Skip to main content

Non-canonical Solutions in Children–Adult Interactions—A Case Study of the Emergence of Mathematical Creativity

  • Chapter
  • First Online:
Early Mathematics Learning

Abstract

In research about mathematical creativity, seldom is the early childhood taken into account, although mathematical creativity already develops at preschool age (e.g., Becker-Textor, 1998; Krenz and Rönnau, Entwicklung und Lernen im Kindergarten. Psychologische Aspekte und pädagogische Hinweise für die Praxis (7th ed.), 1997). This chapter investigates mathematically creative solutions of kindergartners (in Germany children between 3 and 6 years attend the “kindergarten.”) who have social/emotional difficulties. Starting point is the longitudinal study MaKreKi (mathematical creativity of children), in which theories of mathematics education and psychoanalysis are amalgamated for the investigation of the development of mathematical creativity. In this chapter, two episodes of two children aged 4–5 years are presented, while they cope with a mathematical task. It focuses on the mathematically creative ideas emerging in the interaction between the involved children and the accompanying person and on how the children deal with the mathematical instructions given by the accompanying person.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hadamard has used introspection to describe mathematical thought processes. He developed the four-stage model of mathematical creative thinking: Preparation, incubation, illumination and verification (see Hadamard 1954).

  2. 2.

    http://www.idea-frankfurt.eu/. Accessed 6 Aug 2013.

  3. 3.

    http://www.idea-frankfurt.eu/en/research/research-domains/diagnostics-and-prevention/eva. Accessed 6 Aug 2013.

  4. 4.

    http://www.idea-frankfurt.eu/en/research/research-domains/resources-and-limitations-of-successful-learning/erstmal. Accessed 6 Aug 2013.

  5. 5.

    The following extract of René’s solution process refers to an analysis, which has already been published in German. For more details see Hümmer et al. (2011) and Krummheuer (2011).

  6. 6.

    Because of the difficulties conducting IQtests in early childhood, Nina has only participated in the performance test (and not in the verbal test). So these values have to be interpreted carefully.

  7. 7.

    In Germany the period of a marriage lasts 14 years on average, so many children like Nina live in a single-parentfamily.

References

  • Ainsworth, M., et al. (1978). Patterns of attachment. Hillsdale: Erlbaum.

    Google Scholar 

  • Bauersfeld, H. (1995). “Language games” in the mathematics classroom: Their function and their effects. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 271–289). Hillsdale: Lawrence Erlbaum Associates

    Google Scholar 

  • Becker-Textor, I. (1998). Kreativität im Kindergarten. Anleitung zur kindgemäßen Intelligenzförderung im Kindergarten (8th ed.). Freiburg im Breisgau: Herder.

    Google Scholar 

  • Bolwby, J. (1951). Maternal care and mental health. A report prepared on behalf of the World Health Organization as a contribution to the United Nations programme for the welfare of homeless children. World Health Organization Monograph Series. Geneva: World Health Organization.

    Google Scholar 

  • Bowlby J. (1969). Attachment. Attachment and loss (Vol. 1). New York: Basic Books.

    Google Scholar 

  • Brandt, B., & Krummheuer, G. (2001). Paraphrase und Traduktion. Partizipationstheoretische Elemente einer Interaktionstheorie des Mathematiklernens in der Grundschule. Weinheim und Basel: Beltz.

    Google Scholar 

  • Brink, A. (2000). The creative matrix. Anxiety and the origin of creativity. New York: Peter Lang.

    Google Scholar 

  • Bruner, J. (1990). Acts of meaning. Cambridge: Harvard University Press.

    Google Scholar 

  • Cobb, P., & Bauersfeld, H. (1995). Introduction: The coordination of psychological and sociological perspectives in mathematics education. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 1–16). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Ervynck, G. (1991). Mathematical creativity. Advanced mathematical thinking. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42–53). Dordrecht: Kluwer.

    Google Scholar 

  • Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Green, J., et al. (2000). A new method of evaluating attachment representations in the young school age children: The Manchester Child Attachment Story Task (MCAST), attachment and human development (Vol. 2, pp. 48–70).

    Google Scholar 

  • Grossmann, K. (1984). Zweijährige Kinder im Zusammenspiel mit ihren Müttern, Vätern, einer fremden Erwachsenen und in einer Überaschungssituation. Beobachtungen aus bindungs- und kompetenztheoretischer Sicht. Regensburg: Universität Regensburg.

    Google Scholar 

  • Hadamard, J. (1954). Essay on the psychology of invention in the mathematical field. Princeton: Princeton University Press.

    Google Scholar 

  • Hümmer, A., et al. (2011). Erste Analysen zum Zusammenhang von mathematischer Kreativität und kindlicher Bindung. Ein interdisziplinärer Ansatz zur Untersuchung der Entwicklung mathematischer Kreativität bei sogenannten Risikokindern. In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Empirische Studien zur Didaktik der Mathematik. Die Projekte erStMaL und MaKreKi. Mathematikdidaktische Forschung am ‘Center of Individual Development and Adaptive Education’ (IDeA) (pp. 175–196). Münster: Waxmann.

    Google Scholar 

  • Jungwirth, H., & Krummheuer, G. (2006). Banal sozial? Zur Soziologisierung des mathematischen Lehrens und Lernens durch die interpretative Unterrichtsforschung. In H. Jungwirth & G. Krummheuer (Eds.), Der Blick nach innen: Aspekte der alltäglichen Lebenswelt Mathematikunterricht (Vol. 1, pp. 7–18). Münster: Waxmann.

    Google Scholar 

  • Krenz, A. & Rönnau, H. (1997). Entwicklung und Lernen im Kindergarten. Psychologische Aspekte und pädagogische Hinweise für die Praxis (7th ed.). Freiburg im Breisgau: Herder.

    Google Scholar 

  • Krummheuer, G. (1995): The ethnography of argumentation. In: P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: interaction in classroom cultures (pp. 229–270). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom. Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), (pp. 60–82).

    Google Scholar 

  • Krummheuer, G. (2011). Die empirisch begründete Herleitung des Begriffs der „Interaktionalen Nische mathematischer Denkentwicklung“ (NMD). In B. Brandt, R. Vogel, & G. Krummheuer (Eds.), Empirische Studien zur Didaktik der Mathematik. Die Projekte erStMaL und MaKreKi. Mathematikdidaktische Forschung am ‘Center of Individual Development and Adaptive Education’ (IDeA) (pp. 25–89). Münster: Waxmann.

    Google Scholar 

  • Krummheuer, G. (2012a). Die Interaktionsanalyse. In: F. Heinzel (Ed.), Methoden der Kindheitsforschung (pp. 234–247). Weinheim: Juventa.

    Google Scholar 

  • Krummheuer, G. (2012b). The “Non-canonical” solution and the “Improvisation” as conditions for early years mathematics learning processes: The Concept of the “Interactional Niche in the Development of Mathematical Thinking” (NMT). Journal für Mathematikdidaktik, 33(2), 317–338.

    Article  Google Scholar 

  • Lehmann, B. E. (1988). Rationalität im Alltag? Zur Konstitution sinnhaften Handelns in der Perspektiver interpretativer Soziologie. Münster: Waxmann.

    Google Scholar 

  • Liljedahl, P. (2008). Mathematical creativity: In the words of the creators. Proceedings of the 5th International Conference Creativity in Mathematics and the Education of Gifted Students (pp. 153–160). Haifa, Israel.

    Google Scholar 

  • Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–262.

    Google Scholar 

  • Mehan, H., & Wood, H. (1975). The reality of ethnomethodology. New York: Wiley.

    Google Scholar 

  • Petermann, F. (2009). Wechsler Preschool and Primary Scale of Intelligence-III (WPPSI-III, deutsche Version). Frankfurt am Main: Pearson Assessment & Information GmbH.

    Google Scholar 

  • Poincaré, H. (1948). Science and method. New York: Dover.

    Google Scholar 

  • Sarama, J., & Clements, D. H. (2008). Mathematics in the early childhood. In: O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 67–94). Charlotte: Information Age Publishing.

    Google Scholar 

  • Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14(1), 19–34.

    Google Scholar 

  • Sternberg, R. J., & Lubart, T. I. (2000). The concept of creativity: Prospects and paradigms. Handbook of creativity. R. J. Sternberg. Cambridge: Cambridge University Press.

    Google Scholar 

  • Toulmin, S. E. (1969). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Urban, K. (2003). Towards a componential model of creativity. In: D. Ambrose, et al. (Eds.), Creative intelligence (pp. 81–112). Cresskill: Hampton.

    Google Scholar 

  • Vogel, R., & Wippermann, S. (2004). Dokumentation didaktischen Wissens in der Hochschule: Didaktische Design Patterns als eine Form des Best-Practice-Sharing im Bereich von IKT in der Hochschule. In K. Fuchs-Kittowski, W. Umstätter, & R. Wagner-Döbler (Eds.), Jahrbuch Wissenschaftsforschung (pp. 27–42). Berlin: Gesellschaft für Wissenschaftsforschung.

    Google Scholar 

  • Vogel, R. (2014). Mathematical Situations of Play and Exploration as an Empirical Research Instrument. In: U. Kortenkamp et al. (eds.), Early Mathematics Learning, (pp. 223–236). New York: Springer.

    Google Scholar 

  • Wheatley, G. (2008). Which doesn’t belong. Bethany Beach: Mathematics Learning.

    Google Scholar 

Download references

Acknowledgments

The preparation of this paper was funded by the federal state government of Hessen (LOEWE initiative).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Münz .

Editor information

Editors and Affiliations

Appendix

Appendix

Rules of Transcription

Column 1

Serially numbered lines

Column 2

Shows when people are talking at the same time

Column 3

Abbreviations for the names of interacting people

Column 4

Verbal (regular font) and non-verbal (italic font) actions

/

Rising pitch

-

Even pitch

\

Falling pitch

… …

Breaks of 1, 2 or 3 s

(4)

Breaks of a specified time span

Bold

Accentuated word

S p a c e d

Spoken slowly

(word)

Unclear utterance

(remark)

Remark, offering alternatives to unclear utterances

 + 

The indicated way of speaking ends at this symbol

#

There is no break; the second speaker follows immediately

<

Indicates where people are talking at the same time

>

The next block of simultaneous speech is indicated by a change

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Münz, M. (2014). Non-canonical Solutions in Children–Adult Interactions—A Case Study of the Emergence of Mathematical Creativity. In: Kortenkamp, U., Brandt, B., Benz, C., Krummheuer, G., Ladel, S., Vogel, R. (eds) Early Mathematics Learning. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4678-1_9

Download citation

Publish with us

Policies and ethics