Nanobiotechnology: Scope and Potential for Crop Improvement

  • Faheem Ahmed
  • Nishat Arshi
  • Shalendra Kumar
  • Sarvajeet Singh Gill
  • Ritu Gill
  • Narendra Tuteja
  • Bon Heun Koo


The production level of foodgrains has become an issue of concern as it has shown a downward trend during the last decade. Since, there has been a drastic decrease in natural resources; it is through agriculture that we can visualize a self sustainable world. The growth in agriculture can be achieved only by increasing productivity through an effective use of modern technology as the land and water resources are limited. Nanobiotechnology provides the tool and technological platforms to advance agricultural productivity through genetic improvement of plants, delivery of genes and drug molecules, to specific sites at cellular levels. The interest is increasing with suitable techniques and sensors for precision in agriculture, natural resource management, early detection of pathogens and contaminants in food products and smart delivery systems for agrochemicals like fertilizers and pesticides. To achieve the goals of “nano-agriculture”, detailed investigation on the ability of nanoparticles to penetrate plant cell walls and work as smart treatment-delivery systems in plants, is needed. In this chapter, thorough studies and reliable information regarding the effects of nanomaterials on plant physiology and crop improvement at the organism level, are discussed.


Crop improvement Nanotechnology Nanomaterials Nanoparticles synthesis Nanoparticles delivery 



Work on plant abiotic stress tolerance and crop improvement in NT’s laboratory is partially supported by Department of Science and Technology (DST), Government of India, and Department of Biotechnology (DBT), Government of India.


  1. Adiloglu A et al (2002) The effect of zinc (Zn) application on uptake of cadmium (Cd) in some cereal species. Arch Agron Soil Sci 48:553–556CrossRefGoogle Scholar
  2. Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH, Lee CG et al (2011a) Rapid and cost-effective synthesis of ZnO nanorods using microwave irradiation technique. Funct Mater Lett 4(1):1–5CrossRefGoogle Scholar
  3. Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH, Lee CG et al (2011b) Defect induced room temperature ferromagnetism in well-aligned ZnO nanorods grown on Si (100) substrate. Thin Solid Films 519:8199–8202CrossRefGoogle Scholar
  4. Arshi N, Ahmed F, Anwar MS, Kumar S, Koo BH, Lu J, Lee CG et al (2011a) Microwave assisted synthesis of gold nanoparticles and their antibacterial activity against Escherichia coli (E. coli). Curr Appl Phys 11:360CrossRefGoogle Scholar
  5. Arshi N, Ahmed F, Anwar MS, Kumar S, Koo BH, Lu J, Lee CG et al (2011b) Novel and cost-effective synthesis of silver nanocrystals: A green synthesis. NANO: Brief Rep & Rev 6:1Google Scholar
  6. Arshi N, Ahmed F, Anwar MS, Kumar S, Koo BH, Lee CG et al (2011c) Comparative study of the Ag/PVP nanocomposites synthesized in water and in ethylene glycol. Curr Appl Phys 11:346CrossRefGoogle Scholar
  7. Ball P et al (2002) Natural strategies for the molecular engineer. Nanotechnol 13:15–28CrossRefGoogle Scholar
  8. Battke F, Leopold K, Maier M, Schidhalter U, Schuster M et al (2008) Palladium exposure of barley uptake and effects. Plant Biol 10:272–276PubMedCrossRefGoogle Scholar
  9. Boehm AL, Martinon I, Zerrouk R, Rump E, Fessi H et al (2003) Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J. Microencapsul 20:433–441CrossRefGoogle Scholar
  10. Bohr MT et al (2002) Nanotechnology goals and challenges for electronic applications. IEEE Trans. Nanotechnol 1:56Google Scholar
  11. Brayner R, Ferrari-lliou R, Brivois N, Djediat S, Benedetti MF, Fie´vet F et al (2006) Toxicological impact studies based on Escherichia coli bacteria in Ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870PubMedCrossRefGoogle Scholar
  12. Canas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D et al (2008) Effects of functionalized and non-functionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931PubMedCrossRefGoogle Scholar
  13. Carpita N, Sabularse D, Montezinos D, Delmer DP et al (1979) Determination of the pore size of cell walls of living plant cells. Sci 205;1144–1147Google Scholar
  14. Christou P, McCabe DE, Swain WF et al (1988) Stable transformation of soybean callus by DNA-coated gold particles. Plant Physiol 87:671–674PubMedCrossRefGoogle Scholar
  15. Cifuentes Z, Custardoy L, de la Fuente JM, Marquina C, Lbarra MR, Rubiales D, Luque A P et al (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8:26CrossRefGoogle Scholar
  16. Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra MR, de la Fuente JM, Rubiales D, Pérez-de- Luque A, Risueño MC et al (2009) Nanoparticle penetration and transport in living pumpkin plants: In situ subcellular identification. BMC Plant Biol 9:45PubMedCrossRefGoogle Scholar
  17. Crabtree RH et al (1998) A new type of hydrogen bond. Sci 282:2000–2001CrossRefGoogle Scholar
  18. Cullity BD, Stock SR (2001) Elements of X-ray Diffraction, Prentice Hall, New Jersey, p 232Google Scholar
  19. Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM et al (2006) Responses of restinga plant species to pollution from an iron pelletization factory. Water Air Soil Pollut 175:241–256CrossRefGoogle Scholar
  20. Dey A, Bagchi B, Das S, Basu R, Nandy P (2011) A study on the phytotoxicity of nanomullite and metal-amended nanomullite on mung bean plants. J Environ Monit (in press)Google Scholar
  21. Ela SE, Cogal S, Icli S et al (2009) Conventional and microwave-assisted synthesis of ZnO nanorods and effects of PEG400 as a surfactant on the morphology. Inorg Chim Acta 362:1855CrossRefGoogle Scholar
  22. El-Sayed IH, Huang XH, El-Sayed MA et al (2006) Selective laser photo-thermal therapy of epithelial carcinoma using anti- EGFR antibody conjugated gold nanoparticles. Cancer Lett 239:129–135PubMedCrossRefGoogle Scholar
  23. Enrique N, Anders B, Renata B, Nanna B. Hartmann, Juliane F, Ai-Jun M, Antonietta Q, Peter H, Santschi, Laura S et al (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicol 17:372–386CrossRefGoogle Scholar
  24. Fleischer A, O’Neill MA, Ehwald R et al (1999) The pore size of nongraminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838PubMedCrossRefGoogle Scholar
  25. Fortina P, Kricka LJ, Surrey S, Grodzinski P et al (2005) Nanobiotechnology: The promise and reality of new approaches to molecular recognition. Trends Biotechnol 23:168PubMedCrossRefGoogle Scholar
  26. Fujino T, Itoh T et al (1998) Changes in pectin structure during epidermal cell elongation in pea (Pisum sativum) and its implications for cell wall architecture. Plant Cell Physiol 39:1315–1323CrossRefGoogle Scholar
  27. Ghosh P, Han G, De M, Kim CK, Rotello VM et al (2008) Gold nanoparticles in delivery applications. Adv Drug Delivery Rev 60:1307–1315CrossRefGoogle Scholar
  28. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Lbarra MR, Rubiales D, Pérez-de- Luque A. et al (2008) Nanoparticles as smart treatment-delivery systems in plants: Assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195PubMedCrossRefGoogle Scholar
  29. Green JM, Beestman GB et al (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Prot 26:320–327CrossRefGoogle Scholar
  30. Harris AT, Bali R et al (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanoparticles Res 10:691–695CrossRefGoogle Scholar
  31. Heredia A, Guillen R, Jimenez A, Fernandezbolanos J et al (1993) Plant cell wall structure. Revista Espanola De Ciencia Y Tecnologia De Alimentos 33:113–131Google Scholar
  32. Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P et al (2005a) Influence of nano-TiO2 on the chloroplast aging of spinach under light. Biol Trace Elem Res 104:249–260CrossRefGoogle Scholar
  33. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P et al (2005b) Effects of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279CrossRefGoogle Scholar
  34. Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB et al (2005) Cytotoxicity of carbon nanomaterials: Single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39:1378–1383PubMedCrossRefGoogle Scholar
  35. Jo YK, Kim BH et al (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  36. Joseph T, Morrison et al (2006) Nanotechnology in agriculture and food.
  37. Khodakovskaya M et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227PubMedCrossRefGoogle Scholar
  38. Kim SW et al (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764PubMedGoogle Scholar
  39. Knoblauch M, Peters WS (2004a) Biomimetic actuators: Where technology and cell biology merge. Cell Mol Life Sci 61:2497–2509CrossRefGoogle Scholar
  40. Knoblauch M, Peters WS (2004b) Forisomes, a novel type of Ca2 + - dependent contractile protein motor. Cell Motil Cytoskeleton 58:137–142CrossRefGoogle Scholar
  41. Knox JP et al (1995) The extracellular-matrix in higher-plants: Developmentally-regulated proteoglycans and glycoproteins of the plant-cell surface. FASEB J 9:1004–1012PubMedGoogle Scholar
  42. Kumar V, Yadav SK et al (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157CrossRefGoogle Scholar
  43. Kuzma J et al (2007) Moving forward responsibly: Oversight for the nanotechnology-biology interface. J Nanoparticle Res 9:165–182CrossRefGoogle Scholar
  44. Lei Z et al (2008) Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-Beta radiation. Biol Trace Elem Res 121:69–79PubMedCrossRefGoogle Scholar
  45. Lin D, Xing B et al (2007) Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedCrossRefGoogle Scholar
  46. Lin J, Zhang H, Chen Z, Zheng Y et al (2010) Penetration of lipid membranes by gold nanoparticles: Insights into cellular uptake, cytotoxicity, and their relationship. ACS Nano 4:5421–5429PubMedCrossRefGoogle Scholar
  47. Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H et al (2008) RubiscoActivase mRNA expression in spinach: Modulation by nanoanatase treatment. Biol Trace Elem Res 122:168–178PubMedCrossRefGoogle Scholar
  48. Liu Y, Laks P, Heiden P et al (2002) Controlled release of biocides in solid wood. III. Preparation and characterization of surfactant-free nanoparticles. J Appl Polym Sci 86:615–621CrossRefGoogle Scholar
  49. Lowe CR et al (2000) Nanobiotechnology: The fabrication and applications of chemical and biological nanostructures. Curr Opin Struct Biol 10:428PubMedCrossRefGoogle Scholar
  50. Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78(3):273–279PubMedCrossRefGoogle Scholar
  51. Madigan MT, Martinko JM, Parker J (2003) Brock biology of microorganisms.Prentice Hall/Pearson Higher Education Group, Upper Saddle River, NJGoogle Scholar
  52. Maynard AD et al (2006) Nanotechnology: The next big thing, or much ado about nothing? Ann Occup Hyg 51:1–12PubMedCrossRefGoogle Scholar
  53. Maysinger D et al (2007) Nanoparticles and cells: Good companions and doomed partnerships. Org Biomol Chem 5(15):2335–2342PubMedCrossRefGoogle Scholar
  54. Min JS et al (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. J Plant Pathol 25:376–380CrossRefGoogle Scholar
  55. Mingyu S et al (2007) Effects of nano-anatase TiO2 on absorption, distribution of light and photo-reduction activities of chloroplast membrane of spinach. Biol Trace Elem Res 118:120–130PubMedCrossRefGoogle Scholar
  56. Nel A, Xia T, Madler L, Li N et al (2006) Toxic potential of materials at the nanolevel. Sci 311:622–627CrossRefGoogle Scholar
  57. Nowack B, Bucheli TD et al (2007) Occurrence, behaviour and effects of nanoparticles in the environment. Environ Pollut 150:5–22PubMedCrossRefGoogle Scholar
  58. Onelly E, Prescianotto-Baschong C, Caccianiga M, Moscatelli A et al (2008) Clathrin-dependent and independent endocytic pathways in tobacco protoplasts revealed by labelling with charged nanogold. J Exp Bot 59:3051–3068CrossRefGoogle Scholar
  59. Paciotti GF, Myer L, Weinreich D, Goia D, Pavel N, McLaughlin RE, Tamarkin, L et al (2004) Colloidal gold: A novel nanoparticle vector for tumor directed drug delivery. Drug Delivery 11:169–183PubMedCrossRefGoogle Scholar
  60. Pandey AC, Sanjay SS, Yadav RS et al (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicerarietinum. J Exp Nanosci 5:488–497CrossRefGoogle Scholar
  61. Park HJ, Kim SH, Kim HJ, Choi SH et al (2006) A new composition of nanosized silica–silver for control of various plant diseases. J Plant Pathol 22:295–302CrossRefGoogle Scholar
  62. Pavel A, Creanga DE et al (2005) Chromosomal aberrations in plants under magnetic fluid influence. J Magn Magn Mater 289:469–472CrossRefGoogle Scholar
  63. Pavel A, Trifan M, Bara II, Creanga DE, Cotae C et al (1999) Accumulation dynamics and some cytogenetical tests at Chelidoniummajus and Papaversomniferum callus under the magnetic liquid effect. J Magn Magn Mater 201:443–445CrossRefGoogle Scholar
  64. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R et al (2007) Nanocarriers as an Emerging Platform for Cancer Therapy. Nat Nanotechnol 2:757–760CrossRefGoogle Scholar
  65. Perez-de-Luque A, Diego R et al (2009) Nanotechnology for parasitic plant control. Pest Manag. Sci 65:540–545Google Scholar
  66. Peters, WS et al (2008) Anisotropic contraction in forisome: Simple models won’t fit. Cell Motil. Cytoskeleton 65:368–378CrossRefGoogle Scholar
  67. Poliakoff M, Anastas PT et al (2001) A principled stance. Nat 413:257CrossRefGoogle Scholar
  68. Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT et al (2002) Green chemistry: science and politics of change. Sci 297:807CrossRefGoogle Scholar
  69. Pradhan A, Seena S, Pascoal C, Cássio F (2011) Can metal nanoparticles be a threat to microbial decomposers of plant litter in streams? Microb Ecol (in press)Google Scholar
  70. Racuciu M, Creanga D et al (2007a) Cytogenetic changes induced by aqueous ferrofluids in agricultural plants. J Magn Magn Mater 311:288–290CrossRefGoogle Scholar
  71. Racuciu M, Creanga DE et al (2007b) TMA-OH coated magnetic nanoparticles internalized in vegetal tissues. Romanian J Phys 52:395–395Google Scholar
  72. Racuciu M, Creanga D et al (2009) Cytogenetic changes induced by beta-cyclodextrin coated nanoparticles in plant seeds. Romanian J Phys 54:125–131Google Scholar
  73. Rehm G, Schmitt M et al (1997) Zinc for crop production, University of Minnesota Extension, FO-00720-GoGoogle Scholar
  74. Remya N, Saino HV, Baiju Nair G, Maekawa T, Yoshida Y, Kumar DS et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  75. Robinson DKR, Morrison M et al (2009) Nanotechnology developments for the agrifood sector- report of the observatory NANO. Institute of Nanotechnol, UK; []
  76. Roco MC et al (2003) Nanotechnology: Convergence with modern biology and medicine. Curr Opin Biotechnol 14:337–346PubMedCrossRefGoogle Scholar
  77. Rosi NL, Mirkin CA et al (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562PubMedCrossRefGoogle Scholar
  78. Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2011) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotianaxanthi) seedlings. Nanotoxicol (In Press)Google Scholar
  79. Scott NR et al (2007) Nanoscience in veterinary medicine. Veterinary Res Commun 31:139–144CrossRefGoogle Scholar
  80. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian SM et al (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed 3:168CrossRefGoogle Scholar
  81. Sharma VK, Yngard RA, Lin Y et al (2009) Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96PubMedCrossRefGoogle Scholar
  82. Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2011) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): A morphological study. Nanotoxicol (in press)Google Scholar
  83. Shen, A.Q et al (2005) Forisome as biomimetic smart materials. Proc. SPIE 5765, 97 DOI: 10.1117/12.606602Google Scholar
  84. Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M et al (2005) biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 21:10644–10654PubMedCrossRefGoogle Scholar
  85. Sondi I, Salopek-Sondi B et al (2004) Silver nanoparticles as antimicrobial agent: A case study on E. Coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182PubMedCrossRefGoogle Scholar
  86. Stampoulis D, Sinha SK, White JC et al (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479PubMedCrossRefGoogle Scholar
  87. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ et al (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686CrossRefGoogle Scholar
  88. Torney F, Trewyn BG, Lin VSY, Wang K et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefGoogle Scholar
  89. Tsuji K et al (2001) Microencapsulation of pesticides and their improved handling safety. J Microencapsul 18:137–147PubMedCrossRefGoogle Scholar
  90. Tuteja, N, Umate, P, Tuteja, R (2010a) Conserved thioredoxin fold is present in Pisum sativum L. sieve element occlusion-1 protein. Plant Signaling Behav 5(6):623–628CrossRefGoogle Scholar
  91. Tuteja, N, Umate, P, Tuteja, R (2010b) Forisomes as calcium-energized protein complex: A historical perspective. Plant Signaling Behav 5(5):497–500Google Scholar
  92. Tuteja, N, Umate, P, van Bel, AJE (2010c) Forisomes: Calcium-powered protein complexes with potential as ‘smart’ biomaterials. Trends in Biotechnol 28:102–110 DOI: 10.1016/j.tibtech.2009.11.005CrossRefGoogle Scholar
  93. Vitosh ML, Warncke DD, Lucas RE et al (1994) Secondary and micronutrients for vegetable and field crops. Michigan State Univ Extension Bull E-486Google Scholar
  94. Wang IC, Tai LA, Lee DD, Kanakamma PP, Shen CKF, Luh TY, Cheng CH, Hwang KC et al (1999) C-60 and water-soluble fullerene derivatives as antioxidants against radical-initiated lipid peroxidation. J Med Chem 42:4614–4620PubMedCrossRefGoogle Scholar
  95. Wang L, Li X, Zhang G, Dong J, Eastoe J et al (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314:230–235PubMedCrossRefGoogle Scholar
  96. Whitesides GM et al (2003) The ‘right’ size in nanobiotechnology. Nat Biotechnol 21;1161–1165PubMedCrossRefGoogle Scholar
  97. Yang F et al (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190PubMedCrossRefGoogle Scholar
  98. Yang F et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photo-reduction. Biol Trace Elem Res 119:77–88PubMedCrossRefGoogle Scholar
  99. Yu-Nam Y, Lead R et al (2008) Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414CrossRefGoogle Scholar
  100. Zemke-White WL, Clements KD, Harris PJ et al (2000) Acid lysis of macroalgae by marine herbivorous fishes: Effects of acid pH on cell wall porosity. J Exp Mar Bio Ecol 245:57–68CrossRefGoogle Scholar
  101. Zheng L, Hong FS, Lu SP, Liu C et al (2005) Effect of nano-TiO2 on strength of naturally and growth aged seeds of spinach. Biol Trace Elem Res 104:83–91PubMedCrossRefGoogle Scholar
  102. Zhu H, Han J, Xiao JQ, Jin Y et al (2008) Uptake, translocation and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Faheem Ahmed
    • 1
  • Nishat Arshi
    • 1
  • Shalendra Kumar
    • 1
  • Sarvajeet Singh Gill
    • 2
  • Ritu Gill
    • 3
  • Narendra Tuteja
    • 2
  • Bon Heun Koo
    • 1
  1. 1.School of Nano and Advanced Materials EngineeringChangwon National UniversityChangwonRepublic of Korea
  2. 2.International Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia
  3. 3.Centre for BiotechnologyMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations