Skip to main content

Modelling with Mathematics and Technologies

  • Chapter
  • First Online:

Part of the book series: Springer International Handbooks of Education ((SIHE,volume 27))

Abstract

This chapter seeks to provide an integrating theoretical framework for understanding the somewhat disparate and disconnected literatures on “modelling” and “technology” in mathematics education research. From a cultural–historical activity theory, neo-Vygtoskian perspective, mathematical modelling must be seen as embedded within an indivisible, molar “whole” unit of “activity.” This notion situates “technology”—and mathematics, also—as an essential part or “moment” of the whole activity, alongside other mediational means; thus it can only be fully understood in relation to all the other moments. For instance, we need to understand mathematics and technology in relation to the developmental needs and hence the subjectivity and “personalities” of the learners. But, then, also seeing learning as joint teaching–learning activity implies the necessity of understanding the relation of these also to the teachers, and to the wider institutional and professional and political contexts, invoking curriculum and assessment, pedagogy and teacher development, and so on. Historically, activity has repeatedly fused mathematics and technology, whether in academe or in industry: this provides opportunities, but also problems for mathematics education. We illustrate this perspective through two case studies where the mathematical-technologies are salient (spreadsheets, the number line, and CAS), which implicate some of these wider factors, and which broaden the traditional view of technology in social context.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   709.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   899.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bartolini Bussi, M. G. (1998). Joint activity in mathematics classrooms: A Vygotskian analysis. In F. Seeger, J. Voigt, & U. Waschescio (Eds.), The culture of the mathematics classroom (pp. 13–49). Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Bernstein, B. (2000). Pedagogy, symbolic control, and identity. Oxford, UK: Rowman and Littlefield.

    Google Scholar 

  • Black, M. (1962) (Ed.). Models and metaphors: Studies in language and philosophy. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Black, L., Williams, J., Hernandez-Martinez, P., Davis, P., & Wake, G. (2010). Developing a “leading identity”: The relationship between students’ mathematical identities and their career and higher education aspirations. Educational Studies in Mathematics, 73(1), 55–72.

    Article  Google Scholar 

  • Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (Eds.). (2007). Modelling and applications in mathematics education. New York, NY: Springer.

    Google Scholar 

  • Blunden, A. (2008). Forward to Hegel’s logic (being Part 1 of the Encyclopaedia of the Philosophical Science of 1830). In W. Wallace (translation, original 1873) accessed from Marxist Internet Archive, online, 2009.

    Google Scholar 

  • Brown, A. M. (2011). Truth and the renewal of knowledge: The case of mathematics education. Educational Studies in Mathematics, 75(3), 329–343.

    Article  Google Scholar 

  • Bruner, J. S. (1960/1977). The process of education. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Burkhardt, H. (1981). The real world and mathematics. Glasgow, Scotland: Blackie.

    Google Scholar 

  • Cobb, P. (2007). Putting philosophy to work: Coping with multiple theoretical perspectives. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 1–38). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Cobb, P., Yackel, E., & McClain, K. (Eds.). (2000). Communicating and symbolizing in mathematics classrooms: Perspectives on discourse, tools, and instructional design. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Cole, M. (1996). Cultural psychology: A once and future discipline. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Confrey, J., & Maloney, A. (2007). A theory of mathematical modelling in technological settings. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 57–68). New York, NY: Springer.

    Chapter  Google Scholar 

  • Davydov, V. V. (1990). Types of generalization in instruction. Reston, VA: National Council for Teachers of Mathematics.

    Google Scholar 

  • Drijvers, P. (2003). Learning algebra in a computer algebra environment. Design research on the understanding of the concept of parameter (Doctoral dissertation). Utrecht University, The Netherlands. Retrieved from http://igitur-archive.library.uu.nl/dissertations/2003-0925-101838/inhoud.htm.

  • Engeström, Y. (1991). Non scolae sed vitae discimus: Toward overcoming the encapsulation of school learning. Learning and Instruction, 1(3), 243–259.

    Article  Google Scholar 

  • Freudenthal, H. (1983). Didactical phenomenology of mathematical structures. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Geiger, V., Faragher, R., & Goos, M. (2010). CAS-enabled technologies as “agents provocateurs” in teaching and learning mathematical modelling in secondary school classrooms. Mathematics Education Research Journal, 22(2), 48–68.

    Article  Google Scholar 

  • Gravemeier, K. (2007). Emergent modelling as a precursor to mathematical modelling. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 137–144). New York, NY: Springer.

    Chapter  Google Scholar 

  • Gravemeier, K., Lehrer, R., van Oers, B., & Verschaffel, L. (2002). Symbolizing, modelling and tool use in mathematics education. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Hanna, G., & Jahnke, H. N. (2007). Proving and modelling. In W. Blum, P. L. Galbraith, H-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 142–152). New York, NY: Springer.

    Google Scholar 

  • Holland, D., & Quinn, N. (Eds.). (1987). Cultural models in language and thought. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Hoyles, C., Noss, R., & Pozzi, S. (2001). Proportional reasoning in nursing practice. Journal for Research in Mathematics Education, 32, 4–27.

    Article  Google Scholar 

  • Joseph, G. G. (2010). Crest of the peacock: Non-European roots of mathematics (3rd ed.). Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Kaiser, G., Blum, W., Ferri, R., & Stillman, G. (Eds.). (2011). Trends in teaching and learning of mathematical modelling. New York, NY: Springer.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM—Zentralblatt fur Didaktik der Mathematik, 38(3), 302–310.

    Article  Google Scholar 

  • Kent, P., Guile, R., Hoyles, C., & Bakker, A. (2007). Characterising the use of mathematical knowledge in boundary-crossing situations at work. Mind, Culture, and Activity, 14(1–2), 64–82.

    Article  Google Scholar 

  • Krutetskii, V. (1976). The psychology of mathematical abilities in schoolchildren. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: Chicago University Press.

    Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from. New York, NY: Basic Books.

    Google Scholar 

  • Lampert, M. (1990). When the problem is not the question and the solution is not the answer. American Educational Research Journal, 27, 29–63.

    Google Scholar 

  • Latour, B. (1987). Science in action. Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Lave, J. (1988). Cognition in practice. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Leontiev, A. N. (1978). Activity, consciousness, and personality. Englewood Cliffs, N.J.: Prentice-Hall.

    Google Scholar 

  • Leontiev, A. N. (1981). Problems of the development of mind. Moscow, Russia: Progress Publishers.

    Google Scholar 

  • Lesh, R., & Doerr, H. (2003). Beyond constructivism: Models, and modeling perspectives on mathematics problem solving, learning, and teaching. Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Lesh, R., Galbraith, P. L., Haines, C. R., & Hurford, A. (Eds.). (2010). Modeling students’ mathematical modelling competences. New York, NY: Springer.

    Google Scholar 

  • Lesh, R., & Zawojewski, J. (2007). Problem solving and modelling. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 763–804). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Noss, R., Bakker, A., Hoyles, C., & Kent, P. (2007). Situating graphs as workplace knowledge. Educational Studies in Mathematics, 65(3), 367–384.

    Article  Google Scholar 

  • Noss, R., & Hoyles, C. (2011). Modeling to address techno-mathematical literacies in work. In G. Kaiser, W. Blum, R. B. Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 75–78). New York, NY: Springer.

    Google Scholar 

  • Pollak, H. (1969). How can we teach applications of mathematics? Educational Studies in Mathematics, 2(2–3), 393–404.

    Article  Google Scholar 

  • Polya, G. (1957). How to solve it. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Roth, W. -M., & Lee, Y. (2007). “Vygotsky’s neglected legacy”: Cultural-historical activity theory. Review of Educational Research, 77, 186–232.

    Article  Google Scholar 

  • Roth, W.-M., & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning. Rotterdam, The Netherlands: Sense.

    Book  Google Scholar 

  • Ryan, J., & Williams, J. S. (2007). Children’s mathematics 4–15. Milton Keynes, UK: Open University Press.

    Google Scholar 

  • Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Sfard, A. (1998). Two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4–13.

    Google Scholar 

  • Sfard, A. (2008). Thinking as communicating. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Strässer, R. (2000). Mathematical means and models from vocational contexts: A German perspective. In A. Bessot & J. Ridgway (Eds.), Education for mathematics in the workplace (pp. 65–80). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Strässer, R. (2007). Everyday instruments: On the use of mathematics. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 171–178). New York, NY: Springer.

    Chapter  Google Scholar 

  • Streefland, L. (1991). Fractions in realistic mathematics education. Dordrecht, The Netherlands: Kluwer.

    Book  Google Scholar 

  • Treffers, A. (1987). Three dimensions: A model of goal and theory description, the Wiskobas project. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Van Oers, B. (2002). The mathematization of young children’s language. In K. Gravemeier, R. Lehrer, B. van Oers, & L. Verschaffel (Eds.), Symbolizing, modelling and tool use in mathematics education (pp. 29–58). Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Vygotsky, L. S. (1986). Language and thought. Cambridge, MA: MIT Press.

    Google Scholar 

  • Wake, G. (2007). Considering workplace activity from a mathematical modelling perspective. In W. Blum, P. L. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 395–402). New York, NY: Springer.

    Chapter  Google Scholar 

  • Wartofsky, M. (1979). Models, representations and the scientific understanding. Dordrecht, The Netherlands: Reidel.

    Google Scholar 

  • Watson, A., & Winbourne, P. (Eds.). (2007). New directions for situated cognition in mathematics. New York, MA: Springer.

    Google Scholar 

  • Wenger, E. (1998). Communities of practice. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Williams, J. S. (2011). Towards a political economy of education. Mind, Culture, and Activity, 18, 276–292.

    Article  Google Scholar 

  • Williams, J. S., & Wake, G. D. (2007a). Black boxes in workplace mathematics. Educational Studies in Mathematics, 64, 317–343.

    Article  Google Scholar 

  • Williams, J. S., & Wake, G. D. (2007b). Metaphors and models in translation between college and workplace mathematics. Educational Studies in Mathematics, 64, 345–371.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, J., Goos, M. (2012). Modelling with Mathematics and Technologies. In: Clements, M., Bishop, A., Keitel, C., Kilpatrick, J., Leung, F. (eds) Third International Handbook of Mathematics Education. Springer International Handbooks of Education, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4684-2_18

Download citation

Publish with us

Policies and ethics