Skip to main content

Design and Properties of LiFePO4 Nano-materials for High-Power Applications

  • Chapter
  • First Online:
Book cover Nanotechnology for Lithium-Ion Batteries

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter presents a review of the structural and physicochemical properties of LiFePO4 which is considered as the most advanced positive electrode for lithium-ion batteries. Depending on the synthesis, the fundamental properties can be modified because impurities poison this material. These impurities are identified, and a quantitative estimate of their concentrations is deduced from the combination of analytical methods. An optimized preparation provides materials with carbon-coated particles free of any impurity phase, insuring structural stability and electrochemical performance that justify the use of this material as a cathode element in new generation of lithium secondary batteries operating for powering hybrid electric vehicles and full electric vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Padhi K, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  2. Huang H, Yin SC, Nazar LF (2001) Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates. Electrochem Solid State Lett 4:A170

    Article  CAS  Google Scholar 

  3. Dominko D, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim Acta 48:3709

    Article  Google Scholar 

  4. Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved Iron based Cathode Material. Proceedings of the 196th ECS meeting, Honolulu, extended abstract n° 127

    Google Scholar 

  5. Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97:503

    Article  Google Scholar 

  6. Bewlay SL, Konstantinov K, Wang GX, Dou SX, Liu HK (2004) Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater Lett 58:1788

    Article  CAS  Google Scholar 

  7. Chen Z, Dahn JR (2002) Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density. J Electrochem Soc 149:A1184

    Article  CAS  Google Scholar 

  8. Ravet N, Besner S, Simoneau M, Vallée A, Armand M, Magnan JF (2005) Electrode materials with high surface conductivity. US Patent 6,962,666; (2005) 6,855,273

    Google Scholar 

  9. Ait-Salah A, Mauger A, Julien CM, Gendron F (2006) Nano-sized impurity phases in relation to the mode of preparation of LiFePO4. Mater Sci Eng B 129:232

    Article  Google Scholar 

  10. Subramanya-Herle P, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147

    Article  Google Scholar 

  11. Ait-Salah A, Dodd J, Mauger A, Yazami R, Gendron F, Julien CM (2006) Structural and magnetic properties of LiFePO4 and lithium extraction effects. Z Allg Inorg Chem 632:1692

    Google Scholar 

  12. Zaghib K, Shim J, Guerfi A, Charest P, Striebel KA (2005) Effect of Carbon Source as Additives in LiFePO4 as Positive Electrode for Lithium-Ion Batteries. Electrochem Solid State Lett 8:A207

    Article  CAS  Google Scholar 

  13. Zaghib K, Armand M (2002) Electrode covered with a film obtained from an aqueous solution containing a water soluble binder, manufacturing process and uses thereof. Canadian Patent CA 2,411,695

    Google Scholar 

  14. Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for Lithium Battery Cathodes. J Electrochem Soc 148:A224

    Article  CAS  Google Scholar 

  15. Arcon D, Zorko A, Dominko R, Jaglicic Z (2004) A comparative study of magnetic properties of LiFePO4 and LiMnPO4. J Phys C 16:5531

    CAS  Google Scholar 

  16. Geller S, Durand JL (1960) Refinement of the structure of LiMnPO4. Acta Crystallogr 13:325

    Article  CAS  Google Scholar 

  17. Santorro RP, Newnham RE (1967) Antiferromagnetism of LiFePO4. Acta Crystallogr 22:344

    Article  Google Scholar 

  18. Streltsov VA, Belokoneva EL, Tsirelson VG, Hansen NK (1993) Multipole analysis of the electron density in triphylite LiFePO4, using X-ray diffraction data. Acta Crystallogr B 49:147

    Article  Google Scholar 

  19. Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97–98:498

    Article  Google Scholar 

  20. Rousse G, Rodriguez-Carvajal J, Patoux S, Masquelier C (2003) Magnetic structures of the triphylite LiFePO4 and its delithiated form FePO4. Chem Mater 15:4082

    Article  CAS  Google Scholar 

  21. Losey A, Rakovan J, Huges J, Francis CA, Dyar MD (2004) Structural variation in the lithiophilite-triphylite series and other olivine-group structures. Can Miner 42:1105

    Article  CAS  Google Scholar 

  22. Junod A, Wang KQ, Triscone G, Lamarche G (1995) Specific heat, magnetic properties and critical behaviour of Mn2SiS4 and Fe2GeS4. J Magn Magn Mater 146:21

    Article  CAS  Google Scholar 

  23. Moring J, Kostiner E (1986) The crystal structure of NaMnPO4. J Solid State Chem 61:379

    Article  CAS  Google Scholar 

  24. Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and Surface Modifications of LiFePO4 Olivine Particles and Their Electrochemical Properties. J Electrochem Soc 153:A1108

    Article  CAS  Google Scholar 

  25. Striebel K, Shim J, Srinivasan V, Newman J (2005) Comparison of LiFePO4 from different sources. J Electrochem Soc 152:A664

    Article  CAS  Google Scholar 

  26. Ait Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) Reduction Fe3+ of Impurities in LiFePO4 from Pyrolysis of Organic Precursor Used for Carbon Deposition. J Electrochem Soc 153:A1692

    Article  CAS  Google Scholar 

  27. Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds—II Orthophosphates, -arsenates and -vanadates AIBIIXVO4. Spectrochim Acta A: Molecular Spectroscopy 30:673

    Article  Google Scholar 

  28. Burma CM, Frech R (2004) Raman and FTIR Spectroscopic Study of Li x FePO4 (0≤x≤1). J Electrochem Soc 151:A1032

    Article  Google Scholar 

  29. Kostecki R, Schnyder B, Alliata D, Song X, Kinoshita K, Kotz R (2001) Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396:36

    Article  CAS  Google Scholar 

  30. Julien CM, Massot M (2004) Vibrational spectroscopy of electrode materials for rechargeable lithium-ion batteries. III. Oxide frameworks. In: Stoynov Z, Vladikova D (eds) Proceedings of the international workshop on advanced techniques for energy sources investigation and testing, Bulgarian Academy of Sciences, Sofia

    Google Scholar 

  31. Julien CM, Zaghib K, Mauger A, Massot M, Ait-Salah A, Selmane M, Gendron F (2006) Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100:63511

    Article  Google Scholar 

  32. Ait-Salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Mauger A, Julien CM (2006) FTIR features of lithium iron-phosphates as electrode materials for rechargeable lithium batteries. Spectrochim Acta A: Molecular and Biomolecular Spectroscopy 65:1007

    Article  CAS  Google Scholar 

  33. Hu Y, Doeff MM, Kostecki R, Finones R (2004) Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries. J Electrochem Soc 151:A1279; Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4. Electrochem Solid-State Lett 6:A207

    Google Scholar 

  34. Tamor MA, Vassell WC, Carduner KR (1991) Atomic constraint in hydrogenated diamond-like carbon, Appl Phys Lett 58: 592

    Google Scholar 

  35. Robertson J (1992) Properties of diamond-like carbon. Surf Coat Technol 50:185

    Article  CAS  Google Scholar 

  36. Ramsteiner M, Wagner J (1987) Resonant Raman scattering of hydrogenated amorphous carbon: Evidence for π-bonded carbon clusters. Appl Phys Lett 51:1355

    Article  CAS  Google Scholar 

  37. Yoshikawa M, Katagani G, Ishida H, Ishitami A, Akamatsu T (1988) Resonant Raman scattering of diamond-like amorphous carbon films. Appl Phys Lett 52:1639

    Article  CAS  Google Scholar 

  38. Tamor MA, Vassell WC (1994) Raman “fingerprinting” of amorphous carbon films. J Appl Phys 76:3823

    Article  CAS  Google Scholar 

  39. Wada N, Gaczi PJ, Solin SA (1980) “Diamond-like” 3-fold coordinated amorphous carbon. J Non-Cryst Solids 35–36:543

    Article  Google Scholar 

  40. Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385

    Article  CAS  Google Scholar 

  41. Lespade P, Marchand A, Couzi M, Cruege F (1984) Caractérisation de matériaux carbonés par microspectrométrie Raman. Carbon 22:375

    Google Scholar 

  42. Dresselhaus MS, Dresselhaus G (1982) Light scattering in graphite intercalation compounds. In: Cardona M, Gunterhodt G (eds) Light scattering in solids III, vol 51, p. 3, Topics in applied physics. Springer, Berlin

    Chapter  Google Scholar 

  43. Nakamizo M, Tamai K (1984) Carbon Raman spectra of the oxidized and polished surfaces of carbon 22:197

    Article  CAS  Google Scholar 

  44. Matthews MJ, Bi XX, Dresselhaus MS, Endo M, Takahashi T (1996) Raman spectra of polyparaphenylene-based carbon prepared at low heat-treatment temperatures. Appl Phys Lett 68:1078

    Article  CAS  Google Scholar 

  45. Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946

    Article  CAS  Google Scholar 

  46. Ramsteiner M, Wagner J, Wild Ch, Koidl P (1987) Raman scattering from extremely thin hard amorphous carbon films. J Appl Phys 62:729

    Article  CAS  Google Scholar 

  47. Tamor MA, Haire JA, Wu CH, Hass KC (1989) Correlation of the optical gaps and Raman spectra of hydrogenated amorphous carbon films. Appl Phys Lett 54:123

    Article  CAS  Google Scholar 

  48. Santoro RP, Newnham RE, Nomura S (1966) Magnetic properties of Mn2SiO4 and Fe2SiO4. J Phys Chem Solids 27:655

    Article  CAS  Google Scholar 

  49. Santoro RP, Segal DJ, Newnham RE (1966) Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids 27:1192

    Article  CAS  Google Scholar 

  50. Dal D, Koo HJ, Rocquefelte X, Jobic S (2005) Analysis of the spin exchange interactions and the ordered magnetic structures of lithium transition metal phosphates LiMPO4 (M = Mn, Fe, Co, Ni) with the olivine structure. Inorg Chem 44:2407

    Article  CAS  Google Scholar 

  51. Mays JM (1963) Nuclear magnetic resonances and Mn-O-P-O-Mn superexchange linkages in paramagnetic and antiferromagnetic LiMnPO4. Phys Rev 131:38

    Article  CAS  Google Scholar 

  52. Ait-Salah A, Zaghib K, Mauger A, Gendron F, Julien CM (2006) Magnetic studies of the carbothermal effect on LiFePO4. Phys Status Solidi A 203:R1

    Article  CAS  Google Scholar 

  53. Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2008) Aging of LiFePO4 upon exposure to H2O. J Power Sources 185:698

    Article  CAS  Google Scholar 

  54. Manickam M, Singh P, Thurgate S, Prince KJ (2006) Redox behavior and surface characterization of LiFePO4 in lithium hydroxide electrolyte. J Power Sources 158:646

    Article  CAS  Google Scholar 

  55. Zaghib K (2003) BATT review meeting, Berkeley

    Google Scholar 

  56. Porcher W, Moreau P, Lestriez B, Jouanneau S, Guyomard D (2008) Is LiFePO4 Stable in Water?: Toward Greener Li-Ion Batteries. Electrochem Solid State Lett 11:A4

    Article  CAS  Google Scholar 

  57. Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20:462

    Article  CAS  Google Scholar 

  58. Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) Origin of Deterioration for LiNiO2 Cathode Material during Storage in Air. Electrochem Solid State Lett 7:A190

    Article  CAS  Google Scholar 

  59. Zaghib K, Ravet N, Gauthier M, Gendron F, Mauger A, Goodenough JB, Julien CM (2006) Optimized electrochemical performance of LiFePO4 at 60°C with purity controlled by SQUID magnetometry. J Power Sources 163:560

    Article  CAS  Google Scholar 

  60. Zaghib K, Battaglia V, Charest P, Srinivasan V, Guerfi A, Kostecki R (2006) Extended abstract 35 of the IBA-HBC meeting, Hawaii

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Zaghib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zaghib, K., Mauger, A., Goodenough, J.B., Julien, C.M. (2012). Design and Properties of LiFePO4 Nano-materials for High-Power Applications. In: Abu-Lebdeh, Y., Davidson, I. (eds) Nanotechnology for Lithium-Ion Batteries. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4605-7_8

Download citation

Publish with us

Policies and ethics