Advertisement

Membrane-Bound Hydroxymethylglutaryl Coenzyme a Reductase

  • B. Hamprecht
  • K. R. Bruckdorfer
  • C. Nüßler
  • F. Lynen
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 14)

Abstract

Cholesterol can be formed from acetate via a large number of enzymatic steps (Fig. 1). Some of the more important intermediates are acetyl-CoA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA), mevalonate and squalene. The enzyme, which catalyzes the rate limiting reaction of this sequence is 3-hydroxy-3-methylglutaryl coenzyme A reductase (E.C. 1.1.1.34; HMG-CoA reductase). It enables the reduction of the thioester bonding in HMG-CoA to the primary alcohol function of mevalonate by using two molecules of NADPH as reductant (Fig. 2). This enzyme has first been discovered in yeast (1). As it catalyzes the slowest reaction of the whole sequence from acetyl coenzyme A to cholesterol, it is the object of intensive research in those groups, who are interested in the mechanism of regulation of hepatic cholesterogenesis.

Fig. 1

Enzymatic steps from acetate to cholesterol

Keywords

Bile Acid Thioester Bonding Allosteric Enzyme HYDROXYMETHYLGLUTARYL Coenzyme Tridecanoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knappe, J., Ringelmann, E. and Lynen, F., Biochem. Z. 332: 195 (1959).PubMedGoogle Scholar
  2. 2.
    Kirtley, M.E. and Rudney, H., Biochemistry 6: 230 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    Hamprecht, B., Thesis. Universität München (1963).Google Scholar
  4. 4.
    Hamprecht, B. and Lynen, F., Europ. J. Biochem., 14: 323 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    Karmen, A., McCaffrey, J. and Bowman, R.L., J. Lipid Res. 3: 372 (1962).Google Scholar
  6. 6.
    Regen, D.M., Riepertinier, C., Hamprecht, B. and Lynen, F., Biochem. Z. 346: 78 (1966).Google Scholar
  7. 7.
    Hamprecht, B., Naturwissenschaften 56: 398 (1969).PubMedCrossRefGoogle Scholar
  8. 8.
    Day, A.J., Fidge, N.H. and Wilkinson, G.N., J. Lipid Res. 7: 132 (1966).PubMedGoogle Scholar
  9. 9.
    Pangborn, M.Y., J. Biol. Chem. 188: 471 (1951).PubMedGoogle Scholar
  10. 10.
    Bruckdorfer, K.R., Edwards, P.A. and Green, C., Europ. J. Biochem. 4: 506 (1968).PubMedCrossRefGoogle Scholar
  11. 11.
    Hamprecht, B., Nüßler, C., Waltinger, G. and Lynen, F., in preparation.Google Scholar
  12. 12.
    Fimognari, G.M., Thesis. University of California (1964).Google Scholar
  13. 13.
    Back, P., Hamprecht, B. and Lynen, F., Arch. Biochem. Biophys. 133: 11 (1969).PubMedCrossRefGoogle Scholar
  14. 14.
    Miller, W.L. and Gaylor, J.L., Biochim. Biophys. Acta 137: 400 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • B. Hamprecht
    • 1
  • K. R. Bruckdorfer
    • 1
  • C. Nüßler
    • 1
  • F. Lynen
    • 1
  1. 1.Max-Planck-Institut für ZellchemieMünchenGermany

Personalised recommendations