Advertisement

Subcellular Distribution and Possible Role of Gangliosides in the CNS

  • E. De Robertis
  • E. G. Lapetina
  • Sara Fiszer de Plazas
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 71)

Abstract

Knowledge about the subcellular localization of a certain chemical component in the CNS is essential to the understanding of its possible function. When applied to the brain the methods of cell fractionation have provided a direct approach to the fine topology of transmitters and other active substances, as well as of the enzymes involved in their synthesis or inactivation and of the chemical receptor proteins (see Rodriguez de Lores Arnaiz and De Robertis, 1973; De Robertis, 1975). The study of the subcellular distribution of brain gangliosides is of considerable interest in view of their high concentration in the CNS, particularly in gray matter. These complex glycolipids were first found in the brain microsomal fraction, presumably in membrane fragments of dendrites (Wolfe, 1961).

Keywords

Synaptic Vesicle Nerve Ending Subcellular Distribution Sendai Virus Brain Ganglioside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balakrishnan S. and McIlwain H. (1961), Biochem.J. 79, 342.Google Scholar
  2. Burton R.M., Howard R.E., Baer S. and Balfour I.M. (1964), Biochem.Blophys.Acta 84, 441.Google Scholar
  3. Carroll P.M. and Sereda D.D. (1968), Nature (London) 217, 667.CrossRefGoogle Scholar
  4. Clowes A.W., Cherry R.J. and Chapman D. (1972), J.Mol.-Biol. 67, 49.CrossRefGoogle Scholar
  5. Cuatrecasas P. (1973), Biochemistry 12, 3558.CrossRefGoogle Scholar
  6. De Robertis E. (1975), Synaptic Receptors: Isolation and Molecular Biology, M.Dekker Inc., New York.Google Scholar
  7. De Robertis E., Alberici M., Rodriguez de Lores Arnaiz G. and Azcurra J. (1966), Life Sci. 5, 577.CrossRefGoogle Scholar
  8. De Robertis E., Azcurra J. and Fiszer S. (1967a) Brain Res. 5, 45.CrossRefGoogle Scholar
  9. De Robertis E. and Fiszer S. (1969), Life Sei. 8, 1247.CrossRefGoogle Scholar
  10. De Robertis E., Fiszer S., Pasquini J.M. and Soto E.F. (1969) J. Neurobiol. 1, 41.CrossRefGoogle Scholar
  11. De Robertis E., Pellegrino de Iraldi A., Rodriguez de Lores, Arnaiz G. and Gomez C.J. (1960), Meeting of the Argentina Society of Biology, Mendoza, Argentina, October.Google Scholar
  12. De Robertis E., Pellegrino de Iraldi A., Rodriguez de Lores, Arnaiz G. and Gomez C.J. (1961), J. Biophys. Biochem. Cytol. 9, 229.CrossRefGoogle Scholar
  13. De Robertis E. , Pellegrino de Iraldi A., Rodriguez de Lores, Arnaiz G. and Salganicoff L. (1962a), J. Neurochenu 9, 23.CrossRefGoogle Scholar
  14. De Robertis E., Rodriguez de Lores, Arnaiz G., and Pellegrino de Iraldi A. (1962b), Nature 194, 794.CrossRefGoogle Scholar
  15. De Robertis E., Rodriguez de Lores, Arnaiz G., Alberici M., Butcher R.W. and Sutherland E. (1967b), J.Biol.Chem. 242, 3487.Google Scholar
  16. De Robertis E., Rodriguez de Lores, Arnaiz G., Pellegrino de Iraldi A. and Zieher L.M. (1963), J.Neurochem. 10, 225.CrossRefGoogle Scholar
  17. Deul D.H. and McIlwain H. (1961), J. Neurochenu 8, 246.CrossRefGoogle Scholar
  18. Fiszer S. and De Robertis E. (1967) Brain Res. 5, 31.CrossRefGoogle Scholar
  19. Fiszer S. and De Robertis E. (1969), J.Neurochem. 16, 1201.CrossRefGoogle Scholar
  20. Folch J., Lees M. and Sloane-Stanley G.H. (1957), J.Biol.Chem. 226, 497.Google Scholar
  21. Gray E.G. and Whittaker U.P. (1960), J.Physiol. (London) 153, 35 P.Google Scholar
  22. Haywood A.M. (1974a), J.Mol.Biol. 83, 427.CrossRefGoogle Scholar
  23. Haywood A.M. (1974b), J.Mol.Biol. 87, 625.CrossRefGoogle Scholar
  24. Hill M.W. and Lester R. (1972), Biochim.Biophys. Acta 282, 18.CrossRefGoogle Scholar
  25. Hollenberg M.D., Fishman P.H., Bennett V. and Cua-trecasas, (1974), Proc.Nat.Acad.Sci. Usa 71, 4224.CrossRefGoogle Scholar
  26. Kataoka K. and De Robertis E. (1967), J.Pharmacol. Exp.Ther. 156, 114.Google Scholar
  27. Lapetina E.G. and De Robertis E. (1968) Life Sei. 7, 203.CrossRefGoogle Scholar
  28. Lapetina E.G., Soto E.F., and De Robertis E. (1967), Biochim. Biophys. Acta 135, 33.CrossRefGoogle Scholar
  29. Lapetina E.G., Soto E.F. and De Robertis E. (1968), J.Neurochem. 15, 437.CrossRefGoogle Scholar
  30. Marchbanks R.M. (1966), J.Neurochem. 13, 1481.CrossRefGoogle Scholar
  31. Morgan I.G., Wolfe L.S., Mandel P. and Gombos G. (1971), Biochim. Biophys.Acta 241, 137.CrossRefGoogle Scholar
  32. Rodriguez de Lores, Arnaiz G., Alberici M. and De Robertis E. (1967), J.Neurochem. 14, 215.CrossRefGoogle Scholar
  33. Rodriguez de Lores, Arnaiz G. and De Robertis E. (1973), In: Fundamentals of Cell Pharmacology (S. Dikstein, Ed.), Charles C.Thomas, Springfield, Ill.USA, p.279.Google Scholar
  34. Salganicoff L. and De Robertis E. (1965), J.Neurochem 12, 287.CrossRefGoogle Scholar
  35. Schwartz A., Bachelard H.S. and McIlwain H. (1962), Biochem. J. 84, 626.Google Scholar
  36. Seminario L.M., Hren N. and Gomez C.J. (1964), J.Neurochem. 11, 197.CrossRefGoogle Scholar
  37. Trams E.G. and Lauter C.J. (1962), Biochim.Biophys. Acta 60, 350.CrossRefGoogle Scholar
  38. Warren L. (1959), J.Biol.Chem. 239, 3215.Google Scholar
  39. Wessemann W. and Zilliken F. (1966), Justus Liebig’s Ann.Chem. 695, 209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • E. De Robertis
    • 1
  • E. G. Lapetina
    • 1
  • Sara Fiszer de Plazas
    • 1
  1. 1.Instituto de Biologia Celular, Fac. de MedicinaUniv. de Buenos AiresBuenos AiresArgentina

Personalised recommendations