Advertisement

The Role of GPR55 in Cancer

  • Clara Andradas
  • María M. Caffarel
  • Eduardo Pérez-Gómez
  • Manuel Guzmán
  • Cristina Sánchez
Chapter
Part of the The Receptors book series (REC, volume 24)

Abstract

Evidence accumulated during the last few years suggests that GPR55 is an important component of the molecular circuitry that controls cancer cell behavior. As will be described in this chapter, this receptor has been directly or indirectly related to the basic alterations that drive malignant growth: uncontrolled cancer cell proliferation, sustained angiogenesis, and metastatic capability. GPR55 activation promotes cell proliferation, produces pro-angiogenic effects, and favors cancer cell migration. It also modulates immune responses, which may have important implications in the context of cancer pathogenesis as well. In addition, GPR55 is expressed by a large number of human cancer cell lines and human tumors and, most important, its expression correlates with tumor malignancy. Together, these data indicate that GPR55 plays a relevant role in cancer and opens the possibility of considering this orphan receptor as a new therapeutic target and potential biomarker in oncology.

Keywords

Cancer Cell Proliferation Human Dermal Microvascular Endothelial Cell Human Breast Adenocarcinoma Cell GPR55 Expression GPR55 Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

AEA

Arachidonoylethanolamide (anandamide)

CBD

Cannabidiol

COX-2

Cyclooxygenase-2

cPLA2

Cytosolic phospholipase A2

ERK

Extracellular signal-regulated kinase

GPCR

G protein-coupled receptor

HMVEC

Human microvascular endothelial cells

HUVEC

Human umbilical vein endothelial cells

LOX

Lipoxygenase

LPA

Lysophosphatidic acid

LPI

Lysophosphatidylinositol

NFAT

Nuclear factor of activate T-cells

NGF

Nerve growth factor

PI3K

Phosphoinositide 3-kinase

PPAR

Peroxisome proliferator-activated receptor

ROS

Reactive oxygen species

RTK

Receptor tyrosine kinase

shRNA

Short hairpin RNA

siRNA

Small interference RNA

TRP

Transient receptor potential

VEGF

Vascular endothelial growth factor

Notes

Acknowledgements

This work was supported by grants from Spanish Ministry of Science and Innovation (to CS), Comunidad de Madrid (to MG), Complutense University (to MG), Fundación Mutua Madrileña (to CS), and GW and Otsuka Pharmaceuticals (to CS and MG). CA, MMC, and EP-G were the recipients of research contracts from Spanish Ministry of Science and Innovation, Fundación Ferrer para la Investigación, and Asociación Española Contra el Cáncer, respectively. We are indebted to the members of our laboratory for their continuous support.

References

  1. Aguado T, Carracedo A, Julien B, Velasco G, Milman G, Mechoulam R et al (2007) Cannabinoids induce glioma stem-like cell differentiation and inhibit gliomagenesis. J Biol Chem 282:6854–6862PubMedCrossRefGoogle Scholar
  2. Andradas C, Caffarel MM, Perez-Gomez E, Salazar M, Lorente M, Velasco G et al (2011) The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. Oncogene 30:245–252PubMedCrossRefGoogle Scholar
  3. Balenga NA, Aflaki E, Kargl J, Platzer W, Schroder R, Blattermann S et al (2011) GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Res 21(10): 1452–1469PubMedCrossRefGoogle Scholar
  4. Blazquez C, Carracedo A, Barrado L, Real PJ, Fernandez-Luna JL, Velasco G et al (2006) Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J 20: 2633–2635PubMedCrossRefGoogle Scholar
  5. Blazquez C, Salazar M, Carracedo A, Lorente M, Egia A, Gonzalez-Feria L et al (2008) Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res 68:1945–1952PubMedCrossRefGoogle Scholar
  6. Bond RA, Ijzerman AP (2006) Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci 27:92–96PubMedCrossRefGoogle Scholar
  7. Bouaboula M, Perrachon S, Milligan L, Canat X, Rinaldi-Carmona M, Portier M et al (1997) A selective inverse agonist for central cannabinoid receptor inhibits mitogen-activated protein kinase activation stimulated by insulin or insulin-like growth factor 1. Evidence for a new model of receptor/ligand interactions. J Biol Chem 272:22330–22339PubMedCrossRefGoogle Scholar
  8. Brown AJ (2007) Novel cannabinoid receptors. Br J Pharmacol 152:567–575PubMedCrossRefGoogle Scholar
  9. Brown AJ, Daniels DA, Kassim M, Brown S, Haslam CP, Terrell VR et al (2011) Pharmacology of GPR55 in yeast and identification of GSK494581A as a mixed-activity glycine transporter subtype 1 inhibitor and GPR55 agonist. J Pharmacol Exp Ther 337:236–246PubMedCrossRefGoogle Scholar
  10. Caffarel MM, Sarrio D, Palacios J, Guzmán M, Sánchez C (2006) Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res 66:6615–6621PubMedCrossRefGoogle Scholar
  11. Caffarel MM, Andradas C, Mira E, Perez-Gomez E, Cerutti C, Moreno-Bueno G et al (2010) Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer 9:196PubMedCrossRefGoogle Scholar
  12. Calatozzolo C, Salmaggi A, Pollo B, Sciacca FL, Lorenzetti M, Franzini A et al (2007) Expression of cannabinoid receptors and neurotrophins in human gliomas. Neurol Sci 28:304–310PubMedCrossRefGoogle Scholar
  13. Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P et al (2002) Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J 16:1307–1309PubMedGoogle Scholar
  14. Cantarella G, Scollo M, Lempereur L, Saccani-Jotti G, Basile F, Bernardini R (2011) Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells. Biochem Pharmacol 82:380–388PubMedCrossRefGoogle Scholar
  15. Carracedo A, Gironella M, Lorente M, Garcia S, Guzmán M, Velasco G et al (2006) Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res 66:6748–6755PubMedCrossRefGoogle Scholar
  16. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMedCrossRefGoogle Scholar
  17. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T et al (2010) LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol 50:157–186PubMedCrossRefGoogle Scholar
  18. Cianchi F, Papucci L, Schiavone N, Lulli M, Magnelli L, Vinci MC et al (2008) Cannabinoid receptor activation induces apoptosis through tumor necrosis factor alpha-mediated ceramide de novo synthesis in colon cancer cells. Clin Cancer Res 14:7691–7700PubMedCrossRefGoogle Scholar
  19. Daly C, Ross R, Whyte J, Henstridge C, Irving A, McGrath J (2010) Fluorescent ligand binding reveals heterogeneous distribution of adrenoceptors and ‘cannabinoid-like’ receptors in small arteries. Br J Pharmacol 159(4):787–796PubMedCrossRefGoogle Scholar
  20. De Jesus ML, Hostalot C, Garibi JM, Salles J, Meana JJ, Callado LF (2010) Opposite changes in cannabinoid CB1 and CB2 receptor expression in human gliomas. Neurochem Int 56:829–833PubMedCrossRefGoogle Scholar
  21. Dorsam RT, Gutkind JS (2007) G-protein-coupled receptors and cancer. Nat Rev Cancer 7:79–94PubMedCrossRefGoogle Scholar
  22. Ellert-Miklaszewska A, Grajkowska W, Gabrusiewicz K, Kaminska B, Konarska L (2007) Distinctive pattern of cannabinoid receptor type II (CB2) expression in adult and pediatric brain tumors. Brain Res 1137:161–169PubMedCrossRefGoogle Scholar
  23. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562PubMedCrossRefGoogle Scholar
  24. Fonseca BM, Teixeira NA, Almada M, Taylor AH, Konje JC, Correia-da-Silva G (2011) Modulation of the novel cannabinoid receptor—GPR55—during rat fetoplacental development. Placenta 32:462–469PubMedCrossRefGoogle Scholar
  25. Ford LA, Roelofs AJ, Anavi-Goffer S, Mowat L, Simpson DG, Irving AJ et al (2010) A role for L-alpha-lysophosphatidylinositol and GPR55 in the modulation of migration, orientation and polarization of human breast cancer cells. Br J Pharmacol 160:762–771PubMedCrossRefGoogle Scholar
  26. Guida M, Ligresti A, De Filippis D, D’Amico A, Petrosino S, Cipriano M et al (2010) The levels of the endocannabinoid receptor CB2 and its ligand 2-arachidonoylglycerol are elevated in endometrial carcinoma. Endocrinology 151:921–928PubMedCrossRefGoogle Scholar
  27. Gustafsson K, Wang X, Severa D, Eriksson M, Kimby E, Merup M et al (2008) Expression of ­cannabinoid receptors type 1 and type 2 in non-Hodgkin lymphoma: growth inhibition by receptor activation. Int J Cancer 123:1025–1033PubMedCrossRefGoogle Scholar
  28. Guzmán M (2003) Cannabinoids: potential anticancer agents. Nat Rev Cancer 3:745–755PubMedCrossRefGoogle Scholar
  29. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  30. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  31. Henstridge CM, Balenga NA, Ford LA, Ross RA, Waldhoer M, Irving AJ (2009) The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. FASEB J 23:183–193PubMedCrossRefGoogle Scholar
  32. Henstridge CM, Balenga NA, Schroder R, Kargl JK, Platzer W, Martini L et al (2010) GPR55 ligands promote receptor coupling to multiple signalling pathways. Br J Pharmacol 160(3):604–614PubMedCrossRefGoogle Scholar
  33. Herrera B, Carracedo A, Diez-Zaera M, Guzmán M, Velasco G (2005) p38 MAPK is involved in CB2 receptor-induced apoptosis of human leukaemia cells. FEBS Lett 579:5084–5088PubMedCrossRefGoogle Scholar
  34. Houben AJ, Moolenaar WH (2011) Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev 30:557–565PubMedCrossRefGoogle Scholar
  35. Howlett AC, Reggio PH, Childers SR, Hampson RE, Ulloa NM, Deutsch DG (2011) Endocannabinoid tone versus constitutive activity of cannabinoid receptors. Br J Pharmacol 163:1329–1343PubMedCrossRefGoogle Scholar
  36. Huang L, Ramirez JC, Frampton GA, Golden LE, Quinn MA, Pae HY et al (2011) Anandamide exerts its antiproliferative actions on cholangiocarcinoma by activation of the GPR55 receptor. Lab Invest 91:1007–1017PubMedCrossRefGoogle Scholar
  37. Izzo AA, Borrelli F, Capasso R, Di Marzo V, Mechoulam R (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30:515–527PubMedCrossRefGoogle Scholar
  38. Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269PubMedCrossRefGoogle Scholar
  39. Jenkin KA, McAinch AJ, Grinfeld E, Hryciw DH (2010) Role for cannabinoid receptors in human proximal tubular hypertrophy. Cell Physiol Biochem 26:879–886PubMedCrossRefGoogle Scholar
  40. Jorda MA, Lowenberg B, Delwel R (2003a) The peripheral cannabinoid receptor Cb2, a novel oncoprotein, induces a reversible block in neutrophilic differentiation. Blood 101:1336–1343PubMedCrossRefGoogle Scholar
  41. Jorda MA, Rayman N, Valk P, De Wee E, Delwel R (2003b) Identification, characterization, and function of a novel oncogene: the peripheral cannabinoid receptor Cb2. Ann N Y Acad Sci 996:10–16PubMedCrossRefGoogle Scholar
  42. Kapur A, Zhao P, Sharir H, Bai Y, Caron MG, Barak LS et al (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284:29817–29827PubMedCrossRefGoogle Scholar
  43. Kelly P, Moeller BJ, Juneja J, Booden MA, Der CJ, Daaka Y et al (2006) The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proc Natl Acad Sci U S A 103:8173–8178PubMedCrossRefGoogle Scholar
  44. Kotsikorou E, Madrigal KE, Hurst DP, Sharir H, Lynch DL, Heynen-Genel S et al (2011) Identification of the GPR55 agonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry 50:5633–5647PubMedCrossRefGoogle Scholar
  45. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov 10:47–60PubMedCrossRefGoogle Scholar
  46. Lauckner JE, Jensen JB, Chen HY, Lu HC, Hille B, Mackie K (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci U S A 105:2699–2704PubMedCrossRefGoogle Scholar
  47. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J (2006) GPR92 as a new G12/13- and Gq-coupled lysophosphatidic acid receptor that increases cAMP, LPA5. J Biol Chem 281:23589–23597PubMedCrossRefGoogle Scholar
  48. Ligresti A, Moriello AS, Starowicz K, Matias I, Pisanti S, De Petrocellis L et al (2006) Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 318:1375–1387PubMedCrossRefGoogle Scholar
  49. Malfitano AM, Ciaglia E, Gangemi G, Gazzerro P, Laezza C, Bifulco M (2011) Update on the endocannabinoid system as an anticancer target. Expert Opin Ther Targets 15:297–308PubMedCrossRefGoogle Scholar
  50. Massi P, Vaccani A, Ceruti S, Colombo A, Abbracchio MP, Parolaro D (2004) Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharmacol Exp Ther 308:838–845PubMedCrossRefGoogle Scholar
  51. McAllister SD, Murase R, Christian RT, Lau D, Zielinski AJ, Allison J et al (2011) Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Res Treat 129(1):37–47PubMedCrossRefGoogle Scholar
  52. McKallip RJ, Lombard C, Fisher M, Martin BR, Ryu S, Grant S et al (2002) Targeting CB2 cannabinoid receptors as a novel therapy to treat malignant lymphoblastic disease. Blood 100:627–634PubMedCrossRefGoogle Scholar
  53. McKallip RJ, Jia W, Schlomer J, Warren JW, Nagarkatti PS, Nagarkatti M (2006) Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol Pharmacol 70:897–908PubMedCrossRefGoogle Scholar
  54. Monet M, Gkika D, Lehen’kyi V, Pourtier A, Vanden Abeele F, Bidaux G et al (2009) Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation. Biochim Biophys Acta 1793:528–539PubMedCrossRefGoogle Scholar
  55. Murph M, Tanaka T, Liu S, Mills GB (2006) Of spiders and crabs: the emergence of lysophospholipids and their metabolic pathways as targets for therapy in cancer. Clin Cancer Res 12:6598–6602PubMedCrossRefGoogle Scholar
  56. Noguchi K, Ishii S, Shimizu T (2003) Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278:25600–25606PubMedCrossRefGoogle Scholar
  57. Oka S, Nakajima K, Yamashita A, Kishimoto S, Sugiura T (2007) Identification of GPR55 as a lysophosphatidylinositol receptor. Biochem Biophys Res Commun 362:928–934PubMedCrossRefGoogle Scholar
  58. Oka S, Toshida T, Maruyama K, Nakajima K, Yamashita A, Sugiura T (2009) 2-Arachidonoyl-sn-glycero-3-phosphoinositol: a possible natural ligand for GPR55. J Biochem 145:13–20PubMedCrossRefGoogle Scholar
  59. Oka S, Kimura S, Toshida T, Ota R, Yamashita A, Sugiura T (2010) Lysophosphatidylinositol induces rapid phosphorylation of p38 mitogen-activated protein kinase and activating transcription factor 2 in HEK293 cells expressing GPR55 and IM-9 lymphoblastoid cells. J Biochem 147(5):671–678PubMedCrossRefGoogle Scholar
  60. Olea-Herrero N, Vara D, Malagarie-Cazenave S, Diaz-Laviada I (2009) Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-methanandamide and JWH-015: involvement of CB2. Br J Cancer 101:940–950PubMedCrossRefGoogle Scholar
  61. Pertwee RG, Howlett AC, Abood ME, Alexander SP, Di Marzo V, Elphick MR et al (2010) International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB and CB. Pharmacol Rev 62:588–631PubMedCrossRefGoogle Scholar
  62. Pietr M, Kozela E, Levy R, Rimmerman N, Lin YH, Stella N et al (2009) Differential changes in GPR55 during microglial cell activation. FEBS Lett 583:2071–2076PubMedCrossRefGoogle Scholar
  63. Piñeiro R, Maffucci T, Falasca M (2011) The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. Oncogene 30:142–152PubMedCrossRefGoogle Scholar
  64. Portier M, Rinaldi-Carmona M, Pecceu F, Combes T, Poinot-Chazel C, Calandra B et al (1999) SR 144528, an antagonist for the peripheral cannabinoid receptor that behaves as an inverse agonist. J Pharmacol Exp Ther 288:582–589PubMedGoogle Scholar
  65. Preet A, Qamri Z, Nasser MW, Prasad A, Shilo K, Zou X et al (2011) Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev Res (Phila) 4:65–75CrossRefGoogle Scholar
  66. Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH et al (2009) Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther 8:3117–3129PubMedCrossRefGoogle Scholar
  67. Rayman N, Lam KH, Van Leeuwen J, Mulder AH, Budel LM, Lowenberg B et al (2007) The expression of the peripheral cannabinoid receptor on cells of the immune system and non-Hodgkin’s lymphomas. Leuk Lymphoma 48:1389–1399PubMedCrossRefGoogle Scholar
  68. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101PubMedCrossRefGoogle Scholar
  69. Sánchez C, de Ceballos ML, Gomez del Pulgar T, Rueda D, Corbacho C, Velasco G et al (2001) Inhibition of glioma growth in vivo by selective activation of the CB(2) cannabinoid receptor. Cancer Res 61:5784–5789PubMedGoogle Scholar
  70. Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H (2008) Cannabinoids for cancer treatment: progress and promise. Cancer Res 68:339–342PubMedCrossRefGoogle Scholar
  71. Sawzdargo M, Nguyen T, Lee DK, Lynch KR, Cheng R, Heng HH et al (1999) Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain. Brain Res Mol Brain Res 64:193–198PubMedCrossRefGoogle Scholar
  72. Shi Y, Zou M, Baitei EY, Alzahrani AS, Parhar RS, Al-Makhalafi Z et al (2008) Cannabinoid 2 receptor induction by IL-12 and its potential as a therapeutic target for the treatment of anaplastic thyroid carcinoma. Cancer Gene Ther 15:101–107PubMedCrossRefGoogle Scholar
  73. Smit MJ, Vischer HF, Bakker RA, Jongejan A, Timmerman H, Pardo L et al (2007) Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity. Annu Rev Pharmacol Toxicol 47:53–87PubMedCrossRefGoogle Scholar
  74. Staton PC, Hatcher JP, Walker DJ, Morrison AD, Shapland EM, Hughes JP et al (2008) The putative cannabinoid receptor GPR55 plays a role in mechanical hyperalgesia associated with inflammatory and neuropathic pain. Pain 139:225–236PubMedCrossRefGoogle Scholar
  75. Sutphen R, Xu Y, Wilbanks GD, Fiorica J, Grendys EC Jr, LaPolla JP et al (2004) Lysophospholipids are potential biomarkers of ovarian cancer. Cancer Epidemiol Biomarkers Prev 13:1185–1191PubMedGoogle Scholar
  76. Tao YX (2008) Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. Pharmacol Ther 120:129–148PubMedCrossRefGoogle Scholar
  77. Valk PJ, Delwel R (1998) The peripheral cannabinoid receptor, Cb2, in retrovirally-induced leukemic transformation and normal hematopoiesis. Leuk Lymphoma 32:29–43PubMedGoogle Scholar
  78. Valk PJ, Hol S, Vankan Y, Ihle JN, Askew D, Jenkins NA et al (1997) The genes encoding the peripheral cannabinoid receptor and alpha-L-fucosidase are located near a newly identified common virus integration site, Evi11. J Virol 71:6796–6804PubMedGoogle Scholar
  79. Valk PJ, Vankan Y, Joosten M, Jenkins NA, Copeland NG, Lowenberg B et al (1999) Retroviral insertions in Evi12, a novel common virus integration site upstream of Tra1/Grp94, frequently coincide with insertions in the gene encoding the peripheral cannabinoid receptor Cnr2. J Virol 73:3595–3602PubMedGoogle Scholar
  80. Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582:2093–2101PubMedCrossRefGoogle Scholar
  81. Velasco G, Carracedo A, Blazquez C, Lorente M, Aguado T, Haro A et al (2007) Cannabinoids and gliomas. Mol Neurobiol 36:60–67PubMedCrossRefGoogle Scholar
  82. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501PubMedCrossRefGoogle Scholar
  83. Waldeck-Weiermair M, Zoratti C, Osibow K, Balenga N, Goessnitzer E, Waldhoer M et al (2008) Integrin clustering enables anandamide-induced Ca2+ signaling in endothelial cells via GPR55 by protection against CB1-receptor-triggered repression. J Cell Sci 121:1704–1717PubMedCrossRefGoogle Scholar
  84. Whyte LS, Ryberg E, Sims NA, Ridge SA, Mackie K, Greasley PJ et al (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci U S A 106:16511–16516PubMedCrossRefGoogle Scholar
  85. Worzfeld T, Wettschureck N, Offermanns S (2008) G(12)/G(13)-mediated signalling in mammalian physiology and disease. Trends Pharmacol Sci 29:582–589PubMedCrossRefGoogle Scholar
  86. Xiao YJ, Schwartz B, Washington M, Kennedy A, Webster K, Belinson J et al (2001) Electrospray ionization mass spectrometry analysis of lysophospholipids in human ascitic fluids: comparison of the lysophospholipid contents in malignant vs nonmalignant ascitic fluids. Anal Biochem 290:302–313PubMedCrossRefGoogle Scholar
  87. Xu X, Liu Y, Huang S, Liu G, Xie C, Zhou J et al (2006) Overexpression of cannabinoid receptors CB1 and CB2 correlates with improved prognosis of patients with hepatocellular carcinoma. Cancer Genet Cytogenet 171:31–38PubMedCrossRefGoogle Scholar
  88. Zhang X, Maor Y, Wang JF, Kunos G, Groopman JE (2010) Endocannabinoid-like N-arachidonoyl serine is a novel pro-angiogenic mediator. Br J Pharmacol 160:1583–1594PubMedCrossRefGoogle Scholar
  89. Zheng D, Bode AM, Zhao Q, Cho YY, Zhu F, Ma WY et al (2008) The cannabinoid receptors are required for ultraviolet-induced inflammation and skin cancer development. Cancer Res 68:3992–3998PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Clara Andradas
    • 1
  • María M. Caffarel
    • 2
  • Eduardo Pérez-Gómez
    • 1
  • Manuel Guzmán
    • 1
  • Cristina Sánchez
    • 1
  1. 1.Department of Biochemistry and Molecular Biology I, School of BiologyComplutense UniversityMadridSpain
  2. 2.Department of PathologyUniversity of CambridgeCambridgeUK

Personalised recommendations