Skip to main content

Introduction

  • Chapter
  • First Online:
Nanotechnology for Lithium-Ion Batteries

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

This chapter gives brief introductions to the basic concepts of lithium-ion battery technology, the subject of nanotechnology, and goes further to give insight on the relationship between the two. It also attempts to demonstrate how nanotechnology can improve lithium-ion battery technology. It is emphasized that despite the short life span of lithium-ion battery technology (~20 years) and nanotechnology (~30 years) and the limited knowledge of behavior at the nanoscale, great advances have been made in understanding the relationship between performance and the use of nanofabricated lithium-ion materials and batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook T, Dogutan D, Reece S, Surendranath Y, Teets T, Nocera D (2010) Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 110(11):6474–6502

    Article  CAS  Google Scholar 

  2. Huggins RA (2008) Advanced batteries: materials science aspects. Springer, New York, 474 p

    Google Scholar 

  3. Yang Z, Zhang J, Kintner-Meyer M, Lu X, Choi D, Lemmon J, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613

    Article  CAS  Google Scholar 

  4. Vincent CA, Scrosati B (1997) Modern batteries: an introduction to electrochemical power sources. Arnold, London/New York, 351 p

    Google Scholar 

  5. Linden D, Reddy TB (2002) Handbook of batteries, 3rd ed. McGraw-Hill handbooks. McGraw-Hill, New York, 1200 p

    Google Scholar 

  6. Nazri G, Pistoia G (2004) Lithium batteries: science and technology. Kluwer, Boston, 708 p

    Google Scholar 

  7. Schalkwijk WAV, Scrosati B (2002) Advances in lithium-ion batteries. Kluwer Academic/Plenum, New York, 513 p

    Book  Google Scholar 

  8. Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: science and technologies. Springer, New York, 452 p

    Book  Google Scholar 

  9. Garche J (2009) Encyclopedia of electrochemical power sources. Elsevier, Boston

    Google Scholar 

  10. Ozawa K (2009) Lithium ion rechargeable batteries. Wiley-VCH, Weinheim, 336 p

    Book  Google Scholar 

  11. Feynman R (1959) There’s plenty of room at the bottom. In: American Physical Society meeting, California

    Google Scholar 

  12. Drexler KE (1986) Engines of creation, 1st edn. Anchor Press/Doubleday, Garden City, 298 p

    Google Scholar 

  13. Taniguchi N (1974) On the basic concept of ‘Nano-Technology’. In: Proceedings of the International Conference on Production Engineering. Part II. Japan Society of Precision Engineering, Tokyo

    Google Scholar 

  14. Fahlman BD (2007) Materials chemistry, 2nd edn. Springer, Dordrecht/New York, 736 p

    Book  Google Scholar 

  15. Ozin GA, Arsenault AC, Royal Society of Chemistry (Great Britain) (2005) Nanochemistry: a chemical approach to nanomaterials, RSC nanoscience & nanotechnology series. RSC, Cambridge, 628 p

    Google Scholar 

  16. Roduner E, Royal Society of Chemistry (Great Britain) (2006) Nanoscopic materials: size-dependent phenomena, RSC nanoscience & nanotechnology. RSC, Cambridge, xii, 285 p

    Google Scholar 

  17. Despotuli AL, Nikolaichik VI (1993) A step towards nanoionics. Solid State Ionics 60(4):275–278

    Article  CAS  Google Scholar 

  18. http://en.wikipedia.org/wiki/Nanoionics

  19. Kharton VV (2009) Solid state electrochemistry, vol 1. Wiley-VCH, 527 p

    Book  Google Scholar 

  20. Maier J (2004) Physical chemistry of ionic materials: ions and electrons in solids. Wiley, Chichester/Hoboken, 537 p

    Book  Google Scholar 

  21. Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4(11):805–815

    Article  CAS  Google Scholar 

  22. Li H, Richter G, Maier J (2003) Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 15(9):736–739

    Article  CAS  Google Scholar 

  23. Balaya P, Li H, Kienle L, Maier J (2003) Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv Funct Mater 13(8):621–625

    Article  CAS  Google Scholar 

  24. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nano 3(1):31–35

    Article  CAS  Google Scholar 

  25. Bruce PG, Scrosati B, Tarascon J-M (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Abu-Lebdeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Abu-Lebdeh, Y. (2012). Introduction. In: Abu-Lebdeh, Y., Davidson, I. (eds) Nanotechnology for Lithium-Ion Batteries. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4605-7_1

Download citation

Publish with us

Policies and ethics