., et al.: The role of disorder in interaction networks: a structural analysis. Mol. Syst. Biol. 4, 179 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    Borneman, A.R., et al.: Target hub proteins serve as master regulators of development in yeast. Genes Dev. 20(4), 435–448 (2006)PubMedCrossRefGoogle Scholar
  11. 11.
    Yu, H., et al.: Genomic analysis of essentiality within protein networks. Trends Genet. 20(6), 227–231 (2004)PubMedCrossRefGoogle Scholar
  12. 12.
    Yu, H., et al.: The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput. Biol. 3(4), e59 (2007)PubMedCrossRefGoogle Scholar
  13. 13.
    Butland, G., et al.: Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433(7025), 531–537 (2005)PubMedCrossRefGoogle Scholar
  14. 14.
    Hu, P.: Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol. 7(4), e96 (2009)PubMedCrossRefGoogle Scholar
  15. 15.
    Butland, G.: eSGA: E. coli synthetic genetic array analysis. Nat. Methods 5(9), 789–795 (2008)PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen, R., Havlin, S.: Scale-free networks are ultrasmall. Phys. Rev. Lett. 90(5), 058701 (2003)PubMedCrossRefGoogle Scholar
  17. 17.
    Chung, F., Lu, L.: The average distances in random graphs with given expected degrees. Proc. Natl. Acad. Sci. USA 99(25), 15879–15882 (2002)PubMedCrossRefGoogle Scholar
  18. 18.
    Tanaka, R., Yi, T.M., Doyle, J.: Some protein interaction data do not exhibit power law statistics. FEBS Lett. 579(23), 5140–5144 (2005)PubMedCrossRefGoogle Scholar
  19. 19.
    Ivanic, J., Wallqvist, A., Reifman, J.: Probing the extent of randomness in protein interaction networks. PLoS Comput. Biol. 4(7), e1000114 (2008)PubMedCrossRefGoogle Scholar
  20. 20.
    Maslov, S., Sneppen, K.: Specificity and stability in topology of protein networks. Science 296(5569), 910–913 (2002)PubMedCrossRefGoogle Scholar
  21. 21.
    Hakes, L., et al.: Protein–protein interaction networks and biology—what’s the connection? Nat. Biotechnol. 26(1), 69–72 (2008)PubMedCrossRefGoogle Scholar
  22. 22.
    Hao, D., Li, C.: The dichotomy in degree correlation of biological networks. PLoS One 6(12), e28322 (2011)Google Scholar
  23. 23.
    Zhang, Z., Zhang, J.: A big world inside small-world networks. PLoS One 4(5), e5686 (2009)PubMedCrossRefGoogle Scholar
  24. 24.
    Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev. Lett. 87(19), 198701 (2001)PubMedCrossRefGoogle Scholar
  25. 25.
    Wagner, A., Fell, D.A.: The small world inside large metabolic networks. Proc. Biol. Sci. 268(1478), 1803–1810 (2001)PubMedCrossRefGoogle Scholar
  26. 26.
    Ravasz, E., et al.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)PubMedCrossRefGoogle Scholar
  27. 27.
    Brohee, S., van Helden, J.: Evaluation of clustering algorithms for protein–protein interaction networks. BMC Bioinform. 7, 488 (2006)CrossRefGoogle Scholar
  28. 28.
    Rhrissorrakrai, K., Gunsalus, K.C.: MINE—module identification in networks. BMC Bioinform. 12, 192 (2011)Google Scholar
  29. 29.
    Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)PubMedCrossRefGoogle Scholar
  30. 30.
    Hu, Z., et al.: VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucl. Acids Res. 37(Web Server issue), W115–W121 (2009)Google Scholar
  31. 31.
    Brown, K.R., et al.: NAViGaTOR: network analysis, visualization and graphing Toronto. Bioinformatics 25(24), 3327–3329 (2009)PubMedCrossRefGoogle Scholar
  32. 32.
    Krzywinski, M., et al.: Hive plots—rational approach to visualizing networks. Brief Bioinform. br069v1–bbr069 (2011)Google Scholar
  33. 33.
    Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)Google Scholar
  34. 34.
    Kalinka, A.T., Tomancak, P.: Linkcomm: an R package for the generation, visualization, and analysis of link communities in networks of arbitrary size and type. Bioinformatics 27(14), 2011–2012 (2011)Google Scholar
  35. 35.
    Brohee, S., et al.: Network analysis tools: from biological networks to clusters and pathways. Nat. Protoc. 3(10), 1616–1629 (2008)PubMedCrossRefGoogle Scholar
  36. 36.
    von Mering, C., et al.: Comparative assessment of large-scale data sets of protein–protein interactions. Nature 417(6887), 399–403 (2002)CrossRefGoogle Scholar
  37. 37.
    Raman, K.: Construction and analysis of protein–protein interaction networks. Autom. Exp. 2(1), 2 (2010)Google Scholar

Copyright information

© Vijaykumar Yogesh Muley 2013

Authors and Affiliations

  1. 1.Center of Excellence in EpigeneticsIndian Institute of Science Education and Research (IISER)PuneIndia
  2. 2.Biotechnology DivisionCSIR-Institute of Himalayan Bioresource Technology (IHBT)PalampurIndia

Personalised recommendations