Some Counting Processes and Ozone Air Pollution

  • Eliane Regina Rodrigues
  • Jorge Alberto Achcar
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

In this chapter we consider some counting processes more general than the Poisson process to study the distribution of the time between surpassings of a given environmental standard.

Keywords

Ozone 

References

  1. 1.
    Achcar, J.A., Martínez, E.Z., Rufino-Neto, A., Paulino, C.D., Soares, P.: A statistical model investigating the prevalence of tuberculosis in New York using counting processes with two change-points. Epidemiol. Infect. 136, 1599–1605 (2008a)CrossRefGoogle Scholar
  2. 2.
    Achcar, J.A., Fernández-Bremauntz, A.A., Rodrigues, E.R., Tzintzun, G.: Estimating the number of ozone peaks in Mexico City using a non-homogeneous Poisson model. Environmetrics 19, 469–485 (2008b)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Achcar, J.A., Rodrigues, E.R., Paulino, C.D., Soares, P.: Non-homogeneous Poisson processes with a change-point: an application to ozone exceedances in Mexico City. Environ. Ecol. Stat. 17, 521–541 (2010a)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Achcar, J.A., Zozolotto, H.C., Rodrigues, E.R.: Bivariate stochastic volatility models applied to Mexico City ozone pollution data. In: Romano, G.C., Conti, A.G. (eds.) Air Quality in the 21st Century, pp. 241–267. Nova Publisher, New York (2010b)Google Scholar
  5. 5.
    Achcar, J.A., Rodrigues, E.R., Tzintzun, G.: Using non-homogeneous Poisson models with multiple change-points to estimate the number of ozone exceedances in Mexico City. Environmetrics 22, 1–12 (2011a)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Achcar, J.A., Ortíz-Rodríguez, G., Rodrigues, E.R.: The behaviour of a Metropolis-Hastings algorith under different prior distributions: an application to ozone measurements in Mexico City. In: Jha, M. (ed.) Latest Trends on Urban Planning and Transportation. Proceedings of the 3rd WSEAS International Conference on Urban Planning and Transportation, pp.160–165. July 22–24, 2010, Corfu, Greece (2011b)Google Scholar
  7. 7.
    Achcar, J.A., Rodrigues, E.R., Tzintzun, G.: Modelling interoccurrence time between ozone peaks in Mexico City in the presence of multiple change-points. Braz. J. Probab. Stat. 25, 183–204 (2011c)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Achcar, J.A., Sousa, D.E.F., Rodrigues, E.R., Tzintzun, G.: Comparing the number of ozone exceedances in different seasons of the year in Mexico City. Environ. Model. Assess. 16, 251–264 (2011d)CrossRefGoogle Scholar
  9. 9.
    Achcar, J.A., Rodrigues, E.R., Tarumoto, M.H.: Using counting processes to estimate the number of ozone exceedances: an application to the Mexico City measurements. In: Proceedings of the 58th ISI World Statistics Congress, Dublin, 21–16 August 2011, Dublin, 2011. Available at http://www.isi2011.ie/content/access-congress-proceedings.html/CPS58-04. (2011e)
  10. 10.
    Achcar, J.A., Zozolotto, H.C., Rodrigues, E.R., Saldiva, P.H.N.: Two Multivariate stochatic volatility models applied to air pollution data from São Paulo, Brazil. Adv. Appl. Stat. 20, 1–23 (2011f)MATHGoogle Scholar
  11. 11.
    Achcar, J.A., Barrios, J.M., Rodrigues, E.R.: Comparing the fitting of some non-homogeneous Poisson models to estimate ozone exceedances in Mexico City. Accepted for publication in the Special Issue Air pollution of the Journal of Environmental Protection (2012a)Google Scholar
  12. 12.
    Achcar, J.A., Cepeda-Cuervo, E., Rodrigues, E.R.: Weibull and generalized exponential overdispersion models with an application to ozone air pollution. J. Appl. Stat. 39, 1953–1963 (2012b)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Álvarez, L.J., Rodrigues, E.R.: Trans-dimensional MCMC algorithm to estimate the order of a Markov chain: an application to ozone peaks in Mexico City. Int. J. Pure Appl. Math. 48, 315–331 (2008)MathSciNetMATHGoogle Scholar
  14. 14.
    Álvarez, L.J., Fernández-Bremauntz, A.A., Rodrigues, E.R., Tzintzun, G.: Maximum a posteriori estimation of the daily ozone peaks in Mexico City. J. Agr. Biol. Environ. Stat. 10, 276–290 (2005)CrossRefGoogle Scholar
  15. 15.
    Barreto-Souza, W., de Morais, A.L., Cordeiro, G.M.: The Weibull-geometric distribution. J. Stat. Comput. Simulat. 81, 645–657 (2011)CrossRefMATHGoogle Scholar
  16. 16.
    Bell, M.L., Peng, R., Dominici, F.: The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environ. Health. Perspect. 114, 532–536 (2005)CrossRefGoogle Scholar
  17. 17.
    Bell, M.L., Goldberg, R., Rogrefe, C., Kinney, P.L., Knowlton, K., Lynn, B., Rosenthal, J., Rosenzwei, C., Patz, J.A.: Climate change, ambient ozone, and health in 50 US cities. Clim. Change 82, 61–76 (2007)CrossRefGoogle Scholar
  18. 18.
    Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, London (1995)Google Scholar
  19. 19.
    Boys, R.J., Henderson, D.A.: On determining the order of Markov dependence of an observed process governed by a hidden Markov model. Special Issue Sci. Program. 10, 241–251 (2002)Google Scholar
  20. 20.
    Boys, R.J., Henderson, D.A.: Bayesian approach to DNA segmentation. Biometrics 60, 573–588 (2004)MathSciNetMATHGoogle Scholar
  21. 21.
    Burham, K.P., Anderson, D.A.: Model Selection and Multivariate Inference: A Practical Information – Theoretical Approach, 2nd edn. Springer, New York (2002)Google Scholar
  22. 22.
    Carlin, B.P., Chib, S.: Bayesian model choice via Markov chain Monte Carlo methods. J. Roy. Stat. Soc. B 57, 473–484 (1995)MATHGoogle Scholar
  23. 23.
    Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes Methods for Data Analysis, 2nd edn. Chapman and Hall/CRC, Boca Raton (2000)CrossRefMATHGoogle Scholar
  24. 24.
    Chen, M.-H., Shao, Q.-M., Ibrahim, J.G.: Monte Carlo Methods in Bayesian Computation. Springer, New York (2000)CrossRefMATHGoogle Scholar
  25. 25.
    Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. American Statistician 49, 327–335 (1995)Google Scholar
  26. 26.
    Cordeiro, G.M., Simas, A.B., Stošić, B.D.: Closed form expressions for the moments of the Beta-Weibull distribution. Ann. Braz. Acad. Sci. 83, 357–373 (2011)MATHGoogle Scholar
  27. 27.
    Cox, D.R., Lewis, P.A.: Statistical Analysis of Series Events. Methuen, London (1966)MATHGoogle Scholar
  28. 28.
    Dacunha-Castelle, D., Dulfo, M.: Probability and Statistics, vol. II. Springer, New York (1986)CrossRefGoogle Scholar
  29. 29.
    Dockery, D.W., Schwartz, J., Spengler, J.D.: Air pollution and daily mortality: association with particulates and acid aerosols. Environ. Res. 59, 362–373 (1992)CrossRefGoogle Scholar
  30. 30.
    Evans, M., Swartz, T.: Approximating Integrals via Monte Carlo and Deterministic Methods. Oxford Statistical Sciences Series 20. Oxford University Press, Oxford (2000)Google Scholar
  31. 31.
    Fan, T.-H., Tsai, C.-A.: A Bayesian method in determining the order of a finite state Markov chain. Comm. Stat. Theor. Meth. 28, 1711–1730 (1999)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Famoye, F., Lee, C., Olumolade, O.: The Beta-Weibull distribution. J. Stat. Theory Appl. 4, 121–136 (2005)MathSciNetGoogle Scholar
  33. 33.
    Feller, W.: An Introduction to Probability Theory and Its Applications, 3rd edn. Wiley, London (1968)MATHGoogle Scholar
  34. 34.
    Gamerman, D.: Markov chain Monte Carlo. Stochastic Simulation for Bayesian Inference. Chapman and Hall, Boca Raton (1997)MATHGoogle Scholar
  35. 35.
    Gelfand, A.E., Smith, A.F.M.: Sampling-based approaches to calculating marginal densities. J. Am. Stat. Assoc. 85, 398–409 (1990)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Gelman, A., Rubin, D.B.: Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992)CrossRefGoogle Scholar
  37. 37.
    Geman, D.: Random fields and inverse problems in imaging. Lect. Note Math. 1427, 113–193 (1990)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Gilks, W.R., Richardson, S., Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice. Chapman and Hall, Boca Raton (1996)MATHGoogle Scholar
  39. 39.
    Goel, A.L., Okumoto, K.: An analysis of recurrent software failures on a real-time control system. In: Proceedings of ACM Conference, pp. 496–500. Washington, D.C., USA (1978)Google Scholar
  40. 40.
    Green, P.J.: Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. J. Roy. Stat. Soc. B 57, 711–732 (1995)Google Scholar
  41. 41.
    Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Clarendon, Oxford (1982)MATHGoogle Scholar
  42. 42.
    Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970)CrossRefMATHGoogle Scholar
  43. 43.
    Itô, K., Thurston, G.D.: Daily PM10/mortality association: an investigation of at-risk subpopulations. J. Expo. Anal. Environ. Epidemiol. 6, 79–95 (1996)Google Scholar
  44. 44.
    Jara-Ettinger, J.A.: Estimando el número de excedencias de ozono en la Ciudad de México usando procesos de Poisson no-homogéneos y el muestreador de Gibbs. Undergraduate final year report. Facultad de Ciencias Físico-Matemáticas. Universidad Michoacana de San Nicolás Hidalgo, Mexico (2011) (In Spanish.)Google Scholar
  45. 45.
    Javits, J.S.: Statistical interdependencies in the ozone national ambiente air quality standard. J. Air. Poll. Contr. Assoc. 30, 58–59 (1980)CrossRefGoogle Scholar
  46. 46.
    Jelinski, Z., Moranda, P.B.: Software reliability research. In: Freiberger, W. (ed.) Statistical Computer Performance Evaluation, pp. 465–497. Academic, New York (1972)Google Scholar
  47. 47.
    Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, 2nd edn. Academic, New York (1975)MATHGoogle Scholar
  48. 48.
    Larsen, L.C., Bradley, R.A., Honcoop, G.L.: A new method of characterizing the variability of air quality-related indicators. In: Air and Waste Management Association’s InternationalSpecialty Conference of Tropospheric Ozone and the Environment. Los Angeles, CA (1990)Google Scholar
  49. 49.
    Lawless, J.F.: Statistical Models and Methods for Lifetime Data. Wiley, Hoboken, NJ (1982)MATHGoogle Scholar
  50. 50.
    Lee, P.M.: Bayesian Statistics: An Introduction, 2nd edn. Arnold, London (1997)MATHGoogle Scholar
  51. 51.
    Likens, G. (Lead Author): Environmental Protection Agency (Content source), Davis, W., Zaikowski, L., Nodvin, S.C. (Topic Editors). Acid rain. In: Cutler J (ed) Encyclopedia of Earth. Cleveland. Washington, D.C. Environmental Information Coalition, National Council for Science and the Environment. First published in the Encyclopedia of Earth October 9, 2006;. Last revised January 2, 2010. http://www.eoearth.org/article/Acid\_rain. Retrieved January 22, 2010.
  52. 52.
    Lunn, D.J., Thomas, A., Best, N., Spiegelhalter, D.: WinBugs - a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput. 10, 325–337 (2000)CrossRefGoogle Scholar
  53. 53.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machine. J. Chem. Phys. 21, 1087–1091 (1953)CrossRefGoogle Scholar
  54. 54.
    Mohnen, V.A.: The challenge of acid rain. Sci. Am. 259, 30–38 (1988)CrossRefGoogle Scholar
  55. 55.
    Moranda, P.B.: Prediction of software reliability and its applications. In: Proceedings of the Annual Reliability and maintainability Symposium, pp. 327–332. Washington, D.C., USA (1975)Google Scholar
  56. 56.
    Morgenstern, D.: Einfache Beispiele Zweidimensionaler Verteilungen. Mitteilingsblatt fur Mathematische 8, 234–253 (1956)MathSciNetMATHGoogle Scholar
  57. 57.
    Muldholkar, G.S., Srivastava, D.K., Friemer, M.: The exponentiated-Weibull family: a reanalysis of the bus-motor failure data. Technometrics 37, 436–445 (1995)CrossRefGoogle Scholar
  58. 58.
    Musa, J.D., Okumoto, K.: A logarithmic Poisson execution time model for software reliability measurement. In: Proceedings of Seventh International Conference on Software Engineering, pp. 230–238. Orlando, USA (1984)Google Scholar
  59. 59.
    NOM: Modificación a la Norma Oficial Mexicana NOM-020-SSA1–1993. Diario Oficial de la Federación. 30 October 2002. Mexico (2002) (In Spanish.)Google Scholar
  60. 60.
    Ortíz-Rodríguez, G.: Un algoritmo Metropolis-Hastings y un modelo de Poisson no homogéneo para estudiar el número de rebases de la norma ambiental para ozone en la Ciudad de México. Master’s Dissertation. Facultad de Ciencias. Universidad Nacional Autónoma de México. Mexico (2012) (In Spanish.)Google Scholar
  61. 61.
    Ott, W.R.: Environmental Statistics and Data Analysis. Lewis Publishers, CRC Press, Boca Raton, FL (1995)MATHGoogle Scholar
  62. 62.
    Pérez-Muñoz, R.H.: Los procesos de Bernoulli y Poisson en el estudio de casos de incumpliminento de la norma para ozono. Undergraduate final year report. Facultad de Ciencias. Universidad Nacional Autónoma de México. Mexico (2006) (In Spanish.)Google Scholar
  63. 63.
    Raftery, A.E.: Hypothesis testing and model selection. In: Gilks, W., Richardson, S., Speigelhalter, D.J. (eds.) Markov Chain Monte Carlo in Practice, pp. 163–187. Chapman and Hall, Boca Raton, FL (1996)Google Scholar
  64. 64.
    Ramírez-Cid, J.E., Achcar, J.A.: Bayesian inference for nonhomogeneous Poisson processes in software reliability models assuming non monotonic intensity functions. Comput. Stat. Data Anal. 32, 147–159 (1999).CrossRefGoogle Scholar
  65. 65.
    Rice, J.A.: Mathematical Statistics and Data Analysis. Brook and Cole, Pacific Grove, CA (1988)MATHGoogle Scholar
  66. 66.
    Ritz, B., Yu, F.: The effects of ambient carbon monoxide on low birth weight among children born in Southern California between 1989 and 1993. Environ. Health Perspect. 107, 17–25 (1999)CrossRefGoogle Scholar
  67. 67.
    Ritz, B., Yu, F., Chapa, G., Fruin, S.: Effects of air pollution on preterm birth among children born in Southern California between 1989 and 1993. Epidemiology 11, 502–511 (2000)CrossRefGoogle Scholar
  68. 68.
    Ritz, B., Wilhelm, M., Hoggart, K.J., Ghosh, J.K.C.: Ambient air pollution and preterm birth in the environment and pregnancy outcomes study at the University of California, Los Angeles. Am. J. Epidemiol. 1666, 1045–1052 (2007)CrossRefGoogle Scholar
  69. 69.
    Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (1999)MATHGoogle Scholar
  70. 70.
    Rodrigues, E.R., Achcar, J.A., Jara-Ettinger, J.: A Gibbs sampling algorithm to estimate the occurrence of ozone exceedances in Mexico City. In: Popovic, D. (ed.) Air Quality – Models and Applications, pp. 131–150. InTech Open Access Publisher, Croatia (2011)Google Scholar
  71. 71.
    Ross, S.M.: Stochastic Processes, 2nd edn. Wiley, London (1996)MATHGoogle Scholar
  72. 72.
    Sim, C.H.: First-order autoregressive models for Gamma and Exponential processes. J. Appl. Probab. 27, 325–332 (1990)MathSciNetCrossRefMATHGoogle Scholar
  73. 73.
    Sim, C.H.: Point processes with correlated Gamma inter arrival times. Stat. Probab. Lett. 15, 135–141 (1992)MathSciNetCrossRefMATHGoogle Scholar
  74. 74.
    Spiegelhalter, D.J., Thomas, A., Best, N.G., Gilks, W.R.: Winbugs: Bayesian Inference Using Gibbs Sampling. MRC Biostatistics Unit, Cambridge (1999)Google Scholar
  75. 75.
    Spiegelhalter, D.J., Best, N.G., Carlin, B.P., Van der Linde, A.: Bayesian measures of model complexity and fit (with discussion and rejoinder). J. Roy. Stat. Soc. B 64, 583–639 (2002)CrossRefMATHGoogle Scholar
  76. 76.
    Verzani, J.: Using R for Introductory Statistics. Chapman and Hall, Boca Raton (2005)MATHGoogle Scholar
  77. 77.
    Yang, T.E., Kuo, L.: Bayesian binary segmentation procedure for a Poisson process with multiple change-points. J. Comput. Graph. Stat. 10, 772–785 (2001)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Eliane Regina Rodrigues
    • 1
  • Jorge Alberto Achcar
    • 2
  1. 1.Area de la Investigación Científica Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Universidade de São PauloSao PauloBrazil

Personalised recommendations