Skip to main content

A Petabit Bufferless Optical Switch for Data Center Networks

  • Chapter
  • First Online:
Optical Interconnects for Future Data Center Networks

Part of the book series: Optical Networks ((OPNW))

Abstract

As critical infrastructures in the Internet, data centers have evolved to include hundreds of thousands of servers in a single facility to support data- and computing-intensive applications. For such large-scale systems, it becomes a great challenge to design an interconnection network that provides high capacity, low complexity, and low latency. The traditional approach is to build a hierarchical packet network using switches and routers. This approach has scalability problems in the aspects of wiring, control, and latency. We tackle the challenge by designing a novel switch architecture that supports direct interconnection of a huge number of server racks and provides Petabit switching capacity. Our design combines the best features of electronics and optics. Exploiting recent advances in optics, we propose to build a bufferless optical switch fabric that includes interconnected arrayed waveguide grating routers (AWGRs) and tunable wavelength converters (TWCs). The optical fabric is integrated with electronic buffering and control to perform high-speed switching with nanosecond-level reconfiguration overhead. In particular, our architecture reduces the wiring complexity from O(N) to O(sqrt(N)). We design a practical and scalable scheduling algorithm to achieve high throughput under various traffic load. We also discuss implementation issues to justify the feasibility of this design. Simulation results show that our design achieves good throughput and delay performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akimoto R, Gozu S, Mozume T, Akita K, Cong G, Hasama T, Ishikawa H (2009) All-optical wavelength conversion at 160Gb/s by intersubband transition switches utilizing efficient XPM in InGaAs/AlAsSb coupled double quantum well. In: European conference on optical communication, pp 1 –2, 20–24

    Google Scholar 

  2. Al-Fares M, Loukissas A, Vahdat A (2008) A scalable, commodity data center network architecture. In: SIGCOMM ’08: Proceedings of the ACM SIGCOMM 2008 conference on data communication. ACM, New York, pp 63–74

    Google Scholar 

  3. Anderson TE, Owicki SS, Saxe JB, Thacker CP (1993) High speed switch scheduling for local area networks. ACM Trans Comp Syst 11:319–352

    Google Scholar 

  4. Bach A (2009) High Speed Networking and the race to zero. Keynote speech, 2009 IEEE Symposium on High Performance Interconnects. ISBN: 978-0-7695-3847-1

    Google Scholar 

  5. Batcher K (1968) Sorting networks and their applications. In: American Federation of Information Processing Societies conference proceedings, pp 307–314

    Google Scholar 

  6. Bernasconi P, Zhang L, Yang W, Sauer N, Buhl L, Sinsky J, Kang I, Chandrasekhar S, Neilson D (2006) Monolithically integrated 40-Gb/s switchable wavelength converter. J Lightwave Technol 24(1):71–76

    Google Scholar 

  7. Chang C-S, Lee D-S, Lien C-M (2001) Load balanced Birkhoff-von Neumann switches with resequencing. SIGMETRICS Perform Eval Rev 29(3):23–24

    Google Scholar 

  8. Chao H (2000) Saturn: a Terabit packet switch using dual round robin. IEEE Comm Mag 38(12):78–84

    Google Scholar 

  9. Chao HJ, Liu B (2007) High performance switches and routers. Wiley-IEEE Press. ISBN: 978-0-470-05367-6, Hoboken, New Jersey

    Google Scholar 

  10. Chao HJ, soo Park J (1998) Centralized contention resolution schemes for a large-capacity optical ATM switch. In: Proceedings of IEEE ATM Workshop, pp 11–16

    Google Scholar 

  11. Cisco (2007) Cisco Data Center infrastructure 2.5 design guide. Cisco Systems, Inc.

    Google Scholar 

  12. Cole R, Hopcroft J (1982) On edge coloring bipartite graph. SIAM J Comput 11(3):540–546

    Google Scholar 

  13. Danger JL, Guilley S, Hoogvorst P (2009) High speed true random number generator based on open loop structures in FPGAs. Microelectron J 40(11):1650–1656

    Google Scholar 

  14. Dean J (2009) Large-scale distributed systems at Google: current systems and future directions. In: LADIS ’09: ACM SIGOPS international workshop on large scale distributed systems and middleware. Keynote speech, available online at www.cs.cornell.edu/projects/ladis2009/talks/dean-keynote-ladis2009.pdf Accessed Sep 2012

  15. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. Comm ACM 51(1):107–113

    Google Scholar 

  16. Farrington N, Rubow E, Vahdat A (2009) Data center switch architecture in the age of merchant silicon. In: 7th IEEE Symposium on High Performance Interconnects (HOTI) pp 93–102

    Google Scholar 

  17. Farrington N, Porter G, Radhakrishnan S, Bazzaz HH, Subramanya V, Fainman Y, Papen G, Vahdat A (2010) Helios: A hybrid electrical/optical switch architecture for modular data centers. In: SIGCOMM ’10: Proceedings of the ACM SIGCOMM 2010 conference on data communication. ACM, New York

    Google Scholar 

  18. Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA, Patel P, Sengupta S (2009) VL2: a scalable and flexible data center network. In: SIGCOMM ’09: Proceedings of the ACM SIGCOMM 2009 conference on data communication. ACM, New York, pp 51–62

    Google Scholar 

  19. Guo C, Wu H, Tan K, Shi L, Zhang Y, Lu S (2008) DCell: A scalable and fault-tolerant network structure for data centers. In: SIGCOMM ’08: Proceedings of the ACM SIGCOMM 2008 conference on data communication. ACM, New York, pp 75–86

    Google Scholar 

  20. Guo C, Lu G, Li D, Wu H, Zhang X, Shi Y, Tian C, Zhang Y, Lu S (2009) BCube: a high performance, server-centric network architecture for modular data centers. In: SIGCOMM ’09: Proceedings of the ACM SIGCOMM 2009 conference on data communication. ACM, New York, pp 63–74

    Google Scholar 

  21. Hawkins C, Small BA, Wills DS, Bergman K (2007) The data vortex, an all optical path multicomputer interconnection network. IEEE Trans Parallel Distrib Syst 18(3):409–420

    Google Scholar 

  22. Hopcroft J, Karp R (1973) An n 5 ∕ 2 algorithm for maximum matchings in bipartite graphs. SIAM J Comput 2(4):225–231

    Google Scholar 

  23. Iyer S, Kompella R, McKeown N (2008) Designing packet buffers for router linecards. IEEE/ACM Trans Networking 16(3):705–717

    Google Scholar 

  24. Juniper (2010) Network fabrics for the modern data center. White Paper, Juniper Networks, Inc.

    Google Scholar 

  25. Keslassy I (2004) The load-balanced router. PhD thesis, Stanford University, Stanford, CA, USA. Adviser-Mckeown, Nick

    Google Scholar 

  26. Keslassy I, Chuang S-T, Yu K, Miller D, Horowitz M, Solgaard O, McKeown N (2003) Scaling internet routers using optics. In: SIGCOMM ’03: Proceedings of the ACM SIGCOMM 2003 conference on data communication. ACM, New York, pp 189–200

    Google Scholar 

  27. Li Y, Panwar S, Chao H (2001) On the performance of a dual round-robin switch. In: IEEE INFOCOM, vol 3, pp 1688–1697

    Google Scholar 

  28. Liao Y, Yin D, Gao L (2010) DPillar: scalable dual-port server interconnection for data center networks. In: IEEE International Conference on Computer Communications and Networks (ICCCN), pp 1–6

    Google Scholar 

  29. Luijten R, Grzybowski R (2009) The OSMOSIS optical packet switch for supercomputers. In: Conference on Optical Fiber Communication OFC 2009. pp 1–3

    Google Scholar 

  30. Mahony FO et al (2010) A 47times10 Gb/s 1.4 mW/(Gb/s) Parallel Interface in 45 nm CMOS. In: IEEE international solid-state circuits conference 45(12):2828–2837

    Google Scholar 

  31. McKeown N (1999) The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Trans Networking 7(2):188–201

    Google Scholar 

  32. McKeown N, Mekkittikul A, Anantharam V, Walrand J (1999) Achieving 100% throughput in an input-queued switch. IEEE Trans Comm 47(8):1260–1267

    Google Scholar 

  33. Meng X, Pappas V, Zhang L (2010) Improving the scalability of data center networks with traffic-aware virtual machine placement. In: IEEE INFOCOM, pp 1 –9, 14–19

    Google Scholar 

  34. Miller R (2008) Microsoft: 300,000 servers in container farm. http://www.datacenter knowledge.com/archives/2008/05/07/microsoft-300000-servers-in-container-farm. Accessed May 2008

  35. Miller R (2009) Who has the most web servers? http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-mos%t-web-servers. Accessed May 2009

    Google Scholar 

  36. Minkenberg C, Abel F, Muller P, Krishnamurthy R, Gusat M, Dill P, Iliadis I, Luijten R, Hemenway R, Grzybowski R, Schiattarella E (2006) Designing a crossbar scheduler for HPC applications. IEEE Micro 26(3):58–71

    Google Scholar 

  37. Miyazaki Y, Miyahara T, Takagi K, Matsumoto K, Nishikawa S, Hatta T, Aoyagi T, Motoshima K (2006) Polarization-insensitive SOA-MZI monolithic all-optical wavelength converter for full C-band 40Gbps-NRZ operation. In: European conference on optical communication, pp 1–2, 24–28

    Google Scholar 

  38. Niranjan Mysore R, Pamboris A, Farrington N, Huang N, Miri P, Radhakrishnan S, Subramanya V, Vahdat A (2009) PortLand: a scalable fault-tolerant layer 2 data center network fabric. In: SIGCOMM ’09: Proceedings of the ACM SIGCOMM 2009 conference on data communication. ACM, New York, pp 39–50

    Google Scholar 

  39. Pina J, Silva H, Monteiro P, Wang J, Freude W, Leuthold J (2007) Performance evaluation of wavelength conversion at 160 Gbit/s using XGM in quantum-dot semiconductor optical amplifiers in MZI configuration. In: Photonics in switching, 2007, pp 77 –78, 19–22

    Google Scholar 

  40. Sudan R, Mukai W (1994) Introduction to the Cisco CRS-1 carrier routing system. Cisco Systems, Inc. White Paper

    Google Scholar 

  41. Wang G, Andersen DG, Kaminsky M, Papagiannaki K, Ng TSE, Kozuch M, Ryan M (2010) c-Through: part-time optics in data centers. In: SIGCOMM ’10: Proceedings of the ACM SIGCOMM 2010 conference on data communication. ACM, New York

    Google Scholar 

  42. Xue F, Ben Yoo S (2004) High-capacity multiservice optical label switching for the next-generation Internet. IEEE Comm Mag 42(5):S16–S22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Xi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xi, K., Kao, YH., Chao, H.J. (2013). A Petabit Bufferless Optical Switch for Data Center Networks. In: Kachris, C., Bergman, K., Tomkos, I. (eds) Optical Interconnects for Future Data Center Networks. Optical Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4630-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4630-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4629-3

  • Online ISBN: 978-1-4614-4630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics