Skip to main content

Technology-Driven Developments and Policy Implications for Mathematics Education

  • Chapter
  • First Online:

Part of the book series: Springer International Handbooks of Education ((SIHE,volume 27))

Abstract

The advent of technology has done more than merely increase the range of resources available for mathematics teaching and learning: it represents the emergence of a new culture—a virtual culture with new paradigms—which differs crucially from preceding cultural forms. In this chapter, the implications of this paradigm shift for policies concerning learning, curriculum design, and teacher education will be discussed. Also, the ubiquitous possibility of emergence of ever-new forms of technology brings about both new opportunities for learning and collaborative work (involving students and teachers), as well as potential dangers. Policy measures may give priority to technological access and developments, over the intellectual growth of learners and the professional development of teachers—which should be more demanding goals of mathematics education. Such policy issues will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   709.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agalianos, A., Noss, R., & Whitty, G. (2001). Logo in mainstream schools: The struggle over the soul of an educational innovation. British Journal of Sociology of Education, 22(4), 479–500. doi:10.1080/01425690120094449.

    Article  Google Scholar 

  • Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274. doi:10.1023/A:1022103903080.

    Article  Google Scholar 

  • Assude, T., Buteau, C., & Forgasz, H. (2010). Factors influencing implementation of technology-rich mathematics curriculum and practices. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain. The 17th ICMI study (Vol. 13, New ICMI Study Series, pp. 405–419). New York, NY: Springer. doi: 10.1007/978-1-4419-0146-0_19.

  • Australian Council for Educational Research (ACER). (2010). Evaluation of One Laptop per Child (OLPC) trial project in the Solomon Islands. Retrieved from http://www.box.net/keydox/1/31970050/418415076/1%20#keydox/1/31970050/601916856/1.

  • Ball, D., & Cohen, D. K. (1996). Reform by the book. What is—or might be—the role of curriculum materials in teacher learning and instructional reform? The Educational Researcher, 25(9), 6–14. doi:10.3102/0013189X025009006.

    Google Scholar 

  • Bernáldez, M. (2011, February 18). Habilidades digitales para todos: Los retos de democratizar la tecnología en las escuelas mexicanas. Address presented at 4o Seminario Internacional de Educación Integral: Habilidades digitales, retos para el aprendizaje, la enseñanza y la gestión educativa, Hotel Hilton, Mexico, D.F.

    Google Scholar 

  • Brown, R. (2010). Does the introduction of the graphics calculator into system-wide examinations lead to change in the types of mathematical skills tested? Educational Studies in Mathematics, 73(2), 181–203. doi:10.1007/s10649-009-9220-2.

    Article  Google Scholar 

  • Carvalho, A., Kendall, M., & Cornu, B. (2009, December 18). The Bento Gonçalves declaration for action. WCCE 2009 IFIP TC3. Retrieved from http://www.ifip-tc3.net/IMG/pdf/BGDeclaration.pdf.

  • Churchhouse, R. F., Cornu, B., Howson, A., Kahane, J., Van Lint, J., Pluvinage, F., & Yamaguti, M. (Eds.). (1986). The influence of computers and informatics on mathematics and its teaching (ICMI Study Series, Vol. 1). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Drijvers, P. (2009). Tools and tests: Technology in national final mathematics examinations. In C. Winslow (Ed.), Nordic research on mathematics education, Proceedings from NORMA08 (pp. 225–236). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Drijvers, P. (2012). Teachers transforming resources into orchestrations. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to “lived” resources: Mathematics curriculum materials and teacher development (pp. 265–281). New York, NY: Springer.

    Google Scholar 

  • Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75(2), 213–234. doi:10.1007/s10649-010-9254-5.

    Article  Google Scholar 

  • Drijvers, P., & Trouche, L. (2008). From artefacts to instruments: A theoretical framework behind the orchestra metaphor. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics (Vol. 2, pp. 363–392). Charlotte, NC: Information Age.

    Google Scholar 

  • Ferrini-Mundy, J., & Breaux, G. A. (2008). Perspectives on research, policy, and the use of technology in mathematics teaching and learning in the United States. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics (pp. 427–448). Charlotte, NC: Information Age Publishing.

    Google Scholar 

  • Fonseca, C. (2005). Educación, tecnologías digitales y poblaciones vulnerables: Una aproximación a la realidad de América Latina y el Caribe. Consulta Regional del Programa Pan Américas. Montevideo: IDRC. Retrieved March 15, 2011, from http://www.idrc.ca/uploads/user-S/117776589014_Paper_TIC_EDU__Fonseca_FOD.pdf.

  • Fugelstadt, A. B., Healy, L., Kynigos, C., & Monaghan, J. (2010). Working with teachers. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain. The 17th ICMI study (Vol. 13, New ICMI Study Series, pp. 293–310). New York, NY: Springer. doi: 978-1-4419-0145-3.

  • Grugeon, B., Lagrange, J.B., & Jarvis, D. (2010). Teacher education courses in mathematics and technology: Analyzing views and options. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain. The 17th ICMI study. (Vol. 13, New ICMI Study Series, pp. 329–345). NY: Springer. doi: 10.1007/978-1-4419-0146-0_15.

  • Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for teachers? Educational Studies in Mathematics, 71(3), 199–218. doi:10.1007/s10649-008-9159-8.

    Article  Google Scholar 

  • Gueudet, G., & Trouche, L. (2012a). Communities, documents and professional geneses: Interrelated stories. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to “lived” resources: Mathematics curriculum materials and teacher documentation (pp. 305–322). New York, NY: Springer.

    Google Scholar 

  • Gueudet, G., & Trouche, L. (2012b). Mathematics teacher education advanced methods: An example in dynamic geometry. ZDM—The International Journal on Mathematics Education, 43(3), 399–411. doi:10.1007/s11858-011-0313-x.

    Article  Google Scholar 

  • Healy, L., & Lagrange, J.-B. (2010). Introduction to section 3. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain. The 17th ICMI study. (Vol. 13, New ICMI Study Series, pp. 287–292). New York, NY: Springer. doi: 10.1007/978-1-4419-0146-0_12.

  • Hegedus, S., & Lesh, R. (Eds.). (2008). Democratizing access to mathematics through technology: Issues of design, theory and implementation—In memory of Jim Kaput’s work. Special issue of Educational Studies in Mathematics, 68(2), 81–193.

    Google Scholar 

  • Hernandez-Sánchez, M. (2009). Incorporación de herramientas tecnológicas a la enseñanza de las matemáticas: Cambios en el aula y búsqueda de nuevas formas de evaluación (Master’s thesis). Cinvestav-IPN, Mexico.

    Google Scholar 

  • Hoyles, C., Kalas, I., Trouche, L., Hivon, L., Noss, R., & Wilensky, U. (2010). Connectivity and virual networks for learning. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain. The 17th ICMI study (Vol. 13, New ICMI Study Series, pp. 439–462). New York, NY: Springer. doi: 10.1007/978-1-4419-0146-0_22.

  • International Society for Technology in Education. (2011). Standards for global learning in the digital age. Retrieved June 26, 2011, from http://www.iste.org/standards.aspx.

  • Jiménez-Molotla, J., & Sacristán, A. I. (2010). Eight years of journey with Logo leading to the Eiffel tower mathematical project. In J. Clayson & I. Kalas (Eds.), Constructionist approaches to creative learning, thinking and education: Lessons for the 21st century—Proceedings Constructionism 2010 (12th EuroLogo conference) [CD] (pp. 1–11). Paris, France: AUP/Comenius University.

    Google Scholar 

  • Julie, C., Leung, A., Thanh, N., Posadas, L., Sacristán, A. I., & Semenov, A. (2010). Some regional developments in access and implementation of digital technologies and ICT. In C. Hoyles & J. B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain. The 17th ICMI study (Vol. 13, New ICMI Study Series, pp. 361–383). New York, NY: Springer. doi: 10.1007/978-1-4419-0146-0_19.

  • Koehler, M. J., Mishra, P., & Yahya, K. (2007). Tracing the development of teacher knowledge in a design seminar: Integrating content, pedagogy and technology. Computers & Education, 49(3), 740–762. doi:10.1016/j.compedu.2005.11.012.

    Article  Google Scholar 

  • Kortenkamp, U., Blessing, A. M., Dohrmann, C., Kreis, Y., Libbrecht, P., & Mercat, C. (2009). Interoperable interactive geometry for Europe: First technological and educational results and future challenges of the Intergeo project. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth European Conference on Research on Mathematics Education (pp. 1150–1160). Lyon, France: INRP. Available from http://www.inrp.fr/editions/cerme6.

  • Krainer, K., & Wood, T. (Eds.). (2008). Participants in mathematics teacher education: Individuals, teams, communities and networks (Vol. 3). Rotterdam, The Netherlands: Sense Publishers.

    Google Scholar 

  • Kuntz, G., Clerc, B., & Hache, S. (2009). Sesamath: Questions de praticiens à la recherche en didactique. In C. Ouvrier-Buffet & M.-J. Perrin-Glorian (Eds.), Approches plurielles en didactique des mathématiques (pp. 175–184). Paris, France: Laboratoire de didactique André Revuz, Université Paris Diderot.

    Google Scholar 

  • Lagrange, J.-B. (2000). L’intégration d’instruments informatiques dans l’enseignement: une approche par les techniques. [The integration of technological instruments in education: an approach by means of techniques.] Educational Studies in Mathematics, 43, 1–30. doi: 10.1023/A:1012086721534.

  • Lavicza, Z., Hohenwarter, M., Jones, K. D., Lu, A., & Dawes, M. (2010). Establishing a professional development network around dynamic mathematics software in England. International Journal for Technology in Mathematics Education, 17(4), 177–182.

    Google Scholar 

  • LeBaron, J., & McDonough, E. (2009). GeSCI meta-review research report on ICT in education and development. Dublin, Ireland: Global e-School and Communities Initiative. Available from http://www.gesci.org/publications.html.

  • Lee, M. C., Tsai, K. H., & Wang, T. (2008). Practical ontology query expansion algorithm for semantic-aware learning objects retrieval. Computers & Education, 50(4), 1240–1257. doi:10.1016/j.compedu.2006.12.007.

    Article  Google Scholar 

  • Leigh-Lancaster, D. (2010). The case of technology in senior secondary mathematics: Curriculum and assessment congruence? In C. Glascodine & K.-A. Hoad (Eds.), ACER Research Conference Proceedings 2010 (pp. 43–46). Camberwell, Australia: Australian Council for Educational Research. Retrieved from http://research.acer.edu.au/cgi/viewcontent.cgi?article=1094&context=research_conference.

  • Lesh, R., Hoover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought—Revealing activities for students and teachers. In A. Kelly & R. Lesh (Eds.), Research design in mathematics and science education (pp. 591–646). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Llinares, S., & Valls, J. (2010). Prospective primary mathematics teachers’ learning from on-line discussions in a virtual video-based environment. Journal of Mathematics Teacher Education, 13(2), 177–196. doi:10.1007/s10857-009-9133-0.

    Article  Google Scholar 

  • Ministère de l’Éducation Nationale, de l’Enseignement Supérieur et de la Recherche (MENESR). (2006). Le socle commun des connaissances et des compétences. Retrieved from http://media.education.gouv.fr/file/51/3/3513.pdf.

  • Ministère de l’Éducation Nationale. (2009, November 19). Vers un nouveau lycée en 2010. Conférence de presse. Retrieved from http://media.education.gouv.fr/file/11_novembre/06/8/Conference_de_presse_lycee_127068.pdf.

  • Mousley, J., Lambdin, D., & Koc, Y. (2003). Mathematics teacher education and technology. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 395–432). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • National Council of Teachers of Mathematics. (1980). An agenda for action: Recommendations for school mathematics of the 1980s. Reston, VA: Author. Retrieved from http://www.nctm.org/standards/content.aspx?id=17278.

  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Author.

    Google Scholar 

  • National Council of Teachers of Mathematics. (2008, March). The role of technology in the teaching and learning of mathematics. A position of the National Council of Teachers of Mathematics. Retrieved from http://www.nctm.org/uploadedFiles/About_NCTM/Position_Statements/Technology%20final.pdf.

  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • OLPC Foundation. (2011, January). Deployments. OLPC. Retrieved from http://wiki.laptop.org/go/Deployments.

  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.

    Google Scholar 

  • Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism (pp. 1–11). Norwood, NJ: Ablex.

    Google Scholar 

  • Pepin, B. (2009). The role of textbooks in the “figured world” of English, French and German classrooms—A comparative perspective. In L. Black, H. L. Mendick, & Y. Solomon (Eds.), Mathematical relationships: Identities and participation (pp. 107–118). London, UK: Routledge.

    Google Scholar 

  • Pierce, R., & Stacey, K. (2010). Mapping pedagogical opportunities provided by mathematics analysis software. International Journal of Computers for Mathematical Learning, 15, 1–20. doi:10.1007/s10758-010-9158-6.

    Article  Google Scholar 

  • Pimm, D., & Johnston-Wilder, S. (2004). Technology, mathematics and secondary schools: A brief, UK, historical perspective. In S. Johnston-Wilder & D. Pimm (Eds.), Teaching secondary mathematics with ICT (pp. 3–17). Maidenhead: Open University Press. Retrieved from http://www.mcgraw-hill.co.uk/openup/chapters/0335213812.pdf.

  • Rojano, T. (2011). Recursos multimedia y el libro de texto gratuito: entre las herramientas universales y los desarrollos ad-hoc. In R. Barriga (Ed.), Entre paradojas: A 50 años de los libros de texto gratuitos (pp. 627–643). Mexico: Colegio de México-SEP-Conaliteg.

    Google Scholar 

  • Ruthven, K. (2007). Teachers, technologies and the structures of schooling. In D. Pitta-Pantazi, & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 52–67). Larnaca, Cyprus: CERME 5.

    Google Scholar 

  • Ruthven, K. (2008). Mathematical technologies as a vehicle for intuition and experiment: A foundational theme of the International Commission on Mathematical Instruction, and a continuing preoccupation. International Journal for the History of Mathematics Education, 3(2), 91–102.

    Google Scholar 

  • Ruthven, K., & Hennessy, S. (2002). A practitioner model of the use of computer-based tools and resources to support mathematics teaching and learning. Educational Studies in Mathematics, 49(1), 47–88. doi:10.1023/A:1016052130572.

    Article  Google Scholar 

  • Sabra, H. (2009). Entre monde du professeur et monde du collectif: Réflexion sur la dynamique de l’association Sesamath. Petit x, 81, 55–78.

    Google Scholar 

  • Sacristán, A. I., Calder, N., Rojano, T., Santos, M., Friedlander, A., & Meissner, H. (2010). The influence and shaping of digital technologies on the learning—and learning trajectories—of mathematical concepts. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain. The 17th ICMI study (Vol. 13, New ICMI Study Series, pp. 179–226). New York, NY: Springer. doi 10.1007/978-1-4419-0146-0_6.

  • Sacristán, A. I., Parada, S., Sandoval, I., & Gil, N. (2009). Experiences related to the professional development of mathematics teachers for the use of technology in their practice. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 41–48). Thessaloniki, Greece: International Group for the Psychology of Mathematics Education.

    Google Scholar 

  • Sacristán, A. I., & Rojano, T. (2009). The Mexican national programs on teaching mathematics and science with technology: The legacy of a decade of experiences of transformation of school practices and interactions. In A. Tatnall & A. Jones (Eds.), WCCE 2009, IFIP Advances in information and communication technology: Education and technology for a better world (pp. 207–215). Boston, MA: Springer. doi: 10.1007/978-3-642-03115-1_22.

  • Sangwin, C., Cazes, C., Lee, A., & Wong, K. L. (2010). Micro-level automatic assessment supported by digital technologies. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics education and technology—Rethinking the terrain. The 17th ICMI study (Vol. 13, New ICMI Study Series, pp. 227–250). New York, NY: Springer. doi: 10.1007/978-1-4419-0146-0_10.

  • Santagata, R., Zannoni, C., & Stigler, J. W. (2007). The role of lesson analysis in pre-service teacher education: An empirical investigation of teacher learning from a virtual video-based field experience. Journal of Mathematics Teacher Education, 10(2), 123–140. doi:10.1007/s10857-007-9029-9.

    Article  Google Scholar 

  • Soury-Lavergne S., Trouche, L., Loisy, C., & Gueudet, G. (2011). Parcours de formation, de formateurs et de stagiaires: Suivi et analyse. Rapport à destination du Ministère de l’Education Nationale, INRP-ENSL. Available from http://eductice.inrp.fr/EducTice/equipe/PRF-2010/.

  • Stroup, W. M., & Wilensky, U. (2000). Assessing learning as emergent phenomena: Moving constructivist statistics beyond the bell curve. In A. E. Kelly & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 877–912). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Sur l’épreuve pratique de mathématiques au baccalauréat en France (2007, September 21). Educmath. Retrieved from http://educmath.inrp.fr/Educmath/en-debat/epreuve-pratique/.

  • Trgalovà, J., Jahn, A.-P., & Soury-Lavergne, S. (2009). Quality process for dynamic geometry resources: the Intergeo project. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the Sixth European Conference on Research on Mathematics Education (pp. 1161–1170). Lyon, France: INRP. Available from www.inrp.fr/editions/cerme6.

  • Trigueros, M., & Sacristán, A. I. (2008). Teachers’ practice and students’ learning in the Mexican programme for Teaching Mathematics with Technology. International Journal of Continuing Engineering Education and Life-Long Learning (IJCEELL), 18(5/6), 678–697. doi:10.1504/IJCEELL.2008.022174.

    Article  Google Scholar 

  • Trigueros, M., & Lozano, M. D. (2007). Developing resources for teaching and learning mathematics with digital technologies: An enactivist approach. For the Learning of Mathematics, 27(2), 45–51.

    Google Scholar 

  • Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307. doi:10.1007/s10758-004-3468-5.

    Article  Google Scholar 

  • UNESCO (2005). Towards knowledge societies (UNESCO World Report). Retrieved from http://www.unesco.org/en/worldreport.

  • UNESCO (2008). Policy framework: ICT competency standards for teachers. Retrieved from http://cst.unesco-ci.org/sites/projects/cst/The%20Standards/ICT-CST-Policy%20Framework.pdf.

  • Ursini, S., & Rojano, T. (2000). Guía para integrar los talleres de capacitación, EMAT. Mexico: SEP-ILCE.

    Google Scholar 

  • Van Es, E., & Sherin, M. G. (2010). The influence of video clubs on teachers’ thinking and practice. Journal of Mathematics Teacher Education, 13, 155–176. doi:10.1007/s10857-009-9130-3.

    Article  Google Scholar 

  • Visnovska, J., Cobb, P., & Dean, C. (2012). Mathematics teachers as instructional designers: What does it take? In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to “lived” resources: Mathematics curriculum materials and teacher development (pp. 323–341). New York, NY: Springer.

    Google Scholar 

  • Watson, A., & De Geest, E. (2005). Principled teaching for deep progress: Improving mathematical learning beyond methods and materials. Educational Studies in Mathematics, 58(2), 209–234. doi:10.1007/s10649-005-2756-x.

    Article  Google Scholar 

  • Wijers, M., Jonker, V., & Drijvers, P. (2010). MobileMath: Exploring mathematics outside the classroom. ZDM—The International Journal on Mathematics Education, 42(7), 789–799. doi: 10.1007/s11858-010-0276-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Trouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Trouche, L., Drijvers, P., Gueudet, G., Sacristán, A.I. (2012). Technology-Driven Developments and Policy Implications for Mathematics Education. In: Clements, M., Bishop, A., Keitel, C., Kilpatrick, J., Leung, F. (eds) Third International Handbook of Mathematics Education. Springer International Handbooks of Education, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4684-2_24

Download citation

Publish with us

Policies and ethics