Effect of Nanoparticles on Electrolytes and Electrode/Electrolyte Interface

Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

The addition of nano-sized inorganic fillers such as SiO2 to solid and liquid electrolytes to enhance their electrochemical and physical properties has been recently the focus of great deal of research. In this chapter, we review the work done in this area where various types of nanoparticles including ceramics and clay were used as additives to electrolytes commonly used in lithium-ion batteries research such as polymer electrolytes (gel and solid form), ionic and organic liquid electrolytes and plastic crystals.

Keywords

Clay TiO2 Entropy SiO2 Zirconia 

References

  1. 1.
    Croce F, D’Epifanio A, Hassoun J, Reale P, Scrosati B (2003) Advanced electrolyte and electrode materials for lithium polymer batteries. J Power Sources 119–121:399–402CrossRefGoogle Scholar
  2. 2.
    Blomgren GE (2003) Liquid electrolytes for lithium and lithium-ion batteries. J Power Sources 119–121:326–329CrossRefGoogle Scholar
  3. 3.
    Sazhin SV, Harrup MK, Gering KL (2011) Characterization of low-flammability electrolytes for lithium-ion batteries. J Power Sources 196(7):3433–3438CrossRefGoogle Scholar
  4. 4.
    Walls HJ, Riley MW, Singhal RR, Spontak RJ, Fedkiw PS, Khan SA (2003) Nanocomposite electrolytes with fumed silica and hectorites clay networks: passive versus active fillers. Adv Funct Mater 13(9):710–717CrossRefGoogle Scholar
  5. 5.
    Shekibi Y, Gray-Weale A, MacFarlane DR, Hill AJ, Forsyth M (2007) Nanoparticle enhanced conductivity in organic ionic plastic crystals: space charge versus strain induced defect Mechanism. J Phys Chem C 111(30):11463–11468CrossRefGoogle Scholar
  6. 6.
    Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovskii YF, Kotomin EA, Maier J (2006) Nano-ionics in the context of lithium batteries. J Power Sources 159(1 SPEC. ISS):171–178CrossRefGoogle Scholar
  7. 7.
    Bhattacharyya AJ, Dollé M, Maier J (2004) Improved Li-battery electrolytes by heterogeneous doping of nonaqueous Li-salt solutions. Electrochem Solid State Lett 7(11):A432–A434CrossRefGoogle Scholar
  8. 8.
    Bhattacharyya AJ, Maier J (2004) Second phase effects on the conductivity of non-aqueous salt solutions: “Soggy sand electrolytes”. Adv Mater 16(9–10):811–814CrossRefGoogle Scholar
  9. 9.
    Bhattacharyya AJ, Maier J, Bock R, Lange FF (2006) New class of soft matter electrolytes obtained via heterogeneous doping: percolation effects in “soggy sand” electrolytes. Solid State Ion 177(26–32 SPEC. ISS.):2565–2568CrossRefGoogle Scholar
  10. 10.
    Bhattacharyya AJ, Patel M, Das SK (2009) Soft matter lithium salt electrolytes: ion conduction and application to rechargeable batteries. Monatsh Chem 140(9):1001–1010CrossRefGoogle Scholar
  11. 11.
    Das SK, Bhattacharyya AJ (2009) Oxide particle surface chemistry and ion transport in “soggy sand” electrolytes. J Phys Chem C 113(16):6699–6705CrossRefGoogle Scholar
  12. 12.
    Das SK, Bhattacharyya AJ (2010) Influence of oxide particle network morphology on ion solvation and transport in “soggy Sand” electrolytes. J Phys Chem B 114(20):6830–6835CrossRefGoogle Scholar
  13. 13.
    Edwards WV, Bhattacharyya AJ, Chadwick AV, Maier J (2006) An XAS study of the local environment of ions in soggy sand electrolytes. Electrochem Solid State Lett 9(12):564–567CrossRefGoogle Scholar
  14. 14.
    Kumar B, Rodrigues SJ (2004) Ionic conductivity of colloidal electrolytes. Solid State Ion 167(1–2):91–97CrossRefGoogle Scholar
  15. 15.
    Osinska M, Walkowiak M, Zalewska A, Jesionowski T (2009) Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes. J Membr Sci 326(2):582–588CrossRefGoogle Scholar
  16. 16.
    Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B (2000) Transport and interfacial properties of composite polymer electrolytes. Electrochim Acta 45(8–9):1481–1490CrossRefGoogle Scholar
  17. 17.
    Forsyth M, MacFarlane DR, Best A, Adebahr J, Jacobsson P, Hill AJ (2002) The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ion 147(3–4):203–211CrossRefGoogle Scholar
  18. 18.
    Chen YT, Chuang YC, Su JH, Yu HC, Chen-Yang YW (2011) High discharge capacity solid composite polymer electrolyte lithium battery. J Power Sources 196(5):2802–2809CrossRefGoogle Scholar
  19. 19.
    Deka M, Kumar A (2010) Enhanced ionic conductivity in novel nanocomposite gel polymer electrolyte based on intercalation of PMMA into layered LiV3O8. J Solid State Electrochem 14(9):1649–1656CrossRefGoogle Scholar
  20. 20.
    Deka M, Kumar A (2011) Electrical and electrochemical studies of poly(vinylidene fluoride)-clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 196(3):1358–1364CrossRefGoogle Scholar
  21. 21.
    Kim KM, Park N-G, Ryu KS, Chang SH (2002) Characterization of poly(vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles. Polymer 43(14):3951–3957CrossRefGoogle Scholar
  22. 22.
    Sharma AL, Thakur AK (2010) Polymer-ion-clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16(4):339–350CrossRefGoogle Scholar
  23. 23.
    Croce F, Settimi L, Scrosati B (2006) Superacid ZrO2-added, composite polymer electrolytes with improved transport properties. Electrochem Commun 8(2):364–368CrossRefGoogle Scholar
  24. 24.
    Skaarup S, West K, Julian PM, Thomas DM (1990) Mixed phase solid electrolytes with nonconducting polymer binder. Solid State Ion 40–41(Part 2):1021–1024CrossRefGoogle Scholar
  25. 25.
    Skaarup S, West K, Zachau-Christiansen B (1988) Mixed phase solid electrolytes. Solid State Ion 28–30(Part 2):975–978CrossRefGoogle Scholar
  26. 26.
    Croce F, Sacchetti S, Scrosati B (2006) Advanced, lithium batteries based on high-performance composite polymer electrolytes. J Power Sources 162(1):685–689CrossRefGoogle Scholar
  27. 27.
    Adebahr J, Best AS, Byrne N, Jacobsson P, MacFarlane DR, Forsyth M (eds) (2003) Ion transport in polymer electrolytes containing nanoparticulate TiO2: the influence of polymer morphology. Phys Chem Chem Phys 5:720–725, The Royal Society of ChemistryGoogle Scholar
  28. 28.
    Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197CrossRefGoogle Scholar
  29. 29.
    Reijnders L (2009) The release of TiO2 and SiO2 nanoparticles from nanocomposites. Polym Degrad Stab 94(5):873–876CrossRefGoogle Scholar
  30. 30.
    Moganty SS, Jayaprakash N, Nugent JL, Shen J, Archer LA (2010) Ionic-liquid-tethered nanoparticles: hybrid electrolytes. Angew Chem Int Ed 49(48):9158–9161CrossRefGoogle Scholar
  31. 31.
    Ueno K, Hata K, Katakabe T, Kondoh M, Watanabe M (2008) Nanocomposite ion gels based on silica nanoparticles and an ionic liquid: ionic transport, viscoelastic properties, and microstructure. J Phys Chem B 112(30):9013–9019CrossRefGoogle Scholar
  32. 32.
    Zhang J, Zhang Q, Li X, Liu S, Ma Y, Shi F, Deng Y (2010) Nanocomposites of ionic liquids confined in mesoporous silica gels: preparation, characterization and performance. Phys Chem Chem Phys 12(8):1971–1981CrossRefGoogle Scholar
  33. 33.
    Abu-Lebdeh Y, Alarco P-J, Armand M (2003) Conductive organic plastic crystals based on pyrazolium imides. Angew Chem Int Ed 42(37):4499–4501CrossRefGoogle Scholar
  34. 34.
    Abu-Lebdeh Y, Austin E, Davidson IJ (2009) Spiro-ammonium imide salts as electrolytes for lithium batteries. Chem Lett 38(8):782–783CrossRefGoogle Scholar
  35. 35.
    Adebahr J, Ciccosillo N, Shekibi Y, MacFarlane DR, Hill AJ, Forsyth M (2006) The “filler-effect” in organic ionic plastic crystals: enhanced conductivity by the addition of nano-sized TiO2. Solid State Ion 177(9–10):827–831CrossRefGoogle Scholar
  36. 36.
    Cooper EI, Angell CA (1986) Ambient temperature plastic crystal fast ion conductors (PLICFICS). Solid State Ion 18–19(Part 1):570–576CrossRefGoogle Scholar
  37. 37.
    Fukada S-I, Yamamoto H, Ikeda R, Nakamura D (1987) Hydrogen-1 nuclear magnetic resonance, differential thermal analysis, X-ray powder diffraction and electrical conductivity studies on the motion of cations, including self-diffusion in crystals of propylammonium chloride and bromide as well as their n-deuterated analogues. J Chem Soc 10:3207–3222Google Scholar
  38. 38.
    MacFarlane DR, Forsyth M (2001) Plastic crystal electrolyte materials: new perspectives on solid state. Adv Mater 13(12–13):957–966CrossRefGoogle Scholar
  39. 39.
    MacFarlane DR, Meakin P, Amini N, Forsyth M (2001) Structural studies of ambient temperature plastic crystal ion conductors. J Phys Condens Matter 13(36):8257–8267CrossRefGoogle Scholar
  40. 40.
    Pringle JM, Howlett PC, MacFarlane DR, Forsyth M (2010) Organic ionic plastic crystals: recent advances. J Mater Chem 20(11):2056–2062CrossRefGoogle Scholar
  41. 41.
    Pringle JM, Shekibi Y, MacFarlane DR, Forsyth M (2010) The influence of different nanoparticles on a range of organic ionic plastic crystals. Electrochim Acta 55(28):8847–8854CrossRefGoogle Scholar
  42. 42.
    Shekibi Y, Pringle JM, Sun J, Pas SJ, Rocher NM, Clare BR, Hill AJ, MacFarlane DR, Forsyth M (2010) Lithium-functionalised silica nanoparticles for enhanced ionic conductivity in an organic ionic plastic crystal. J Mater Chem 20(2):338–344CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.National Research Council of CanadaOttawaCanada

Personalised recommendations