The Bone Marrow Microenvironment: Novel Targets to Circumvent Minimal Residual Disease and Drug Resistance in Multiple Myeloma



The bone marrow micro environment has long been appreciated to support multiple myeloma cell pathogenesis. It is evident that this niche may be as important a therapeutic target as the malignant myeloma cells. This stems from research over the last one to two decades demonstrating that determinants of the bone marrow milieu are integral in myeloma pathogenesis, survival, immune surveillance, and resistance to both traditional and novel therapeutic agents. Early studies elucidating drug resistance in this disease focused on the myeloma cells and found that genetic, acquired changes, in the expression or function of specific gene products mediated cell survival. Subsequently, dynamic, de novo mechanisms coordinated by the tumor microenvironment have been shown to confer an environmental mediated- drug resistance (EM-DR). Appreciation of EM-DR has spawned an exciting path of preclinical and clinical research focused on attenuating the pro-myeloma aspects of the tumor microenvironment. Within this chapter we will provide an overview of the bone marrow microenvironment in the context of multiple myeloma and how these determinants contribute to minimal residual disease and subsequent treatment failure. With increased understanding of the bone marrow niche and EM-DR, numerous novel therapies are under development targeting the microenvironment with the anticipation of improved clinical outcomes.


Multiple Myeloma Myeloma Cell Minimal Residual Disease Soluble Factor Bone Marrow Microenvironment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gertz MA (2008) New targets and treatments in multiple myeloma: Src family kinases as central regulators of disease progression. Leuk Lymphoma 49(12):2240–2245PubMedGoogle Scholar
  2. 2.
    Richardson PG, Hideshima T, Mitsiades C, Anderson KC (2007) The emerging role of novel therapies for the treatment of relapsed myeloma. J Natl Compr Canc Netw 5(2):149–162PubMedGoogle Scholar
  3. 3.
    Mitsiades CS, McMillin DW, Klippel S, Hideshima T, Chauhan D, Richardson PG et al (2007) The role of the bone marrow microenvironment in the pathophysiology of myeloma and its significance in the development of more effective therapies. Hematol Oncol Clin North Am 21(6):1007–1034, vii–viiiPubMedGoogle Scholar
  4. 4.
    Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K et al (2006) International uniform response criteria for multiple myeloma. Leukemia 20(9):1467–1473PubMedGoogle Scholar
  5. 5.
    Cavo M, Terragna C, Martinelli G, Ronconi S, Zamagni E, Tosi P et al (2000) Molecular monitoring of minimal residual disease in patients in long-term complete remission after allogeneic stem cell transplantation for multiple myeloma. Blood 96(1):355–357PubMedGoogle Scholar
  6. 6.
    Martinelli G, Terragna C, Zamagni E, Ronconi S, Tosi P, Lemoli R et al (2000) Polymerase chain reaction-based detection of minimal residual disease in multiple myeloma patients receiving allogeneic stem cell transplantation. Haematologica 85(9):930–934PubMedGoogle Scholar
  7. 7.
    Fenk R, Ak M, Kobbe G, Steidl U, Arnold C, Korthals M et al (2004) Levels of minimal residual disease detected by quantitative molecular monitoring herald relapse in patients with multiple myeloma. Haematologica 89(5):557–566PubMedGoogle Scholar
  8. 8.
    Bakkus MH, Bouko Y, Samson D, Apperley JF, Thielemans K, Van Camp B et al (2004) Post-transplantation tumour load in bone marrow, as assessed by quantitative ASO-PCR, is a prognostic parameter in multiple myeloma. Br J Haematol 126(5):665–674PubMedGoogle Scholar
  9. 9.
    Attal M, Harousseau JL, Facon T, Guilhot F, Doyen C, Fuzibet JG et al (2003) Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med 349(26):2495–2502PubMedGoogle Scholar
  10. 10.
    Barlogie B, Anaissie E, van Rhee F, Haessler J, Hollmig K, Pineda-Roman M et al (2007) Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol 138(2):176–185PubMedGoogle Scholar
  11. 11.
    San-Miguel JF, Mateos MV (2009) How to treat a newly diagnosed young patient with multiple myeloma. Hematology Am Soc Hematol Educ Program 2009:555–565Google Scholar
  12. 12.
    Nair B, van Rhee F, Shaughnessy JD Jr, Anaissie E, Szymonifka J, Hoering A et al (2010) Superior results of Total Therapy 3 (2003-33) in gene expression profiling-defined low-risk multiple myeloma confirmed in subsequent trial 2006-66 with VRD maintenance. Blood 115(21):4168–4173PubMedGoogle Scholar
  13. 13.
    Kumar A, Kharfan-Dabaja MA, Glasmacher A, Djulbegovic B (2009) Tandem versus single autologous hematopoietic cell transplantation for the treatment of multiple myeloma: a systematic review and meta-analysis. J Natl Cancer Inst 101(2):100–106PubMedGoogle Scholar
  14. 14.
    van de Velde HJ, Liu X, Chen G, Cakana A, Deraedt W, Bayssas M (2007) Complete response correlates with long-term survival and progression-free survival in high-dose therapy in multiple myeloma. Haematologica 92(10):1399–1406PubMedGoogle Scholar
  15. 15.
    Paiva B, Martinez-Lopez J, Vidriales MB, Mateos MV, Montalban MA, Fernandez-Redondo E et al (2011) Comparison of immunofixation, serum free light chain, and immunophenotyping for response evaluation and prognostication in multiple myeloma. J Clin Oncol 29(12):1627–1633PubMedGoogle Scholar
  16. 16.
    Shain KH, Landowski TH, Dalton WS (2000) The tumor microenvironment as a determinant of cancer cell survival: a possible mechanism for de novo drug resistance. Curr Opin Oncol 12(6):557–563PubMedGoogle Scholar
  17. 17.
    Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM et al (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109(7):2708–2717PubMedGoogle Scholar
  18. 18.
    van de Donk NW, Lokhorst HM, Bloem AC (2005) Growth factors and antiapoptotic signaling pathways in multiple myeloma. Leukemia 19(12):2177–2185PubMedGoogle Scholar
  19. 19.
    Shapiro-Shelef M, Calame K (2005) Regulation of plasma-cell development. Nat Rev Immunol 5(3):230–242PubMedGoogle Scholar
  20. 20.
    Shapiro-Shelef M, Calame K (2004) Plasma cell differentiation and multiple myeloma. Curr Opin Immunol 16(2):226–234PubMedGoogle Scholar
  21. 21.
    Klein U, Dalla-Favera R (2008) Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 8(1):22–33PubMedGoogle Scholar
  22. 22.
    Shaffer AL, Shapiro-Shelef M, Iwakoshi NN, Lee AH, Qian SB, Zhao H et al (2004) XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation. Immunity 21(1):81–93PubMedGoogle Scholar
  23. 23.
    Sciammas R, Davis MM (2004) Modular nature of Blimp-1 in the regulation of gene expression during B cell maturation. J Immunol 172(9):5427–5440PubMedGoogle Scholar
  24. 24.
    Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM et al (2009) Rho-A and Rac-1 GTPases play major and differential roles in SDF1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 114(3):619–629PubMedGoogle Scholar
  25. 25.
    Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X et al (2009) CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow ­microenvironment and enhances their sensitivity to therapy. Blood 113(18):4341–4351PubMedGoogle Scholar
  26. 26.
    Kyle RA, Rajkumar SV (2008) Multiple myeloma. Blood 111(6):2962–2972PubMedGoogle Scholar
  27. 27.
    Podar K, Chauhan D, Anderson KC (2009) Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 23(1):10–24PubMedGoogle Scholar
  28. 28.
    Kline M, Donovan K, Wellik L, Lust C, Jin W, Moon-Tasson L et al (2007) Cytokine and chemokine profiles in multiple myeloma; significance of stromal interaction and correlation of IL-8 production with disease progression. Leuk Res 31(5):591–598PubMedGoogle Scholar
  29. 29.
    Pilarski LM, Pilarski PM, Belch AR (2010) Multiple myeloma may include microvessel endothelial cells of malignant origin. Leuk Lymphoma 51(4):592–597PubMedGoogle Scholar
  30. 30.
    Edwards CM, Zhuang J, Mundy GR (2008) The pathogenesis of the bone disease of multiple myeloma. Bone 42(6):1007–1013PubMedGoogle Scholar
  31. 31.
    Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev 9(9):665–674Google Scholar
  32. 32.
    Gunn WG, Conley A, Deininger L, Olson SD, Prockop DJ, Gregory CA (2006) A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma. Stem Cells 24(4):986–991PubMedGoogle Scholar
  33. 33.
    Mahtouk K, Moreaux J, Hose D, Reme T, Meissner T, Jourdan M et al (2010) Growth factors in multiple myeloma: a comprehensive analysis of their expression in tumor cells and bone marrow environment using Affymetrix microarrays. BMC Cancer 10:198PubMedGoogle Scholar
  34. 34.
    Shain KH, Yarde DN, Meads MB, Huang M, Jove R, Hazlehurst LA et al (2009) Beta1 integrin adhesion enhances IL-6-mediated STAT3 signaling in myeloma cells: implications for microenvironment influence on tumor survival and proliferation. Cancer Res 69(3):1009–1015PubMedGoogle Scholar
  35. 35.
    Ishikawa H, Tsuyama N, Obata M, Kawano M (2006) Mitogenic signals initiated via interleukin-6 receptor complexes in cooperation with other transmembrane molecules in myelomas. J Clin Exp Hematop 46(2):55–66PubMedGoogle Scholar
  36. 36.
    Shain KH, Dalton WS (2001) Cell adhesion is a key determinant in de novo multidrug resistance (MDR): new targets for the prevention of acquired MDR. Mol Cancer Ther 1(1):69–78PubMedGoogle Scholar
  37. 37.
    McMillin DW, Delmore J, Weisberg E, Negri JM, Geer DC, Klippel S et al (2010) Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med 16(4):483–489PubMedGoogle Scholar
  38. 38.
    Yaccoby S (2010) Advances in the understanding of myeloma bone disease and tumour growth. Br J Haematol 149(3):311–321PubMedGoogle Scholar
  39. 39.
    Roodman GD (2010) Targeting the bone microenvironment in multiple myeloma. J Bone Miner Metab 28(3):244–250PubMedGoogle Scholar
  40. 40.
    Bartel TB, Haessler J, Brown TL, Shaughnessy JD Jr, van Rhee F, Anaissie E et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114(10):2068–2076PubMedGoogle Scholar
  41. 41.
    Walker R, Barlogie B, Haessler J, Tricot G, Anaissie E, Shaughnessy JD Jr et al (2007) Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications. J Clin Oncol 25(9):1121–1128PubMedGoogle Scholar
  42. 42.
    Rajkumar SV, Greipp PR (2001) Angiogenesis in multiple myeloma. Br J Haematol 113(3):565PubMedGoogle Scholar
  43. 43.
    Du W, Hattori Y, Hashiguchi A, Kondoh K, Hozumi N, Ikeda Y et al (2004) Tumor angiogenesis in the bone marrow of multiple myeloma patients and its alteration by thalidomide treatment. Pathol Int 54(5):285–294PubMedGoogle Scholar
  44. 44.
    Markovic O, Marisavljevic D, Cemerikic V, Vidovic A, Perunicic M, Todorovic M et al (2008) Expression of VEGF and microvessel density in patients with multiple myeloma: clinical and prognostic significance. Med Oncol 25(4):451–457PubMedGoogle Scholar
  45. 45.
    Qiang YW, Barlogie B, Rudikoff S, Shaughnessy JD Jr (2008) Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 42(4):669–680PubMedGoogle Scholar
  46. 46.
    Lauring J, Abukhdeir AM, Konishi H, Garay JP, Gustin JP, Wang Q et al (2008) The multiple myeloma associated MMSET gene contributes to cellular adhesion, clonogenic growth, and tumorigenicity. Blood 111(2):856–864PubMedGoogle Scholar
  47. 47.
    Li ZW, Dalton WS (2006) Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev 20(6):333–342PubMedGoogle Scholar
  48. 48.
    Pollett JB, Trudel S, Stern D, Li ZH, Stewart AK (2002) Overexpression of the myeloma-associated oncogene fibroblast growth factor receptor 3 confers dexamethasone resistance. Blood 100(10):3819–3821PubMedGoogle Scholar
  49. 49.
    Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev 7(8):585–598Google Scholar
  50. 50.
    Yasui H, Hideshima T, Richardson PG, Anderson KC (2006) Novel therapeutic strategies targeting growth factor signalling cascades in multiple myeloma. Br J Haematol 132(4):385–397PubMedGoogle Scholar
  51. 51.
    Burger JA, Kipps TJ (2006) CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107(5):1761–1767PubMedGoogle Scholar
  52. 52.
    Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z et al (2006) A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 203(9):2201–2213PubMedGoogle Scholar
  53. 53.
    Teicher BA, Fricker SP (2010) CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res 16(11):2927–2931PubMedGoogle Scholar
  54. 54.
    Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435(7044):969–973PubMedGoogle Scholar
  55. 55.
    Sanz-Rodriguez F, Hidalgo A, Teixido J (2001) Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 97(2):346–351PubMedGoogle Scholar
  56. 56.
    Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M (2005) CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 24(27):4462–4471PubMedGoogle Scholar
  57. 57.
    Lu DY, Tang CH, Yeh WL, Wong KL, Lin CP, Chen YH et al (2009) SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/Akt, ERK, and NF-kappaB-dependent pathway in microglia. Eur J Pharmacol 613(1–3):146–154PubMedGoogle Scholar
  58. 58.
    Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374(Pt 1):1–20PubMedGoogle Scholar
  59. 59.
    Li WX (2008) Canonical and non-canonical JAK-STAT signaling. Trends Cell Biol 18(11):545–551PubMedGoogle Scholar
  60. 60.
    Raza A, Reeves JA, Feldman EJ, Dewald GW, Bennett JM, Deeg HJ et al (2008) Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 111(1):86–93PubMedGoogle Scholar
  61. 61.
    Feldman EJ, Cortes J, DeAngelo DJ, Holyoake T, Simonsson B, O’Brien SG et al (2008) On the use of lonafarnib in myelodysplastic syndrome and chronic myelomonocytic leukemia. Leukemia 22(9):1707–1711PubMedGoogle Scholar
  62. 62.
    Hausherr A, Tavares R, Schaffer M, Obermeier A, Miksch C, Mitina O et al (2007) Inhibition of IL-6-dependent growth of myeloma cells by an acidic peptide repressing the gp130-mediated activation of Src family kinases. Oncogene 26(34):4987–4998PubMedGoogle Scholar
  63. 63.
    Zoubeidi A, Rocha J, Zouanat FZ, Hamel L, Scarlata E, Aprikian AG et al (2009) The Fer tyrosine kinase cooperates with interleukin-6 to activate signal transducer and activator of transcription 3 and promote human prostate cancer cell growth. Mol Cancer Res 7(1):142–155PubMedGoogle Scholar
  64. 64.
    Tai YT, Fulciniti M, Hideshima T, Song W, Leiba M, Li XF et al (2007) Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood 110(5):1656–1663PubMedGoogle Scholar
  65. 65.
    Kim K, Kong SY, Fulciniti M, Li X, Song W, Nahar S et al (2010) Blockade of the MEK/ERK signalling cascade by AS703026, a novel selective MEK1/2 inhibitor, induces pleiotropic anti-myeloma activity in vitro and in vivo. Br J Haematol 149(4):537–549PubMedGoogle Scholar
  66. 66.
    Pei XY, Dai Y, Tenorio S, Lu J, Harada H, Dent P et al (2007) MEK1/2 inhibitors potentiate UCN-01 lethality in human multiple myeloma cells through a Bim-dependent mechanism. Blood 110(6):2092–2101PubMedGoogle Scholar
  67. 67.
    Annunziata CM, Hernandez L, Davis RE, Zingone A, Lamy L, Lam LT et al (2011) A mechanistic rationale for MEK inhibitor therapy in myeloma based on blockade of MAF oncogene expression. Blood 117(8):2396–2404PubMedGoogle Scholar
  68. 68.
    Popovic R, Licht JD (2011) MEK and MAF in myeloma therapy. Blood 117(8):2300–2302PubMedGoogle Scholar
  69. 69.
    Burger R, Le Gouill S, Tai YT, Shringarpure R, Tassone P, Neri P et al (2009) Janus kinase inhibitor INCB20 has antiproliferative and apoptotic effects on human myeloma cells in vitro and in vivo. Mol Cancer Ther 8(1):26–35PubMedGoogle Scholar
  70. 70.
    Harvey RD, Lonial S (2007) PI3 kinase/AKT pathway as a therapeutic target in multiple myeloma. Future Oncol 3(6):639–647PubMedGoogle Scholar
  71. 71.
    Younes H, Leleu X, Hatjiharissi E, Moreau AS, Hideshima T, Richardson P et al (2007) Targeting the phosphatidylinositol 3-kinase pathway in multiple myeloma. Clin Cancer Res 13(13):3771–3775PubMedGoogle Scholar
  72. 72.
    Hideshima T, Catley L, Raje N, Chauhan D, Podar K, Mitsiades C et al (2007) Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol 138(6):783–791PubMedGoogle Scholar
  73. 73.
    Ikeda H, Hideshima T, Fulciniti M, Perrone G, Miura N, Yasui H et al (2010) PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 116(9):1460–1468PubMedGoogle Scholar
  74. 74.
    Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ et al (2011) CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 117(2):591–594PubMedGoogle Scholar
  75. 75.
    Chowdhury S, Choueiri TK (2009) Recent advances in the systemic treatment of metastatic papillary renal cancer. Expert Rev Anticancer Ther 9(3):373–379PubMedGoogle Scholar
  76. 76.
    Figlin RA, Brown E, Armstrong AJ, Akerley W, Benson AB III, Burstein HJ et al (2008) NCCN Task Force Report: mTOR inhibition in solid tumors. J Natl Compr Canc Netw 6(Suppl 5):S1–S20, quiz S1–S2PubMedGoogle Scholar
  77. 77.
    Bhaskar PT, Hay N (2007) The two TORCs and Akt. Dev Cell 12(4):487–502PubMedGoogle Scholar
  78. 78.
    Hoang B, Frost P, Shi Y, Belanger E, Benavides A, Pezeshkpour G et al (2010) Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor. Blood 116(22):4560–4568PubMedGoogle Scholar
  79. 79.
    McMillin DW, Ooi M, Delmore J, Negri J, Hayden P, Mitsiades N et al (2009) Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res 69(14):5835–5842PubMedGoogle Scholar
  80. 80.
    Ghobrial IM, Weller E, Vij R, Munshi NC, Banwait R, Bagshaw M et al (2011) Weekly bortezomib in combination with temsirolimus in relapsed or relapsed and refractory multiple myeloma: a multicentre, phase 1/2, open-label, dose-escalation study. Lancet Oncol 12(3):263–272PubMedGoogle Scholar
  81. 81.
    Campbell PJ, Green AR (2006) The myeloproliferative disorders. N Engl J Med 355(23):2452–2466PubMedGoogle Scholar
  82. 82.
    Niu G, Wright KL, Ma Y, Wright GM, Huang M, Irby R et al (2005) Role of Stat3 in regulating p53 expression and function. Mol Cell Biol 25(17):7432–7440PubMedGoogle Scholar
  83. 83.
    Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54PubMedGoogle Scholar
  84. 84.
    Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51PubMedGoogle Scholar
  85. 85.
    Scuto A, Krejci P, Popplewell L, Wu J, Wang Y, Kujawski M et al (2011) The novel JAK inhibitor AZD1480 blocks STAT3 and FGFR3 signaling, resulting in suppression of human myeloma cell growth and survival. Leukemia 25(3):538–550PubMedGoogle Scholar
  86. 86.
    Li J, Favata M, Kelley JA, Caulder E, Thomas B, Wen X et al (2010) INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Neoplasia 12(1):28–38PubMedGoogle Scholar
  87. 87.
    Hallek M, Neumann C, Schaffer M, Danhauser-Riedl S, von Bubnoff N, de Vos G et al (1997) Signal transduction of interleukin-6 involves tyrosine phosphorylation of multiple cytosolic proteins and activation of Src-family kinases Fyn, Hck, and Lyn in multiple myeloma cell lines. Exp Hematol 25(13):1367–1377PubMedGoogle Scholar
  88. 88.
    Ishikawa H, Tsuyama N, Abroun S, Liu S, Li FJ, Taniguchi O et al (2002) Requirements of src family kinase activity associated with CD45 for myeloma cell proliferation by interleukin-6. Blood 99(6):2172–2178PubMedGoogle Scholar
  89. 89.
    Staudt LM (2010) Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2(6):a000109PubMedGoogle Scholar
  90. 90.
    Landowski TH, Olashaw NE, Agrawal D, Dalton WS (2003) Cell adhesion-mediated drug resistance (CAM-DR) is associated with activation of NF-kappa B (RelB/p50) in myeloma cells. Oncogene 22(16):2417–2421PubMedGoogle Scholar
  91. 91.
    Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM (2010) Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 115(17):3541–3552PubMedGoogle Scholar
  92. 92.
    Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130PubMedGoogle Scholar
  93. 93.
    Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144PubMedGoogle Scholar
  94. 94.
    Yarde DN, Oliveira V, Mathews L, Wang X, Villagra A, Boulware D et al (2009) Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma. Cancer Res 69(24):9367–9375PubMedGoogle Scholar
  95. 95.
    Tancred TM, Belch AR, Reiman T, Pilarski LM, Kirshner J (2009) Altered expression of fibronectin and collagens I and IV in multiple myeloma and monoclonal gammopathy of undetermined significance. J Histochem Cytochem 57(3):239–247PubMedGoogle Scholar
  96. 96.
    Hecht M, Heider U, Kaiser M, von Metzler I, Sterz J, Sezer O (2007) Osteoblasts promote migration and invasion of myeloma cells through upregulation of matrix metalloproteinases, urokinase plasminogen activator, hepatocyte growth factor and activation of p38 MAPK. Br J Haematol 138(4):446–458PubMedGoogle Scholar
  97. 97.
    Hehlgans S, Haase M, Cordes N (2007) Signalling via integrins: implications for cell survival and anticancer strategies. Biochim Biophys Acta 1775(1):163–180PubMedGoogle Scholar
  98. 98.
    Schmidmaier R, Morsdorf K, Baumann P, Emmerich B, Meinhardt G (2006) Evidence for cell adhesion-mediated drug resistance of multiple myeloma cells in vivo. Int J Biol Markers 21(4):218–222PubMedGoogle Scholar
  99. 99.
    Ohwada C, Nakaseko C, Koizumi M, Takeuchi M, Ozawa S, Naito M et al (2008) CD44 and hyaluronan engagement promotes dexamethasone resistance in human myeloma cells. Eur J Haematol 80(3):245–250PubMedGoogle Scholar
  100. 100.
    Nefedova Y, Sullivan DM, Bolick SC, Dalton WS, Gabrilovich DI (2008) Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 111(4):2220–2229PubMedGoogle Scholar
  101. 101.
    Hazlehurst LA, Dalton WS (2001) Mechanisms associated with cell adhesion mediated drug resistance (CAM-DR) in hematopoietic malignancies. Cancer Metastasis Rev 20(1–2):43–50PubMedGoogle Scholar
  102. 102.
    Hazlehurst LA, Landowski TH, Dalton WS (2003) Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene 22(47):7396–7402PubMedGoogle Scholar
  103. 103.
    Turner JG, Marchion DC, Dawson JL, Emmons MF, Hazlehurst LA, Washausen P et al (2009) Human multiple myeloma cells are sensitized to topoisomerase II inhibitors by CRM1 inhibition. Cancer Res 69(17):6899–6905PubMedGoogle Scholar
  104. 104.
    Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS (1999) Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 93(5):1658–1667PubMedGoogle Scholar
  105. 105.
    Damiano JS, Hazlehurst LA, Dalton WS (2001) Cell adhesion-mediated drug resistance (CAM-DR) protects the K562 chronic myelogenous leukemia cell line from apoptosis induced by BCR/ABL inhibition, cytotoxic drugs, and gamma-irradiation. Leukemia 15(8):1232–1239PubMedGoogle Scholar
  106. 106.
    Hazlehurst LA, Valkov N, Wisner L, Storey JA, Boulware D, Sullivan DM et al (2001) Reduction in drug-induced DNA double-strand breaks associated with beta1 integrin-mediated adhesion correlates with drug resistance in U937 cells. Blood 98(6):1897–1903PubMedGoogle Scholar
  107. 107.
    Neri P, Ren L, Azab AK, Brentnall M, Gratton K, Klimowicz AC et al (2011) Integrin {beta}7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood 117(23):6202–6213PubMedGoogle Scholar
  108. 108.
    Hazlehurst LA, Argilagos RF, Dalton WS (2007) Beta1 integrin mediated adhesion increases Bim protein degradation and contributes to drug resistance in leukaemia cells. Br J Haematol 136(2):269–275PubMedGoogle Scholar
  109. 109.
    Kazi A, Lawrence H, Guida WC, McLaughlin ML, Springett GM, Berndt N et al (2009) Discovery of a novel proteasome inhibitor selective for cancer cells over non-transformed cells. Cell Cycle 8(12):1940–1951PubMedGoogle Scholar
  110. 110.
    Schilling G, Hansen T, Shimoni A, Zabelina T, Perez-Simon JA, Gutierrez NC et al (2008) Impact of genetic abnormalities on survival after allogeneic hematopoietic stem cell transplantation in multiple myeloma. Leukemia 22(6):1250–1255PubMedGoogle Scholar
  111. 111.
    Emmons M, Boulware D, Sullivan DM, Hazlehurst LA (2006) Topoisomerase II beta levels are a determinant of melphalan-induced DNA crosslinks and sensitivity to cell death. Biochem Pharmacol 72(1):11–18PubMedGoogle Scholar
  112. 112.
    Turner JG, Gump JL, Zhang C, Cook JM, Marchion D, Hazlehurst L et al (2006) ABCG2 expression, function, and promoter methylation in human multiple myeloma. Blood 108(12):3881–3889PubMedGoogle Scholar
  113. 113.
    Hazlehurst LA, Damiano JS, Buyuksal I, Pledger WJ, Dalton WS (2000) Adhesion to fibronectin via beta1 integrins regulates p27kip1 levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 19(38):4319–4327PubMedGoogle Scholar
  114. 114.
    Lwin T, Hazlehurst LA, Dessureault S, Lai R, Bai W, Sotomayor E et al (2007) Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas. Blood 110(5):1631–1638PubMedGoogle Scholar
  115. 115.
    Shain KH, Landowski TH, Dalton WS (2002) Adhesion-mediated intracellular redistribution of c-Fas-associated death domain-like IL-1-converting enzyme-like inhibitory protein-long confers resistance to CD95-induced apoptosis in hematopoietic cancer cell lines. J Immunol 168(5):2544–2553PubMedGoogle Scholar
  116. 116.
    Nefedova Y, Cheng P, Alsina M, Dalton WS, Gabrilovich DI (2004) Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 103(9):3503–3510PubMedGoogle Scholar
  117. 117.
    Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I et al (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68(1):190–197PubMedGoogle Scholar
  118. 118.
    Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14(9):2519–2526PubMedGoogle Scholar
  119. 119.
    Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY (2003) Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 101(9):3568–3573PubMedGoogle Scholar
  120. 120.
    Nefedova Y, Landowski TH, Dalton WS (2003) Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17(6):1175–1182PubMedGoogle Scholar
  121. 121.
    Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99(22):14374–14379PubMedGoogle Scholar
  122. 122.
    Prince HM, Honemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW et al (2009) Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood 113(19):4819–4820PubMedGoogle Scholar
  123. 123.
    Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al (1999) Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 10(1):105–115PubMedGoogle Scholar
  124. 124.
    Tassone P, Neri P, Burger R, Savino R, Shammas M, Catley L et al (2005) Combination therapy with interleukin-6 receptor superantagonist Sant7 and dexamethasone induces antitumor effects in a novel SCID-hu in vivo model of human multiple myeloma. Clin Cancer Res 11(11):4251–4258PubMedGoogle Scholar
  125. 125.
    Rossi J-F, Manges RF, Voorhees P, Sutherland HJ, Orlowski RZ (2008) Preliminary results of CNTO 328, an anti-IL-6 monoclonal antibody, in combination with bortezomib in the treatment of relapsed or refractory multiple myeloma. Blood 112:867Google Scholar
  126. 126.
    Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K et al (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22(6):1095–1102PubMedGoogle Scholar
  127. 127.
    Tavor S, Eisenbach M, Jacob-Hirsch J, Golan T, Petit I, Benzion K et al (2008) The CXCR4 antagonist AMD3100 impairs survival of human AML cells and induces their differentiation. Leukemia 22(12):2151–5158PubMedGoogle Scholar
  128. 128.
    Wong D, Korz W (2008) Translating an Antagonist of Chemokine Receptor CXCR4: from bench to bedside. Clin Cancer Res 14(24):7975–7980PubMedGoogle Scholar
  129. 129.
    Bisping G, Wenning D, Kropff M, Gustavus D, Muller-Tidow C, Stelljes M et al (2009) Bortezomib, dexamethasone, and fibroblast growth factor receptor 3-specific tyrosine kinase inhibitor in t(4;14) myeloma. Clin Cancer Res 15(2):520–531PubMedGoogle Scholar
  130. 130.
    Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, Witzig TE et al (2010) Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 29(8):1190–1202PubMedGoogle Scholar
  131. 131.
    Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9(9):1158–1165PubMedGoogle Scholar
  132. 132.
    Ricart AD, Tolcher AW, Liu G, Holen K, Schwartz G, Albertini M et al (2008) Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study. Clin Cancer Res 14(23):7924–7929PubMedGoogle Scholar
  133. 133.
    Kimura RH, Levin AM, Cochran FV, Cochran JR (2009) Engineered cystine knot peptides that bind alphavbeta3, alphavbeta5, and alpha5beta1 integrins with low-nanomolar affinity. Proteins 77(2):359–369PubMedGoogle Scholar
  134. 134.
    Nair RR, Emmons MF, Cress AE, Argilagos RF, Lam K, Kerr WT et al (2009) HYD1-induced increase in reactive oxygen species leads to autophagy and necrotic cell death in multiple myeloma cells. Mol Cancer Ther 8(8):2441–2451PubMedGoogle Scholar
  135. 135.
    Pedranzini L, Dechow T, Berishaj M, Comenzo R, Zhou P, Azare J et al (2006) Pyridone 6, a pan-Janus-activated kinase inhibitor, induces growth inhibition of multiple myeloma cells. Cancer Res 66(19):9714–9721PubMedGoogle Scholar
  136. 136.
    Sun CY, Hu Y, Huang J, Chu ZB, Zhang L, She XM et al (2010) Brain-derived neurotrophic factor induces proliferation, migration, and VEGF secretion in human multiple myeloma cells via activation of MEK-ERK and PI3K/AKT signaling. Tumour Biol 31(2):121–128PubMedGoogle Scholar
  137. 137.
    Coluccia AM, Cirulli T, Neri P, Mangieri D, Colanardi MC, Gnoni A et al (2008) Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood 112(4):1346–1356PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Experimental Therapeutics ProgramH. Lee Moffitt Cancer Center and Research InstituteTampaUSA
  2. 2.Departments of Experimental Therapeutics and Oncologic SciencesH. Lee Moffitt Cancer Center and Research Institute, University of South FloridaTampaUSA

Personalised recommendations