Skip to main content
  • 2075 Accesses

Abstract

Mitochondria are not generated de novo but grow and divide adding newly synthesized constituents to preexisting mitochondrial compartments. Mitochondria have their own compact circular genome and multiprotein machineries that mediate replication, transcription, and translation. During the past two decades, the core components implicated in these processes have been identified, and several molecular mechanisms underlying mtDNA dynamics have been proposed. The ability to repair certain types of mtDNA lesions using BER, mismatch repair, and recombinational repair pathways has been also demonstrated, and several proteins implicated in these pathways have been identified.

The vast majority of mitochondrial proteins, including components of the OXPHOS machinery, is encoded by the nuclear genome, synthesized on cytosolic ribosomes, and imported through complex pathways. At least four major pathways are exploited for biogenesis of mitochondrial proteins, including the presequence pathway, the carrier protein pathway, the redox-regulated import pathway, and the β-barrel protein pathway. Biogenesis of the mitochondrial membranes relies on the highly coordinated synthesis, import, and assembly of proteins and phospholipids. However, in contrast to the biogenesis of mitochondrial proteins, the mechanisms of mitochondrial phospholipid biosynthesis and trafficking are much less characterized.

The coordinated expression of a subset of genes in the nucleus and mitochondria is orchestrated by the intricate network of transcription factors and cofactors. While nuclear-encoded mitochondrial factors TFAM, TFB1M, TFB2M, and mTERF govern mtDNA maintenance, respiratory factors NRF1 and NRF2, ERRs, PPARs, and PGC-1 transcriptional coactivators regulate expression of multiple OXPHOS subunits, FA transporter, and FA oxidation enzymes. The PGC-1 family members, PGC-1α, PGC-1β, and PRC, play a central role in integrating various signals and coordinating a variety of transcription factors to orchestrate mitochondrial biogenesis and respiratory function. A central role of the PGC-1 pathway in orchestrating energy metabolism in energy-demanding myocardium and the recent finding that it is downregulated in the failing heart suggest that this regulatory circuit could be a potential target for treatment of myocardial disorders. At present, many fundamental questions still remain unanswered regarding the molecular mechanisms of mitochondrial biogenesis to therapeutically target this process in the treatment of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray MW, Burger G, Lang BF. Mitochondrial evolution. Science. 1999;283(5407):1476–81.

    PubMed  CAS  Google Scholar 

  2. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138(4):628–44.

    PubMed  CAS  Google Scholar 

  3. Chen H, Chan DC. Mitochondrial dynamics—fusion, fission, movement, and mitophagy—in neurodegenerative diseases. Hum Mol Genet. 2009;18(R2):R169–76.

    PubMed  CAS  Google Scholar 

  4. Ong SB, Hausenloy DJ. Mitochondrial morphology and cardiovascular disease. Cardiovasc Res. 2010;88(1):16–29.

    PubMed  CAS  Google Scholar 

  5. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11(12):872–84.

    PubMed  CAS  Google Scholar 

  6. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14.

    PubMed  CAS  Google Scholar 

  7. Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008;27(2):433–46.

    PubMed  CAS  Google Scholar 

  8. Dagda RK, Cherra 3rd SJ, Kulich SM, Tandon A, Park D, Chu CT. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284(20):13843–55.

    PubMed  CAS  Google Scholar 

  9. Gottlieb RA, Gustafsson AB. Mitochondrial turnover in the heart. Biochim Biophys Acta. 2010;1813(7):1295–301.

    PubMed  Google Scholar 

  10. Mootha VK, Bunkenborg J, Olsen JV, et al. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell. 2003;115(5):629–40.

    PubMed  CAS  Google Scholar 

  11. Butow RA, Avadhani NG. Mitochondrial signaling: the retrograde response. Mol Cell. 2004;14(1):1–15.

    PubMed  CAS  Google Scholar 

  12. Kelly DP, Scarpulla RC. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18(4):357–68.

    PubMed  CAS  Google Scholar 

  13. Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications. Annu Rev Biochem. 2007;76:701–22.

    PubMed  CAS  Google Scholar 

  14. Hock MB, Kralli A. Transcriptional control of mitochondrial biogenesis and function. Annu Rev Physiol. 2009;71:177–203.

    PubMed  CAS  Google Scholar 

  15. Huss JM, Kelly DP. Nuclear receptor signaling and cardiac energetics. Circ Res. 2004;95(6):568–78.

    PubMed  CAS  Google Scholar 

  16. Lehman JJ, Barger PM, Kovacs A, Saffitz JE, Medeiros DM, Kelly DP. Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. J Clin Invest. 2000;106(7):847–56.

    PubMed  CAS  Google Scholar 

  17. Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R. Depressed mitochondrial transcription factors and ­oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol. 2003;551(Pt 2):491–501.

    PubMed  CAS  Google Scholar 

  18. Dufour CR, Wilson BJ, Huss JM, et al. Genome-wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab. 2007;5(5):345–56.

    PubMed  CAS  Google Scholar 

  19. Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev. 2008;88(2):611–38.

    PubMed  CAS  Google Scholar 

  20. Kasamatsu H, Vinograd J. Replication of circular DNA in eukaryotic cells. Annu Rev Biochem. 1974;43:695–719.

    PubMed  CAS  Google Scholar 

  21. Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–65.

    PubMed  CAS  Google Scholar 

  22. Kvist L, Martens J, Higuchi H, Nazarenko AA, Valchuk OP, Orell M. Evolution and genetic structure of the great tit (Parus major) complex. Proc Biol Sci. 2003;270(1523):1447–54.

    PubMed  Google Scholar 

  23. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290(5806):470–4.

    PubMed  CAS  Google Scholar 

  24. Gyllensten U, Wharton D, Josefsson A, Wilson AC. Paternal inheritance of mitochondrial DNA in mice. Nature. 1991;352(6332):255–7.

    PubMed  CAS  Google Scholar 

  25. Schwartz M, Vissing J. New patterns of inheritance in mitochondrial disease. Biochem Biophys Res Commun. 2003;310(2):247–51.

    PubMed  CAS  Google Scholar 

  26. Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN. Composition and dynamics of human mitochondrial nucleoids. Mol Biol Cell. 2003;14(4):1583–96.

    PubMed  CAS  Google Scholar 

  27. Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat Rev Genet. 2005;6(11):815–25.

    PubMed  CAS  Google Scholar 

  28. Malka F, Lombes A, Rojo M. Organization, dynamics and transmission of mitochondrial DNA: focus on vertebrate nucleoids. Biochim Biophys Acta. 2006;1763(5–6):463–72.

    PubMed  CAS  Google Scholar 

  29. Spelbrink JN. Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life. 2010;62(1):19–32.

    PubMed  CAS  Google Scholar 

  30. Albring M, Griffith J, Attardi G. Association of a protein structure of probable membrane derivation with HeLa cell mitochondrial DNA near its origin of replication. Proc Natl Acad Sci USA. 1977;74(4):1348–52.

    PubMed  CAS  Google Scholar 

  31. Hillar M, Rangayya V, Jafar BB, Chambers D, Vitzu M, Wyborny LE. Membrane-bound mitochondrial DNA: isolation, transcription and protein composition. Arch Int Physiol Biochim. 1979;87(1):29–49.

    PubMed  CAS  Google Scholar 

  32. Kanki T, Nakayama H, Sasaki N, et al. Mitochondrial nucleoid and transcription factor A. Ann N Y Acad Sci. 2004;1011:61–8.

    PubMed  CAS  Google Scholar 

  33. Van Tuyle GC, Pavco PA. Characterization of a rat liver mitochondrial DNA-protein complex. Replicative intermediates are protected against branch migrational loss. J Biol Chem. 1981;256(24):12772–9.

    PubMed  Google Scholar 

  34. Mignotte B, Barat M, Mounolou JC. Characterization of a mitochondrial protein binding to single-stranded DNA. Nucleic Acids Res. 1985;13(5):1703–16.

    PubMed  CAS  Google Scholar 

  35. Hoke GD, Pavco PA, Ledwith BJ, Van Tuyle GC. Structural and functional studies of the rat mitochondrial single strand DNA binding protein P16. Arch Biochem Biophys. 1990;282(1):116–24.

    PubMed  CAS  Google Scholar 

  36. Ghrir R, Mignotte B, Gueride M. Amino terminal sequence of the mitochondrial protein mtDBP-C: similarity with nonhistone chromosomal proteins HMG 1 and 2. Biochimie. 1991;73(5):615–6.

    PubMed  CAS  Google Scholar 

  37. Takamatsu C, Umeda S, Ohsato T, et al. Regulation of mitochondrial D-loops by transcription factor A and single-stranded DNA-binding protein. EMBO Rep. 2002;3(5):451–6.

    PubMed  CAS  Google Scholar 

  38. Alam TI, Kanki T, Muta T, et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 2003;31(6):1640–5.

    PubMed  CAS  Google Scholar 

  39. Ekstrand MI, Falkenberg M, Rantanen A, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet. 2004;13(9):935–44.

    PubMed  CAS  Google Scholar 

  40. Kaufman BA, Durisic N, Mativetsky JM, et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol Biol Cell. 2007;18(9):3225–36.

    PubMed  CAS  Google Scholar 

  41. Legros F, Malka F, Frachon P, Lombes A, Rojo M. Organization and dynamics of human mitochondrial DNA. J Cell Sci. 2004;117(Pt 13):2653–62.

    PubMed  CAS  Google Scholar 

  42. Bogenhagen DF, Wang Y, Shen EL, Kobayashi R. Protein components of mitochondrial DNA nucleoids in higher eukaryotes. Mol Cell Proteomics. 2003;2(11):1205–16.

    PubMed  CAS  Google Scholar 

  43. Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem. 2006;281(35):25791–802.

    PubMed  CAS  Google Scholar 

  44. Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem. 2008;283(6):3665–75.

    PubMed  CAS  Google Scholar 

  45. Maier D, Farr CL, Poeck B, et al. Mitochondrial single-stranded DNA-binding protein is required for mitochondrial DNA replication and development in Drosophila melanogaster. Mol Biol Cell. 2001;12(4):821–30.

    PubMed  CAS  Google Scholar 

  46. He J, Mao CC, Reyes A, et al. The AAA  +  protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J Cell Biol. 2007;176(2):141–6.

    PubMed  CAS  Google Scholar 

  47. Holt IJ, He J, Mao CC, et al. Mammalian mitochondrial nucleoids: organizing an independently minded genome. Mitochondrion. 2007;7(5):311–21.

    PubMed  CAS  Google Scholar 

  48. Kasashima K, Sumitani M, Satoh M, Endo H. Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp Cell Res. 2008;314(5):988–96.

    PubMed  CAS  Google Scholar 

  49. Yoshida Y, Izumi H, Torigoe T, et al. P53 physically interacts with mitochondrial transcription factor A and differentially regulates binding to damaged DNA. Cancer Res. 2003;63(13):3729–34.

    PubMed  CAS  Google Scholar 

  50. Heyne K, Mannebach S, Wuertz E, Knaup KX, Mahyar-Roemer M, Roemer K. Identification of a putative p53 binding sequence within the human mitochondrial genome. FEBS Lett. 2004;578(1–2):198–202.

    PubMed  CAS  Google Scholar 

  51. Gray H, Wong TW. Purification and identification of subunit structure of the human mitochondrial DNA polymerase. J Biol Chem. 1992;267(9):5835–41.

    PubMed  CAS  Google Scholar 

  52. Ropp PA, Copeland WC. Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase gamma. Genomics. 1996;36(3):449–58.

    PubMed  CAS  Google Scholar 

  53. Tiranti V, Rocchi M, DiDonato S, Zeviani M. Cloning of human and rat cDNAs encoding the mitochondrial single-stranded DNA-binding protein (SSB). Gene. 1993;126(2):219–25.

    PubMed  CAS  Google Scholar 

  54. Spelbrink JN, Li FY, Tiranti V, et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet. 2001;28(3):223–31.

    PubMed  CAS  Google Scholar 

  55. Tiranti V, Savoia A, Forti F, et al. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the Expressed Sequence Tags database. Hum Mol Genet. 1997;6(4):615–25.

    PubMed  CAS  Google Scholar 

  56. Korhonen JA, Pham XH, Pellegrini M, Falkenberg M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 2004;23(12):2423–9.

    PubMed  CAS  Google Scholar 

  57. Wanrooij S, Fuste JM, Farge G, Shi Y, Gustafsson CM, Falkenberg M. Human mitochondrial RNA polymerase primes lagging-strand DNA synthesis in vitro. Proc Natl Acad Sci USA. 2008;105(32):11122–7.

    PubMed  CAS  Google Scholar 

  58. Kaguni LS. DNA polymerase gamma, the mitochondrial replicase. Annu Rev Biochem. 2004;73:293–320.

    PubMed  CAS  Google Scholar 

  59. Carrodeguas JA, Theis K, Bogenhagen DF, Kisker C. Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, Pol gamma B, functions as a homodimer. Mol Cell. 2001;7(1):43–54.

    PubMed  CAS  Google Scholar 

  60. Yakubovskaya E, Chen Z, Carrodeguas JA, Kisker C, Bogenhagen DF. Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J Biol Chem. 2006;281(1):374–82.

    PubMed  CAS  Google Scholar 

  61. Lim SE, Longley MJ, Copeland WC. The mitochondrial p55 ­accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem. 1999;274(53):38197–203.

    PubMed  CAS  Google Scholar 

  62. Yakubovskaya E, Lukin M, Chen Z, et al. The EM structure of human DNA polymerase gamma reveals a localized contact between the catalytic and accessory subunits. EMBO J. 2007;26(19):4283–91.

    PubMed  CAS  Google Scholar 

  63. Lee YS, Kennedy WD, Yin YW. Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell. 2009;139(2):312–24.

    PubMed  CAS  Google Scholar 

  64. Lee YS, Lee S, Demeler B, Molineux IJ, Johnson KA, Yin YW. Each monomer of the dimeric accessory protein for human mitochondrial DNA polymerase has a distinct role in conferring processivity. J Biol Chem. 2010;285(2):1490–9.

    PubMed  CAS  Google Scholar 

  65. Schultz RA, Swoap SJ, McDaniel LD, et al. Differential expression of mitochondrial DNA replication factors in mammalian tissues. J Biol Chem. 1998;273(6):3447–51.

    PubMed  CAS  Google Scholar 

  66. Davis AF, Ropp PA, Clayton DA, Copeland WC. Mitochondrial DNA polymerase gamma is expressed and translated in the absence of mitochondrial DNA maintenance and replication. Nucleic Acids Res. 1996;24(14):2753–9.

    PubMed  CAS  Google Scholar 

  67. Van Dyck E, Foury F, Stillman B, Brill SJ. A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. EMBO J. 1992;11(9):3421–30.

    PubMed  Google Scholar 

  68. Thommes P, Farr CL, Marton RF, Kaguni LS, Cotterill S. Mitochondrial single-stranded DNA-binding protein from Drosophila embryos: physical and biochemical characterization. J Biol Chem. 1995;270(36):21137–43.

    PubMed  CAS  Google Scholar 

  69. Tiranti V, Barat-Gueride B, Bijl J, DiDonato S, Zeviani M. A full-length cDNA encoding a mitochondrial DNA-specific single-stranded DNA binding protein from Xenopus laevis. Nucleic Acids Res. 1991;19(15):4291.

    PubMed  CAS  Google Scholar 

  70. Li K, Williams RS. Tetramerization and single-stranded DNA binding properties of native and mutated forms of murine mitochondrial single-stranded DNA-binding proteins. J Biol Chem. 1997;272(13):8686–94.

    PubMed  CAS  Google Scholar 

  71. Mignotte B, Marsault J, Barat-Gueride M. Effects of the Xenopus laevis mitochondrial single-stranded DNA-binding protein on the activity of DNA polymerase gamma. Eur J Biochem. 1988;174(3):479–84.

    PubMed  CAS  Google Scholar 

  72. Genuario R, Wong TW. Stimulation of DNA polymerase gamma by a mitochondrial single-strand DNA binding protein. Cell Mol Biol Res. 1993;39(7):625–34.

    PubMed  CAS  Google Scholar 

  73. Korhonen JA, Gaspari M, Falkenberg M. TWINKLE Has 5’  →  3’ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J Biol Chem. 2003;278(49):48627–32.

    PubMed  CAS  Google Scholar 

  74. Wanrooij S, Goffart S, Pohjoismaki JL, Yasukawa T, Spelbrink JN. Expression of catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG causes distinct replication stalling phenotypes. Nucleic Acids Res. 2007;35(10):3238–51.

    PubMed  CAS  Google Scholar 

  75. Matsushima Y, Farr CL, Fan L, Kaguni LS. Physiological and biochemical defects in carboxyl-terminal mutants of mitochondrial DNA helicase. J Biol Chem. 2008;283(35):23964–71.

    PubMed  CAS  Google Scholar 

  76. Shutt TE, Gray MW. Twinkle, the mitochondrial replicative DNA helicase, is widespread in the eukaryotic radiation and may also be the mitochondrial DNA primase in most eukaryotes. J Mol Evol. 2006;62(5):588–99.

    PubMed  CAS  Google Scholar 

  77. Ziebarth TD, Farr CL, Kaguni LS. Modular architecture of the hexameric human mitochondrial DNA helicase. J Mol Biol. 2007;367(5):1382–91.

    PubMed  CAS  Google Scholar 

  78. Goffart S, Cooper HM, Tyynismaa H, Wanrooij S, Suomalainen A, Spelbrink JN. Twinkle mutations associated with autosomal ­dominant progressive external ophthalmoplegia lead to impaired helicase function and in vivo mtDNA replication stalling. Hum Mol Genet. 2009;18(2):328–40.

    PubMed  CAS  Google Scholar 

  79. Hingorani MM, Patel SS. Interactions of bacteriophage T7 DNA primase/helicase protein with single-stranded and double-stranded DNAs. Biochemistry. 1993;32(46):12478–87.

    PubMed  CAS  Google Scholar 

  80. Patel SS, Picha KM. Structure and function of hexameric helicases. Annu Rev Biochem. 2000;69:651–97.

    PubMed  CAS  Google Scholar 

  81. Kajander OA, Karhunen PJ, Holt IJ, Jacobs HT. Prominent ­mitochondrial DNA recombination intermediates in human heart muscle. EMBO Rep. 2001;2(11):1007–12.

    PubMed  CAS  Google Scholar 

  82. Pohjoismaki JL, Goffart S, Tyynismaa H, et al. Human heart mitochondrial DNA is organized in complex catenated networks containing abundant four-way junctions and replication forks. J Biol Chem. 2009;284(32):21446–57.

    PubMed  Google Scholar 

  83. Wanrooij S, Falkenberg M. The human mitochondrial replication fork in health and disease. Biochim Biophys Acta. 2010;1797(8):1378–88.

    PubMed  CAS  Google Scholar 

  84. Suomalainen A, Kaukonen J, Amati P, et al. An autosomal locus predisposing to deletions of mitochondrial DNA. Nat Genet. 1995;9(2):146–51.

    PubMed  CAS  Google Scholar 

  85. Chang DD, Clayton DA. Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc Natl Acad Sci USA. 1985;82(2):351–5.

    PubMed  CAS  Google Scholar 

  86. Chang DD, Hauswirth WW, Clayton DA. Replication priming and transcription initiate from precisely the same site in mouse mitochondrial DNA. EMBO J. 1985;4(6):1559–67.

    PubMed  CAS  Google Scholar 

  87. Clayton DA. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol. 1991;7:453–78.

    PubMed  CAS  Google Scholar 

  88. Arnberg A, van Bruggen EF, Borst P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim Biophys Acta. 1971;246(2):353–7.

    PubMed  CAS  Google Scholar 

  89. ter Schegget J, Flavell RA, Borst P. DNA synthesis by isolated mitochondria. 3. Characterization of D-loop DNA, a novel intermediate in mtDNA synthesis. Biochim Biophys Acta. 1971;254(1):1–14.

    PubMed  Google Scholar 

  90. Wong TW, Clayton DA. In vitro replication of human mitochondrial DNA: accurate initiation at the origin of light-strand synthesis. Cell. 1985;42(3):951–8.

    PubMed  CAS  Google Scholar 

  91. Wong TW, Clayton DA. DNA primase of human mitochondria is associated with structural RNA that is essential for enzymatic activity. Cell. 1986;45(6):817–25.

    PubMed  CAS  Google Scholar 

  92. Fuste JM, Wanrooij S, Jemt E, et al. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol Cell. 2010;37(1):67–78.

    PubMed  CAS  Google Scholar 

  93. Lakshmipathy U, Campbell C. Antisense-mediated decrease in DNA ligase III expression results in reduced mitochondrial DNA integrity. Nucleic Acids Res. 2001;29(3):668–76.

    PubMed  CAS  Google Scholar 

  94. Pohjoismaki JL, Goffart S. Of circles, forks and humanity: topological organisation and replication of mammalian mitochondrial DNA. Bioessays. 2011;33(4):290–9.

    PubMed  CAS  Google Scholar 

  95. Robberson DL, Clayton DA. Replication of mitochondrial DNA in mouse L cells and their thymidine kinase—derivatives: displacement replication on a covalently-closed circular template. Proc Natl Acad Sci USA. 1972;69(12):3810–4.

    PubMed  CAS  Google Scholar 

  96. Robberson DL, Kasamatsu H, Vinograd J. Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc Natl Acad Sci USA. 1972;69(3):737–41.

    PubMed  CAS  Google Scholar 

  97. Crews S, Ojala D, Posakony J, Nishiguchi J, Attardi G. Nucleotide sequence of a region of human mitochondrial DNA containing the precisely identified origin of replication. Nature. 1979;277(5693):192–8.

    PubMed  CAS  Google Scholar 

  98. Clayton DA. Replication of animal mitochondrial DNA. Cell. 1982;28(4):693–705.

    PubMed  CAS  Google Scholar 

  99. Holt IJ, Lorimer HE, Jacobs HT. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell. 2000;100(5):515–24.

    PubMed  CAS  Google Scholar 

  100. Yang MY, Bowmaker M, Reyes A, et al. Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell. 2002;111(4):495–505.

    PubMed  CAS  Google Scholar 

  101. Yasukawa T, Yang MY, Jacobs HT, Holt IJ. A bidirectional origin of replication maps to the major noncoding region of human mitochondrial DNA. Mol Cell. 2005;18(6):651–62.

    PubMed  CAS  Google Scholar 

  102. Yasukawa T, Reyes A, Cluett TJ, et al. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 2006;25(22):5358–71.

    PubMed  CAS  Google Scholar 

  103. Bowmaker M, Yang MY, Yasukawa T, et al. Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem. 2003;278(51):50961–9.

    PubMed  CAS  Google Scholar 

  104. Holt IJ. DNA mitochondrial replication and repair: all a flap. Trends Biochem Sci. 2009;34(7):358–65.

    PubMed  CAS  Google Scholar 

  105. Hyvarinen AK, Pohjoismaki JL, Reyes A, et al. The mitochondrial transcription termination factor mTERF modulates replication pausing in human mitochondrial DNA. Nucleic Acids Res. 2007;35(19):6458–74.

    PubMed  Google Scholar 

  106. Falkenberg M, Gaspari M, Rantanen A, Trifunovic A, Larsson NG, Gustafsson CM. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet. 2002;31(3):289–94.

    PubMed  CAS  Google Scholar 

  107. Rodeheffer MS, Boone BE, Bryan AC, Shadel GS. Nam1p, a protein involved in RNA processing and translation, is coupled to transcription through an interaction with yeast mitochondrial RNA polymerase. J Biol Chem. 2001;276(11):8616–22.

    PubMed  CAS  Google Scholar 

  108. Mili S, Pinol-Roma S. LRP130, a pentatricopeptide motif protein with a noncanonical RNA-binding domain, is bound in vivo to mitochondrial and nuclear RNAs. Mol Cell Biol. 2003;23(14):4972–82.

    PubMed  CAS  Google Scholar 

  109. Kravchenko JE, Rogozin IB, Koonin EV, Chumakov PM. Transcription of mammalian messenger RNAs by a nuclear RNA polymerase of mitochondrial origin. Nature. 2005;436(7051):735–9.

    PubMed  CAS  Google Scholar 

  110. Masters BS, Stohl LL, Clayton DA. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell. 1987;51(1):89–99.

    PubMed  CAS  Google Scholar 

  111. McCulloch V, Seidel-Rogol BL, Shadel GS. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol Cell Biol. 2002;22(4):1116–25.

    PubMed  CAS  Google Scholar 

  112. Maniura-Weber K, Goffart S, Garstka HL, Montoya J, Wiesner RJ. Transient overexpression of mitochondrial transcription factor A (TFAM) is sufficient to stimulate mitochondrial DNA transcription, but not sufficient to increase mtDNA copy number in cultured cells. Nucleic Acids Res. 2004;32(20):6015–27.

    PubMed  CAS  Google Scholar 

  113. Fisher RP, Clayton DA. Purification and characterization of human mitochondrial transcription factor 1. Mol Cell Biol. 1988;8(8):3496–509.

    PubMed  CAS  Google Scholar 

  114. Wolffe AP. Architectural regulations and Hmg1. Nat Genet. 1999;22(3):215–7.

    PubMed  CAS  Google Scholar 

  115. Thomas JO, Travers AA. HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci. 2001;26(3):167–74.

    PubMed  CAS  Google Scholar 

  116. Dairaghi DJ, Shadel GS, Clayton DA. Human mitochondrial transcription factor A and promoter spacing integrity are required for transcription initiation. Biochim Biophys Acta. 1995;1271(1):127–34.

    PubMed  Google Scholar 

  117. McCulloch V, Shadel GS. Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol Cell Biol. 2003;23(16):5816–24.

    PubMed  CAS  Google Scholar 

  118. Fisher RP, Topper JN, Clayton DA. Promoter selection in human mitochondria involves binding of a transcription factor to orientation-independent upstream regulatory elements. Cell. 1987;50(2):247–58.

    PubMed  CAS  Google Scholar 

  119. Gangelhoff TA, Mungalachetty PS, Nix JC, Churchill ME. Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A. Nucleic Acids Res. 2009;37(10):3153–64.

    PubMed  CAS  Google Scholar 

  120. Seidel-Rogol BL, McCulloch V, Shadel GS. Human mitochondrial transcription factor B1 methylates ribosomal RNA at a conserved stem-loop. Nat Genet. 2003;33(1):23–4.

    PubMed  CAS  Google Scholar 

  121. Cotney J, Shadel GS. Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2. J Mol Evol. 2006;63(5):707–17.

    PubMed  CAS  Google Scholar 

  122. Metodiev MD, Lesko N, Park CB, et al. Methylation of 12S rRNA is necessary for in vivo stability of the small subunit of the mammalian mitochondrial ribosome. Cell Metab. 2009;9(4):386–97.

    PubMed  CAS  Google Scholar 

  123. Shoubridge EA. Something old, something new, something borrowed. Cell Metab. 2009;9(4):307–8.

    PubMed  CAS  Google Scholar 

  124. Cotney J, McKay SE, Shadel GS. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet. 2009;18(14):2670–82.

    PubMed  CAS  Google Scholar 

  125. Cotney J, Wang Z, Shadel GS. Relative abundance of the human mitochondrial transcription system and distinct roles for h-mtTFB1 and h-mtTFB2 in mitochondrial biogenesis and gene expression. Nucleic Acids Res. 2007;35(12):4042–54.

    PubMed  CAS  Google Scholar 

  126. Montoya J, Christianson T, Levens D, Rabinowitz M, Attardi G. Identification of initiation sites for heavy-strand and light-strand transcription in human mitochondrial DNA. Proc Natl Acad Sci USA. 1982;79(23):7195–9.

    PubMed  CAS  Google Scholar 

  127. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem. 1997;66:409–35.

    PubMed  CAS  Google Scholar 

  128. Montoya J, Ojala D, Attardi G. Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature. 1981;290(5806):465–70.

    PubMed  CAS  Google Scholar 

  129. Rossmanith W, Karwan RM. Characterization of human mitochondrial RNase P: novel aspects in tRNA processing. Biochem Biophys Res Commun. 1998;247(2):234–41.

    PubMed  CAS  Google Scholar 

  130. Martin M, Cho J, Cesare AJ, Griffith JD, Attardi G. Termination factor-mediated DNA loop between termination and initiation sites drives mitochondrial rRNA synthesis. Cell. 2005;123(7):1227–40.

    PubMed  CAS  Google Scholar 

  131. Bonawitz ND, Clayton DA, Shadel GS. Initiation and beyond: multiple functions of the human mitochondrial transcription machinery. Mol Cell. 2006;24(6):813–25.

    PubMed  CAS  Google Scholar 

  132. Minczuk M, He J, Duch AM, et al. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res. 2011;39(10):4284–99.

    PubMed  CAS  Google Scholar 

  133. Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem. 2007;76:679–99.

    PubMed  CAS  Google Scholar 

  134. Shutt TE, Lodeiro MF, Cotney J, Cameron CE, Shadel GS. Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proc Natl Acad Sci USA. 2010;107(27):12133–8.

    PubMed  CAS  Google Scholar 

  135. Larsson NG, Wang J, Wilhelmsson H, et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet. 1998;18(3):231–6.

    PubMed  CAS  Google Scholar 

  136. Pohjoismaki JL, Wanrooij S, Hyvarinen AK, et al. Alterations to the expression level of mitochondrial transcription factor A, TFAM, modify the mode of mitochondrial DNA replication in cultured human cells. Nucleic Acids Res. 2006;34(20):5815–28.

    PubMed  Google Scholar 

  137. Rebelo AP, Dillon LM, Moraes CT. Mitochondrial DNA transcription regulation and nucleoid organization. J Inherit Metab Dis. 2011;34(4):941–51.

    PubMed  CAS  Google Scholar 

  138. Rebelo AP, Williams SL, Moraes CT. In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions. Nucleic Acids Res. 2009;37(20):6701–15.

    PubMed  CAS  Google Scholar 

  139. Christianson TW, Clayton DA. A tridecamer DNA sequence supports human mitochondrial RNA 3′-end formation in vitro. Mol Cell Biol. 1988;8(10):4502–9.

    PubMed  CAS  Google Scholar 

  140. Kruse B, Narasimhan N, Attardi G. Termination of transcription in human mitochondria: identification and purification of a DNA binding protein factor that promotes termination. Cell. 1989;58(2):391–7.

    PubMed  CAS  Google Scholar 

  141. Fernandez-Silva P, Martinez-Azorin F, Micol V, Attardi G. The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J. 1997;16(5):1066–79.

    PubMed  CAS  Google Scholar 

  142. Linder T, Park CB, Asin-Cayuela J, et al. A family of putative transcription termination factors shared amongst metazoans and plants. Curr Genet. 2005;48(4):265–9.

    PubMed  CAS  Google Scholar 

  143. Chen Y, Zhou G, Yu M, et al. Cloning and functional analysis of human mTERFL encoding a novel mitochondrial transcription termination factor-like protein. Biochem Biophys Res Commun. 2005;337(4):1112–8.

    PubMed  CAS  Google Scholar 

  144. Roberti M, Bruni F, Loguercio Polosa P, Manzari C, Gadaleta MN, Cantatore P. MTERF3, the most conserved member of the mTERF-family, is a modular factor involved in mitochondrial protein synthesis. Biochim Biophys Acta. 2006;1757(9–10):1199–206.

    PubMed  CAS  Google Scholar 

  145. Spahr H, Samuelsson T, Hallberg BM, Gustafsson CM. Structure of mitochondrial transcription termination factor 3 reveals a novel nucleic acid-binding domain. Biochem Biophys Res Commun. 2010;397(3):386–90.

    PubMed  CAS  Google Scholar 

  146. Wenz T, Luca C, Torraco A, Moraes CT. mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription. Cell Metab. 2009;9(6):499–511.

    PubMed  CAS  Google Scholar 

  147. Park CB, Asin-Cayuela J, Camara Y, et al. MTERF3 is a negative regulator of mammalian mtDNA transcription. Cell. 2007;130(2):273–85.

    PubMed  CAS  Google Scholar 

  148. Pellegrini M, Asin-Cayuela J, Erdjument-Bromage H, Tempst P, Larsson NG, Gustafsson CM. MTERF2 is a nucleoid component in mammalian mitochondria. Biochim Biophys Acta. 2009;1787(5):296–302.

    PubMed  CAS  Google Scholar 

  149. Sondheimer N, Fang JK, Polyak E, Falk MJ, Avadhani NG. Leucine-rich pentatricopeptide-repeat containing protein regulates mitochondrial transcription. Biochemistry. 2010;49(35):7467–73.

    PubMed  CAS  Google Scholar 

  150. Gohil VM, Nilsson R, Belcher-Timme CA, Luo B, Root DE, Mootha VK. Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. J Biol Chem. 2010;285(18):13742–7.

    PubMed  CAS  Google Scholar 

  151. Sasarman F, Brunel-Guitton C, Antonicka H, Wai T, Shoubridge EA. LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria. Mol Biol Cell. 2010;21(8):1315–23.

    PubMed  CAS  Google Scholar 

  152. Mootha VK, Lepage P, Miller K, et al. Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics. Proc Natl Acad Sci USA. 2003;100(2):605–10.

    PubMed  CAS  Google Scholar 

  153. Spremulli LL, Coursey A, Navratil T, Hunter SE. Initiation and elongation factors in mammalian mitochondrial protein synthesis. Prog Nucleic Acid Res Mol Biol. 2004;77:211–61.

    PubMed  CAS  Google Scholar 

  154. Gaur R, Grasso D, Datta PP, et al. A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors. Mol Cell. 2008;29(2):180–90.

    PubMed  CAS  Google Scholar 

  155. Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell. 2003;115(1):97–108.

    PubMed  CAS  Google Scholar 

  156. Sharma MR, Booth TM, Simpson L, Maslov DA, Agrawal RK. Structure of a mitochondrial ribosome with minimal RNA. Proc Natl Acad Sci USA. 2009;106(24):9637–42.

    PubMed  CAS  Google Scholar 

  157. Smits P, Smeitink JA, van den Heuvel LP, Huynen MA, Ettema TJ. Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res. 2007;35(14):4686–703.

    PubMed  CAS  Google Scholar 

  158. Tomecki R, Dmochowska A, Gewartowski K, Dziembowski A, Stepien PP. Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase. Nucleic Acids Res. 2004;32(20):6001–14.

    PubMed  CAS  Google Scholar 

  159. Nagaike T, Suzuki T, Tomari Y, et al. Identification and characterization of mammalian mitochondrial tRNA nucleotidyltransferases. J Biol Chem. 2001;276(43):40041–9.

    PubMed  CAS  Google Scholar 

  160. Gruschke S, Ott M. The polypeptide tunnel exit of the mitochondrial ribosome is tailored to meet the specific requirements of the organelle. Bioessays. 2010;32(12):1050–7.

    PubMed  CAS  Google Scholar 

  161. O’Brien TW. Properties of human mitochondrial ribosomes. IUBMB Life. 2003;55(9):505–13.

    PubMed  Google Scholar 

  162. Hamilton MG, O’Brien TW. Ultracentrifugal characterization of the mitochondrial ribosome and subribosomal particles of bovine liver: molecular size and composition. Biochemistry. 1974;13(26):5400–3.

    PubMed  CAS  Google Scholar 

  163. Patel VB, Cunningham CC, Hantgan RR. Physiochemical properties of rat liver mitochondrial ribosomes. J Biol Chem. 2001;276(9):6739–46.

    PubMed  CAS  Google Scholar 

  164. Matthews DE, Hessler RA, Denslow ND, Edwards JS, O’Brien TW. Protein composition of the bovine mitochondrial ribosome. J Biol Chem. 1982;257(15):8788–94.

    PubMed  CAS  Google Scholar 

  165. Schieber GL, O’Brien TW. Site of synthesis of the proteins of mammalian mitochondrial ribosomes. Evidence from cultured bovine cells. J Biol Chem. 1985;260(10):6367–72.

    PubMed  CAS  Google Scholar 

  166. O’Brien TW, O’Brien BJ, Norman RA. Nuclear MRP genes and mitochondrial disease. Gene. 2005;354:147–51.

    PubMed  Google Scholar 

  167. Kenmochi N, Suzuki T, Uechi T, et al. The human mitochondrial ribosomal protein genes: mapping of 54 genes to the chromosomes and implications for human disorders. Genomics. 2001;77(1–2):65–70.

    PubMed  CAS  Google Scholar 

  168. Sylvester JE, Fischel-Ghodsian N, Mougey EB, O’Brien TW. Mitochondrial ribosomal proteins: candidate genes for mitochondrial disease. Genet Med. 2004;6(2):73–80.

    PubMed  CAS  Google Scholar 

  169. Cavdar Koc E, Ranasinghe A, Burkhart W, et al. A new face on apoptosis: death-associated protein 3 and PDCD9 are mitochondrial ribosomal proteins. FEBS Lett. 2001;492(1–2):166–70.

    PubMed  CAS  Google Scholar 

  170. Kissil JL, Cohen O, Raveh T, Kimchi A. Structure-function analysis of an evolutionary conserved protein, DAP3, which mediates TNF-alpha- and Fas-induced cell death. EMBO J. 1999;18(2):353–62.

    PubMed  CAS  Google Scholar 

  171. Sun L, Liu Y, Fremont M, et al. A novel 52 kDa protein induces ­apoptosis and concurrently activates c-Jun N-terminal kinase 1 (JNK1) in mouse C3H10T1/2 fibroblasts. Gene. 1998;208(2):157–66.

    PubMed  CAS  Google Scholar 

  172. Liao HX, Spremulli LL. Interaction of bovine mitochondrial ribosomes with messenger RNA. J Biol Chem. 1989;264(13):7518–22.

    PubMed  CAS  Google Scholar 

  173. Ma J, Farwell MA, Burkhart WA, Spremulli LL. Cloning and sequence analysis of the cDNA for bovine mitochondrial translational initiation factor 2. Biochim Biophys Acta. 1995;1261(2):321–4.

    PubMed  Google Scholar 

  174. Koc EC, Spremulli LL. Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs. J Biol Chem. 2002;277(38):35541–9.

    PubMed  CAS  Google Scholar 

  175. Grasso DG, Christian BE, Spencer A, Spremulli LL. Overexpression and purification of mammalian mitochondrial translational initiation factor 2 and initiation factor 3. Methods Enzymol. 2007;430:59–78.

    PubMed  CAS  Google Scholar 

  176. Xin H, Woriax V, Burkhart W, Spremulli LL. Cloning and expression of mitochondrial translational elongation factor Ts from bovine and human liver. J Biol Chem. 1995;270(29):17243–9.

    PubMed  CAS  Google Scholar 

  177. Woriax VL, Burkhart W, Spremulli LL. Cloning, sequence analysis and expression of mammalian mitochondrial protein synthesis elongation factor Tu. Biochim Biophys Acta. 1995;1264(3):347–56.

    PubMed  Google Scholar 

  178. Gao J, Yu L, Zhang P, et al. Cloning and characterization of human and mouse mitochondrial elongation factor G, GFM and Gfm, and mapping of GFM to human chromosome 3q25.1-q26.2. Genomics. 2001;74(1):109–14.

    PubMed  CAS  Google Scholar 

  179. Bhargava K, Templeton P, Spremulli LL. Expression and characterization of isoform 1 of human mitochondrial elongation factor G. Protein Expr Purif. 2004;37(2):368–76.

    PubMed  CAS  Google Scholar 

  180. Bunn CL, Wallace DC, Eisenstadt JM. Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue culture cells. Proc Natl Acad Sci USA. 1974;71(5):1681–5.

    PubMed  CAS  Google Scholar 

  181. Petry S, Brodersen DE, Murphy FV, et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell. 2005;123(7):1255–66.

    PubMed  CAS  Google Scholar 

  182. Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF. Structural basis for translation termination on the 70S ribosome. Nature. 2008;454(7206):852–7.

    PubMed  CAS  Google Scholar 

  183. Zhang Y, Spremulli LL. Identification and cloning of human mitochondrial translational release factor 1 and the ribosome recycling factor. Biochim Biophys Acta. 1998;1443(1–2):245–50.

    PubMed  CAS  Google Scholar 

  184. Soleimanpour-Lichaei HR, Kuhl I, Gaisne M, et al. mtRF1a is a human mitochondrial translation release factor decoding the major termination codons UAA and UAG. Mol Cell. 2007;27(5):745–57.

    PubMed  CAS  Google Scholar 

  185. Richter R, Pajak A, Dennerlein S, Rozanska A, Lightowlers RN, Chrzanowska-Lightowlers ZM. Translation termination in human mitochondrial ribosomes. Biochem Soc Trans. 2010;38(6):1523–6.

    PubMed  CAS  Google Scholar 

  186. Rorbach J, Richter R, Wessels HJ, et al. The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Res. 2008;36(18):5787–99.

    PubMed  CAS  Google Scholar 

  187. Haque ME, Grasso D, Spremulli LL. The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: evolution of terminal extensions in IF3mt. Nucleic Acids Res. 2008;36(2):589–97.

    PubMed  CAS  Google Scholar 

  188. Christian BE, Spremulli LL. Evidence for an active role of IF3mt in the initiation of translation in mammalian mitochondria. Biochemistry. 2009;48(15):3269–78.

    PubMed  CAS  Google Scholar 

  189. Tsuboi M, Morita H, Nozaki Y, et al. EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol Cell. 2009;35(4):502–10.

    PubMed  CAS  Google Scholar 

  190. Singer TP, Ramsay RR. Mechanism of the neurotoxicity of MPTP. An update. FEBS Lett. 1990;274(1–2):1–8.

    PubMed  CAS  Google Scholar 

  191. Bandy B, Davison AJ. Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free Radic Biol Med. 1990;8(6):523–39.

    PubMed  CAS  Google Scholar 

  192. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA. 1993;90(17):7915–22.

    PubMed  CAS  Google Scholar 

  193. Yakes FM, Van Houten B. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA. 1997;94(2):514–9.

    PubMed  CAS  Google Scholar 

  194. Cooke MS, Evans MD, Dizdaroglu M, Lunec J. Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003;17(10):1195–214.

    PubMed  CAS  Google Scholar 

  195. Mecocci P, MacGarvey U, Kaufman AE, et al. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol. 1993;34(4):609–16.

    PubMed  CAS  Google Scholar 

  196. Croteau DL, Stierum RH, Bohr VA. Mitochondrial DNA repair pathways. Mutat Res. 1999;434(3):137–48.

    PubMed  CAS  Google Scholar 

  197. Sawyer DE, Van Houten B. Repair of DNA damage in mitochondria. Mutat Res. 1999;434(3):161–76.

    PubMed  CAS  Google Scholar 

  198. Larsen NB, Rasmussen M, Rasmussen LJ. Nuclear and mitochondrial DNA repair: similar pathways? Mitochondrion. 2005;5(2):89–108.

    PubMed  CAS  Google Scholar 

  199. Stuart JA, Brown MF. Mitochondrial DNA maintenance and bioenergetics. Biochim Biophys Acta. 2006;1757(2):79–89.

    PubMed  CAS  Google Scholar 

  200. Ramotar D, Kim C, Lillis R, Demple B. Intracellular localization of the Apn1 DNA repair enzyme of Saccharomyces cerevisiae. Nuclear transport signals and biological role. J Biol Chem. 1993;268(27):20533–9.

    PubMed  CAS  Google Scholar 

  201. O’Rourke TW, Doudican NA, Mackereth MD, Doetsch PW, Shadel GS. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol Cell Biol. 2002;22(12):4086–93.

    PubMed  Google Scholar 

  202. Dzierzbicki P, Koprowski P, Fikus MU, Malc E, Ciesla Z. Repair of oxidative damage in mitochondrial DNA of Saccharomyces cerevisiae: involvement of the MSH1-dependent pathway. DNA Repair (Amst). 2004;3(4):403–11.

    CAS  Google Scholar 

  203. Foury F, Hu J, Vanderstraeten S. Mitochondrial DNA mutators. Cell Mol Life Sci. 2004;61(22):2799–811.

    PubMed  CAS  Google Scholar 

  204. Druzhyna NM, Wilson GL, LeDoux SP. Mitochondrial DNA repair in aging and disease. Mech Ageing Dev. 2008;129(7–8):383–90.

    PubMed  CAS  Google Scholar 

  205. Bohr VA. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic Biol Med. 2002;32(9):804–12.

    PubMed  CAS  Google Scholar 

  206. Stuart JA, Mayard S, Hashiguchi K, Souza-Pinto NC, Bohr VA. Localization of mitochondrial DNA base excision repair to an inner membrane-associated particulate fraction. Nucleic Acids Res. 2005;33(12):3722–32.

    PubMed  CAS  Google Scholar 

  207. Mason PA, Matheson EC, Hall AG, Lightowlers RN. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003;31(3):1052–8.

    PubMed  CAS  Google Scholar 

  208. LeDoux SP, Wilson GL, Beecham EJ, Stevnsner T, Wassermann K, Bohr VA. Repair of mitochondrial DNA after various types of DNA damage in Chinese hamster ovary cells. Carcinogenesis. 1992;13(11):1967–73.

    PubMed  CAS  Google Scholar 

  209. Thyagarajan B, Padua RA, Campbell C. Mammalian mitochondria possess homologous DNA recombination activity. J Biol Chem. 1996;271(44):27536–43.

    PubMed  CAS  Google Scholar 

  210. Coffey G, Lakshmipathy U, Campbell C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999;27(16):3348–54.

    PubMed  CAS  Google Scholar 

  211. Prokisch H, Andreoli C, Ahting U, et al. MitoP2: the mitochondrial proteome database—now including mouse data. Nucleic Acids Res. 2006;34(Database issue):D705–11.

    PubMed  CAS  Google Scholar 

  212. Pohjoismaki JL, Goffart S, Taylor RW, et al. Developmental and pathological changes in the human cardiac muscle mitochondrial DNA organization, replication and copy number. PLoS One. 2010;5(5):e10426.

    PubMed  Google Scholar 

  213. Penna C, Mancardi D, Rastaldo R, Pagliaro P. Cardioprotection: a radical view free radicals in pre and postconditioning. Biochim Biophys Acta. 2009;1787(7):781–93.

    PubMed  CAS  Google Scholar 

  214. David SS, O’Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature. 2007;447(7147):941–50.

    PubMed  CAS  Google Scholar 

  215. Dobson AW, Xu Y, Kelley MR, LeDoux SP, Wilson GL. Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8-oxoguanine glycosylase repair enzyme to mitochondria. J Biol Chem. 2000;275(48):37518–23.

    PubMed  CAS  Google Scholar 

  216. Dobson AW, Grishko V, LeDoux SP, Kelley MR, Wilson GL, Gillespie MN. Enhanced mtDNA repair capacity protects pulmonary artery endothelial cells from oxidant-mediated death. Am J Physiol Lung Cell Mol Physiol. 2002;283(1):L205–10.

    PubMed  CAS  Google Scholar 

  217. Rachek LI, Grishko VI, Musiyenko SI, Kelley MR, LeDoux SP, Wilson GL. Conditional targeting of the DNA repair enzyme hOGG1 into mitochondria. J Biol Chem. 2002;277(47):44932–7.

    PubMed  CAS  Google Scholar 

  218. Klungland A, Rosewell I, Hollenbach S, et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci USA. 1999;96(23):13300–5.

    PubMed  CAS  Google Scholar 

  219. de Souza-Pinto NC, Eide L, Hogue BA, et al. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res. 2001;61(14):5378–81.

    PubMed  Google Scholar 

  220. Stuart JA, Bourque BM, de Souza-Pinto NC, Bohr VA. No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic Biol Med. 2005;38(6):737–45.

    PubMed  CAS  Google Scholar 

  221. Endres M, Biniszkiewicz D, Sobol RW, et al. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase. J Clin Invest. 2004;113(12):1711–21.

    PubMed  CAS  Google Scholar 

  222. Kachhap S, Singh KK. Mitochondrial inhibition of uracil-DNA glycosylase is not mutagenic. Mol Cancer. 2004;3:32.

    PubMed  Google Scholar 

  223. Becker T, Gebert M, Pfanner N, van der Laan M. Biogenesis of mitochondrial membrane proteins. Curr Opin Cell Biol. 2009;21(4):484–93.

    PubMed  CAS  Google Scholar 

  224. Komiya T, Rospert S, Koehler C, Looser R, Schatz G, Mihara K. Interaction of mitochondrial targeting signals with acidic receptor domains along the protein import pathway: evidence for the ‘acid chain’ hypothesis. EMBO J. 1998;17(14):3886–98.

    PubMed  CAS  Google Scholar 

  225. Kanamori T, Nishikawa S, Nakai M, Shin I, Schultz PG, Endo T. Uncoupling of transfer of the presequence and unfolding of the mature domain in precursor translocation across the mitochondrial outer membrane. Proc Natl Acad Sci USA. 1999;96(7):3634–9.

    PubMed  CAS  Google Scholar 

  226. Esaki M, Kanamori T, Nishikawa S, Shin I, Schultz PG, Endo T. Tom40 protein import channel binds to non-native proteins and prevents their aggregation. Nat Struct Biol. 2003;10(12):988–94.

    PubMed  CAS  Google Scholar 

  227. Esaki M, Shimizu H, Ono T, et al. Mitochondrial protein import. Requirement of presequence elements and tom components for precursor binding to the TOM complex. J Biol Chem. 2004;279(44):45701–7.

    PubMed  CAS  Google Scholar 

  228. Chacinska A, Lind M, Frazier AE, et al. Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell. 2005;120(6):817–29.

    PubMed  CAS  Google Scholar 

  229. van der Laan M, Wiedemann N, Mick DU, Guiard B, Rehling P, Pfanner N. A role for Tim21 in membrane-potential-dependent preprotein sorting in mitochondria. Curr Biol. 2006;16(22):2271–6.

    PubMed  Google Scholar 

  230. Hutu DP, Guiard B, Chacinska A, et al. Mitochondrial protein import motor: differential role of Tim44 in the recruitment of Pam17 and J-complex to the presequence translocase. Mol Biol Cell. 2008;19(6):2642–9.

    PubMed  CAS  Google Scholar 

  231. Popov-Celeketic D, Mapa K, Neupert W, Mokranjac D. Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria. EMBO J. 2008;27(10):1469–80.

    PubMed  CAS  Google Scholar 

  232. Tamura Y, Harada Y, Shiota T, et al. Tim23-Tim50 pair coordinates functions of translocators and motor proteins in mitochondrial protein import. J Cell Biol. 2009;184(1):129–41.

    PubMed  CAS  Google Scholar 

  233. Meinecke M, Wagner R, Kovermann P, et al. Tim50 maintains the permeability barrier of the mitochondrial inner membrane. Science. 2006;312(5779):1523–6.

    PubMed  CAS  Google Scholar 

  234. Alder NN, Jensen RE, Johnson AE. Fluorescence mapping of mitochondrial TIM23 complex reveals a water-facing, substrate-interacting helix surface. Cell. 2008;134(3):439–50.

    PubMed  CAS  Google Scholar 

  235. Krayl M, Lim JH, Martin F, Guiard B, Voos W. A cooperative action of the ATP-dependent import motor complex and the inner membrane potential drives mitochondrial preprotein import. Mol Cell Biol. 2007;27(2):411–25.

    PubMed  CAS  Google Scholar 

  236. Slutsky-Leiderman O, Marom M, Iosefson O, Levy R, Maoz S, Azem A. The interplay between components of the mitochondrial protein translocation motor studied using purified components. J Biol Chem. 2007;282(47):33935–42.

    PubMed  CAS  Google Scholar 

  237. Li Y, Dudek J, Guiard B, Pfanner N, Rehling P, Voos W. The presequence translocase-associated protein import motor of mitochondria. Pam16 functions in an antagonistic manner to Pam18. J Biol Chem. 2004;279(36):38047–54.

    PubMed  CAS  Google Scholar 

  238. Kozany C, Mokranjac D, Sichting M, Neupert W, Hell K. The J domain-related cochaperone Tim16 is a constituent of the mitochondrial TIM23 preprotein translocase. Nat Struct Mol Biol. 2004;11(3):234–41.

    PubMed  CAS  Google Scholar 

  239. Wiedemann N, Pfanner N, Ryan MT. The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 2001;20(5):951–60.

    PubMed  CAS  Google Scholar 

  240. Young JC, Hoogenraad NJ, Hartl FU. Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell. 2003;112(1):41–50.

    PubMed  CAS  Google Scholar 

  241. Zara V, Ferramosca A, Robitaille-Foucher P, Palmieri F, Young JC. Mitochondrial carrier protein biogenesis: role of the chaperones Hsc70 and Hsp90. Biochem J. 2009;419(2):369–75.

    PubMed  CAS  Google Scholar 

  242. Curran SP, Leuenberger D, Oppliger W, Koehler CM. The Tim9p-Tim10p complex binds to the transmembrane domains of the ADP/ATP carrier. EMBO J. 2002;21(5):942–53.

    PubMed  CAS  Google Scholar 

  243. Lu H, Allen S, Wardleworth L, Savory P, Tokatlidis K. Functional TIM10 chaperone assembly is redox-regulated in vivo. J Biol Chem. 2004;279(18):18952–8.

    PubMed  CAS  Google Scholar 

  244. Vasiljev A, Ahting U, Nargang FE, et al. Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol Biol Cell. 2004;15(3):1445–58.

    PubMed  CAS  Google Scholar 

  245. Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM. Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller. Mol Cell. 2006;21(1):123–33.

    PubMed  CAS  Google Scholar 

  246. Curran SP, Leuenberger D, Schmidt E, Koehler CM. The role of the Tim8p-Tim13p complex in a conserved import pathway for mitochondrial polytopic inner membrane proteins. J Cell Biol. 2002;158(6):1017–27.

    PubMed  CAS  Google Scholar 

  247. Davis AJ, Alder NN, Jensen RE, Johnson AE. The Tim9p/10p and Tim8p/13p complexes bind to specific sites on Tim23p during mitochondrial protein import. Mol Biol Cell. 2007;18(2):475–86.

    PubMed  CAS  Google Scholar 

  248. Roesch K, Curran SP, Tranebjaerg L, Koehler CM. Human deafness dystonia syndrome is caused by a defect in assembly of the DDP1/TIMM8a-TIMM13 complex. Hum Mol Genet. 2002;11(5):477–86.

    PubMed  CAS  Google Scholar 

  249. Chacinska A, Pfannschmidt S, Wiedemann N, et al. Essential role of Mia40 in import and assembly of mitochondrial intermembrane space proteins. EMBO J. 2004;23(19):3735–46.

    PubMed  CAS  Google Scholar 

  250. Mesecke N, Terziyska N, Kozany C, et al. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import. Cell. 2005;121(7):1059–69.

    PubMed  CAS  Google Scholar 

  251. Banci L, Bertini I, Cefaro C, et al. MIA40 is an oxidoreductase that catalyzes oxidative protein folding in mitochondria. Nat Struct Mol Biol. 2009;16(2):198–206.

    PubMed  CAS  Google Scholar 

  252. Kurz M, Martin H, Rassow J, Pfanner N, Ryan MT. Biogenesis of Tim proteins of the mitochondrial carrier import pathway: differential targeting mechanisms and crossing over with the main import pathway. Mol Biol Cell. 1999;10(7):2461–74.

    PubMed  CAS  Google Scholar 

  253. Muller JM, Milenkovic D, Guiard B, Pfanner N, Chacinska A. Precursor oxidation by Mia40 and Erv1 promotes vectorial transport of proteins into the mitochondrial intermembrane space. Mol Biol Cell. 2008;19(1):226–36.

    PubMed  Google Scholar 

  254. Morgan B, Ang SK, Yan G, Lu H. Zinc can play chaperone-like and inhibitor roles during import of mitochondrial small Tim proteins. J Biol Chem. 2009;284(11):6818–25.

    PubMed  CAS  Google Scholar 

  255. Grumbt B, Stroobant V, Terziyska N, Israel L, Hell K. Functional characterization of Mia40p, the central component of the disulfide relay system of the mitochondrial intermembrane space. J Biol Chem. 2007;282(52):37461–70.

    PubMed  CAS  Google Scholar 

  256. Sideris DP, Tokatlidis K. Oxidative folding of small Tims is mediated by site-specific docking onto Mia40 in the mitochondrial intermembrane space. Mol Microbiol. 2007;65(5):1360–73.

    PubMed  CAS  Google Scholar 

  257. Milenkovic D, Gabriel K, Guiard B, Schulze-Specking A, Pfanner N, Chacinska A. Biogenesis of the essential Tim9-Tim10 chaperone complex of mitochondria: site-specific recognition of cysteine residues by the intermembrane space receptor Mia40. J Biol Chem. 2007;282(31):22472–80.

    PubMed  CAS  Google Scholar 

  258. Milenkovic D, Ramming T, Muller JM, et al. Identification of the signal directing Tim9 and Tim10 into the intermembrane space of mitochondria. Mol Biol Cell. 2009;20(10):2530–9.

    PubMed  CAS  Google Scholar 

  259. Farrell SR, Thorpe C. Augmenter of liver regeneration: a flavin-dependent sulfhydryl oxidase with cytochrome c reductase activity. Biochemistry. 2005;44(5):1532–41.

    PubMed  CAS  Google Scholar 

  260. Bihlmaier K, Mesecke N, Terziyska N, Bien M, Hell K, Herrmann JM. The disulfide relay system of mitochondria is connected to the respiratory chain. J Cell Biol. 2007;179(3):389–95.

    PubMed  CAS  Google Scholar 

  261. Dabir DV, Leverich EP, Kim SK, et al. A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J. 2007;26(23):4801–11.

    PubMed  CAS  Google Scholar 

  262. Curran SP, Leuenberger D, Leverich EP, Hwang DK, Beverly KN, Koehler CM. The role of Hot13p and redox chemistry in the mitochondrial TIM22 import pathway. J Biol Chem. 2004;279(42):43744–51.

    PubMed  CAS  Google Scholar 

  263. Mesecke N, Bihlmaier K, Grumbt B, et al. The zinc-binding protein Hot13 promotes oxidation of the mitochondrial import receptor Mia40. EMBO Rep. 2008;9(11):1107–13.

    PubMed  CAS  Google Scholar 

  264. Chacinska A, Guiard B, Muller JM, et al. Mitochondrial biogenesis, switching the sorting pathway of the intermembrane space receptor Mia40. J Biol Chem. 2008;283(44):29723–9.

    PubMed  CAS  Google Scholar 

  265. Paschen SA, Waizenegger T, Stan T, et al. Evolutionary conservation of biogenesis of beta-barrel membrane proteins. Nature. 2003;426(6968):862–6.

    PubMed  CAS  Google Scholar 

  266. Wiedemann N, Kozjak V, Chacinska A, et al. Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature. 2003;424(6948):565–71.

    PubMed  CAS  Google Scholar 

  267. Wiedemann N, Truscott KN, Pfannschmidt S, Guiard B, Meisinger C, Pfanner N. Biogenesis of the protein import channel Tom40 of the mitochondrial outer membrane: intermembrane space components are involved in an early stage of the assembly pathway. J Biol Chem. 2004;279(18):18188–94.

    PubMed  CAS  Google Scholar 

  268. Hoppins SC, Nargang FE. The Tim8-Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J Biol Chem. 2004;279(13):12396–405.

    PubMed  CAS  Google Scholar 

  269. Kozjak V, Wiedemann N, Milenkovic D, et al. An essential role of Sam50 in the protein sorting and assembly machinery of the mitochondrial outer membrane. J Biol Chem. 2003;278(49):48520–3.

    PubMed  CAS  Google Scholar 

  270. Gentle I, Gabriel K, Beech P, Waller R, Lithgow T. The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria. J Cell Biol. 2004;164(1):19–24.

    PubMed  CAS  Google Scholar 

  271. Ishikawa D, Yamamoto H, Tamura Y, Moritoh K, Endo T. Two novel proteins in the mitochondrial outer membrane mediate beta-barrel protein assembly. J Cell Biol. 2004;166(5):621–7.

    PubMed  CAS  Google Scholar 

  272. Kutik S, Stojanovski D, Becker L, et al. Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell. 2008;132(6):1011–24.

    PubMed  CAS  Google Scholar 

  273. Chan NC, Lithgow T. The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol Biol Cell. 2008;19(1):126–36.

    PubMed  CAS  Google Scholar 

  274. Boldogh IR, Nowakowski DW, Yang HC, et al. A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol Biol Cell. 2003;14(11):4618–27.

    PubMed  CAS  Google Scholar 

  275. Meisinger C, Rissler M, Chacinska A, et al. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev Cell. 2004;7(1):61–71.

    PubMed  CAS  Google Scholar 

  276. Becker T, Pfannschmidt S, Guiard B, et al. Biogenesis of the ­mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors. J Biol Chem. 2008;283(1):120–7.

    PubMed  CAS  Google Scholar 

  277. Hulett JM, Lueder F, Chan NC, et al. The transmembrane segment of Tom20 is recognized by Mim1 for docking to the mitochondrial TOM complex. J Mol Biol. 2008;376(3):694–704.

    PubMed  CAS  Google Scholar 

  278. Popov-Celeketic J, Waizenegger T, Rapaport D. Mim1 functions in an oligomeric form to facilitate the integration of Tom20 into the mitochondrial outer membrane. J Mol Biol. 2008;376(3):671–80.

    PubMed  CAS  Google Scholar 

  279. Colbeau A, Nachbaur J, Vignais PM. Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta. 1971;249(2):462–92.

    PubMed  CAS  Google Scholar 

  280. Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, Daum G. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol. 1991;173(6):2026–34.

    PubMed  CAS  Google Scholar 

  281. Zinser E, Daum G. Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast. 1995;11(6):493–536.

    PubMed  CAS  Google Scholar 

  282. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9(2):112–24.

    PubMed  Google Scholar 

  283. van den Brink-van der Laan E, Killian JA, de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta. 2004;1666(1–2):275–88.

    PubMed  CAS  Google Scholar 

  284. Tatsuta T, Model K, Langer T. Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell. 2005;16(1):248–59.

    PubMed  CAS  Google Scholar 

  285. Osman C, Haag M, Potting C, et al. The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J Cell Biol. 2009;184(4):583–96.

    PubMed  CAS  Google Scholar 

  286. Osman C, Merkwirth C, Langer T. Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci. 2009;122(Pt 21):3823–30.

    PubMed  CAS  Google Scholar 

  287. Wendel AA, Lewin TM, Coleman RA. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta. 2009;1791(6):501–6.

    PubMed  CAS  Google Scholar 

  288. Shen H, Heacock PN, Clancey CJ, Dowhan W. The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth. J Biol Chem. 1996;271(2):789–95.

    PubMed  CAS  Google Scholar 

  289. Han GS, Wu WI, Carman GM. The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem. 2006;281(14):9210–8.

    PubMed  CAS  Google Scholar 

  290. Daum G, Lees ND, Bard M, Dickson R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast. 1998;14(16):1471–510.

    PubMed  CAS  Google Scholar 

  291. Voelker DR. Phosphatidylserine functions as the major precursor of phosphatidylethanolamine in cultured BHK-21 cells. Proc Natl Acad Sci USA. 1984;81(9):2669–73.

    PubMed  CAS  Google Scholar 

  292. Sparagna GC, Lesnefsky EJ. Cardiolipin remodeling in the heart. J Cardiovasc Pharmacol. 2009;53(4):290–301.

    PubMed  CAS  Google Scholar 

  293. Osman C, Voelker DR, Langer T. Making heads or tails of phospholipids in mitochondria. J Cell Biol. 2011;192(1):7–16.

    PubMed  CAS  Google Scholar 

  294. Chicco AJ, Sparagna GC. Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol. 2007;292(1):C33–44.

    PubMed  CAS  Google Scholar 

  295. Schlame M. Cardiolipin synthesis for the assembly of bacterial and mitochondrial membranes. J Lipid Res. 2008;49(8):1607–20.

    PubMed  CAS  Google Scholar 

  296. Houtkooper RH, Turkenburg M, Poll-The BT, et al. The enigmatic role of tafazzin in cardiolipin metabolism. Biochim Biophys Acta. 2009;1788(10):2003–14.

    PubMed  CAS  Google Scholar 

  297. Schlame M, Ren M, Xu Y, Greenberg ML, Haller I. Molecular symmetry in mitochondrial cardiolipins. Chem Phys Lipids. 2005;138(1–2):38–49.

    PubMed  CAS  Google Scholar 

  298. Haines TH. A new look at Cardiolipin. Biochim Biophys Acta. 2009;1788(10):1997–2002.

    PubMed  CAS  Google Scholar 

  299. Mileykovskaya E, Dowhan W. Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta. 2009;1788(10):2084–91.

    PubMed  CAS  Google Scholar 

  300. Barth PG, Valianpour F, Bowen VM, et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am J Med Genet A. 2004;126A(4):349–54.

    PubMed  Google Scholar 

  301. Schlame M, Ren M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 2006;580(23):5450–5.

    PubMed  CAS  Google Scholar 

  302. Barth CA, Wirthensohn K. Enzymatic determination of bile acids from liver cells with 3 alpha-hydroxysteroid dehydrogenase—a warning. J Lipid Res. 1981;22(6):1025–7.

    PubMed  CAS  Google Scholar 

  303. Barth CA. Regulation and interaction of cholesterol, bile salt and lipoprotein synthesis in liver. Klin Wochenschr. 1983;61(23):1163–70.

    PubMed  CAS  Google Scholar 

  304. McMillin JB, Dowhan W. Cardiolipin and apoptosis. Biochim Biophys Acta. 2002;1585(2–3):97–107.

    PubMed  CAS  Google Scholar 

  305. Saini-Chohan HK, Holmes MG, Chicco AJ, et al. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J Lipid Res. 2009;50(8):1600–8.

    PubMed  CAS  Google Scholar 

  306. Voelker DR. Genetic and biochemical analysis of non-vesicular lipid traffic. Annu Rev Biochem. 2009;78:827–56.

    PubMed  CAS  Google Scholar 

  307. Voelker DR. Characterization of phosphatidylserine synthesis and translocation in permeabilized animal cells. J Biol Chem. 1990;265(24):14340–6.

    PubMed  CAS  Google Scholar 

  308. Vance JE. Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem. 1990;265(13):7248–56.

    PubMed  CAS  Google Scholar 

  309. Ardail D, Gasnier F, Lerme F, Simonot C, Louisot P, Gateau-Roesch O. Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes. J Biol Chem. 1993;268(34):25985–92.

    PubMed  CAS  Google Scholar 

  310. Gaigg B, Simbeni R, Hrastnik C, Paltauf F, Daum G. Characterization of a microsomal subfraction associated with mitochondria of the yeast Saccharomyces cerevisiae. Involvement in synthesis and import of phospholipids into mitochondria. Biochim Biophys Acta. 1995;1234(2):214–20.

    PubMed  Google Scholar 

  311. Shiao YJ, Lupo G, Vance JE. Evidence that phosphatidylserine is imported into mitochondria via a mitochondria-associated membrane and that the majority of mitochondrial phosphatidylethanolamine is derived from decarboxylation of phosphatidylserine. J Biol Chem. 1995;270(19):11190–8.

    PubMed  CAS  Google Scholar 

  312. Vance JE. Newly made phosphatidylserine and phosphatidylethanolamine are preferentially translocated between rat liver mitochondria and endoplasmic reticulum. J Biol Chem. 1991;266(1):89–97.

    PubMed  CAS  Google Scholar 

  313. Achleitner G, Gaigg B, Krasser A, et al. Association between the endoplasmic reticulum and mitochondria of yeast facilitates interorganelle transport of phospholipids through membrane contact. Eur J Biochem. 1999;264(2):545–53.

    PubMed  CAS  Google Scholar 

  314. Szabadkai G, Bianchi K, Varnai P, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175(6):901–11.

    PubMed  CAS  Google Scholar 

  315. de Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature. 2008;456(7222):605–10.

    PubMed  Google Scholar 

  316. Ardail D, Lerme F, Louisot P. Involvement of contact sites in phosphatidylserine import into liver mitochondria. J Biol Chem. 1991;266(13):7978–81.

    PubMed  CAS  Google Scholar 

  317. Epand RF, Schlattner U, Wallimann T, Lacombe ML, Epand RM. Novel lipid transfer property of two mitochondrial proteins that bridge the inner and outer membranes. Biophys J. 2007;92(1):126–37.

    PubMed  CAS  Google Scholar 

  318. Francis GA, Fayard E, Picard F, Auwerx J. Nuclear receptors and the control of metabolism. Annu Rev Physiol. 2003;65:261–311.

    PubMed  CAS  Google Scholar 

  319. Spiegelman BM, Heinrich R. Biological control through regulated transcriptional coactivators. Cell. 2004;119(2):157–67.

    PubMed  CAS  Google Scholar 

  320. Scarpulla RC. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta. 2011;1813(7):1269–78.

    PubMed  CAS  Google Scholar 

  321. Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr. 2011;93(4):884S–90.

    PubMed  CAS  Google Scholar 

  322. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.

    PubMed  CAS  Google Scholar 

  323. Mootha VK, Handschin C, Arlow D, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci USA. 2004;101(17):6570–5.

    PubMed  CAS  Google Scholar 

  324. Schreiber SN, Emter R, Hock MB, et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci USA. 2004;101(17):6472–7.

    PubMed  CAS  Google Scholar 

  325. Nichol D, Christian M, Steel JH, White R, Parker MG. RIP140 expression is stimulated by estrogen-related receptor alpha during adipogenesis. J Biol Chem. 2006;281(43):32140–7.

    PubMed  CAS  Google Scholar 

  326. Powelka AM, Seth A, Virbasius JV, et al. Suppression of oxidative metabolism and mitochondrial biogenesis by the transcriptional corepressor RIP140 in mouse adipocytes. J Clin Invest. 2006;116(1):125–36.

    PubMed  CAS  Google Scholar 

  327. Hallberg M, Morganstein DL, Kiskinis E, et al. A functional interaction between RIP140 and PGC-1alpha regulates the expression of the lipid droplet protein CIDEA. Mol Cell Biol. 2008;28(22):6785–95.

    PubMed  CAS  Google Scholar 

  328. Lin J, Puigserver P, Donovan J, Tarr P, Spiegelman BM. Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem. 2002;277(3):1645–8.

    PubMed  CAS  Google Scholar 

  329. Kressler D, Schreiber SN, Knutti D, Kralli A. The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. J Biol Chem. 2002;277(16):13918–25.

    PubMed  CAS  Google Scholar 

  330. Meirhaeghe A, Crowley V, Lenaghan C, et al. Characterization of the human, mouse and rat PGC1 beta (peroxisome-proliferator-activated receptor-gamma co-activator 1 beta) gene in vitro and in vivo. Biochem J. 2003;373(Pt 1):155–65.

    PubMed  CAS  Google Scholar 

  331. Lin J, Tarr PT, Yang R, et al. PGC-1beta in the regulation of hepatic glucose and energy metabolism. J Biol Chem. 2003;278(33):30843–8.

    PubMed  CAS  Google Scholar 

  332. Andersson U, Scarpulla RC. Pgc-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol. 2001;21(11):3738–49.

    PubMed  CAS  Google Scholar 

  333. Vercauteren K, Pasko RA, Gleyzer N, Marino VM, Scarpulla RC. PGC-1-related coactivator: immediate early expression and characterization of a CREB/NRF-1 binding domain associated with cytochrome c promoter occupancy and respiratory growth. Mol Cell Biol. 2006;26(20):7409–19.

    PubMed  CAS  Google Scholar 

  334. Vercauteren K, Gleyzer N, Scarpulla RC. PGC-1-related coactivator complexes with HCF-1 and NRF-2beta in mediating ­NRF-2(GABP)-dependent respiratory gene expression. J Biol Chem. 2008;283(18):12102–11.

    PubMed  CAS  Google Scholar 

  335. Gleyzer N, Vercauteren K, Scarpulla RC. Control of mitochondrial transcription specificity factors (TFB1M and TFB2M) by nuclear respiratory factors (NRF-1 and NRF-2) and PGC-1 family coactivators. Mol Cell Biol. 2005;25(4):1354–66.

    PubMed  CAS  Google Scholar 

  336. Puigserver P, Adelmant G, Wu Z, et al. Activation of PPARgamma coactivator-1 through transcription factor docking. Science. 1999;286(5443):1368–71.

    PubMed  CAS  Google Scholar 

  337. Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413(6852):179–83.

    PubMed  CAS  Google Scholar 

  338. Wu H, Kanatous SB, Thurmond FA, et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science. 2002;296(5566):349–52.

    PubMed  CAS  Google Scholar 

  339. Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci USA. 2001;98(7):3820–5.

    PubMed  CAS  Google Scholar 

  340. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc Natl Acad Sci USA. 2003;100(12):7111–6.

    PubMed  CAS  Google Scholar 

  341. Akimoto T, Pohnert SC, Li P, et al. Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem. 2005;280(20):19587–93.

    PubMed  CAS  Google Scholar 

  342. Zhao M, New L, Kravchenko VV, et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol. 1999;19(1):21–30.

    PubMed  CAS  Google Scholar 

  343. Boss O, Bachman E, Vidal-Puig A, Zhang CY, Peroni O, Lowell BB. Role of the beta(3)-adrenergic receptor and/or a putative beta(4)-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-gamma coactivator-1. Biochem Biophys Res Commun. 1999;261(3):870–6.

    PubMed  CAS  Google Scholar 

  344. Gomez-Ambrosi J, Fruhbeck G, Martinez JA. Rapid in vivo PGC-1 mRNA upregulation in brown adipose tissue of Wistar rats by a beta(3)-adrenergic agonist and lack of effect of leptin. Mol Cell Endocrinol. 2001;176(1–2):85–90.

    PubMed  CAS  Google Scholar 

  345. Cao W, Daniel KW, Robidoux J, et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol. 2004;24(7):3057–67.

    PubMed  CAS  Google Scholar 

  346. Cao W, Collins QF, Becker TC, et al. p38 Mitogen-activated protein kinase plays a stimulatory role in hepatic gluconeogenesis. J Biol Chem. 2005;280(52):42731–7.

    PubMed  CAS  Google Scholar 

  347. Ling C, Poulsen P, Carlsson E, et al. Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins. J Clin Invest. 2004;114(10):1518–26.

    PubMed  CAS  Google Scholar 

  348. Southgate RJ, Bruce CR, Carey AL, et al. PGC-1alpha gene expression is down-regulated by Akt- mediated phosphorylation and nuclear exclusion of FoxO1 in insulin-stimulated skeletal muscle. FASEB J. 2005;19(14):2072–4.

    PubMed  CAS  Google Scholar 

  349. Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13–24.

    PubMed  CAS  Google Scholar 

  350. Sonoda J, Laganiere J, Mehl IR, et al. Nuclear receptor ERR alpha and coactivator PGC-1 beta are effectors of IFN-gamma-induced host defense. Genes Dev. 2007;21(15):1909–20.

    PubMed  CAS  Google Scholar 

  351. Canto C, Auwerx J. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol. 2009;20(2):98–105.

    PubMed  CAS  Google Scholar 

  352. Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct ­phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;104(29):12017–22.

    PubMed  Google Scholar 

  353. Li X, Monks B, Ge Q, Birnbaum MJ. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature. 2007;447(7147):1012–6.

    PubMed  CAS  Google Scholar 

  354. Rodgers JT, Haas W, Gygi SP, Puigserver P. Cdc2-like kinase 2 is an insulin-regulated suppressor of hepatic gluconeogenesis. Cell Metab. 2010;11(1):23–34.

    PubMed  CAS  Google Scholar 

  355. Puigserver P, Rhee J, Lin J, et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell. 2001;8(5):971–82.

    PubMed  CAS  Google Scholar 

  356. Collins QF, Xiong Y, Lupo Jr EG, Liu HY, Cao W. p38 Mitogen-activated protein kinase mediates free fatty acid-induced gluconeogenesis in hepatocytes. J Biol Chem. 2006;281(34):24336–44.

    PubMed  CAS  Google Scholar 

  357. Sano M, Tokudome S, Shimizu N, et al. Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptor gamma coactivator 1alpha. J Biol Chem. 2007;282(35):25970–80.

    PubMed  CAS  Google Scholar 

  358. Fan M, Rhee J, St-Pierre J, et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev. 2004;18(3):278–89.

    PubMed  CAS  Google Scholar 

  359. Anderson RM, Barger JL, Edwards MG, et al. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell. 2008;7(1):101–11.

    PubMed  CAS  Google Scholar 

  360. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8.

    PubMed  CAS  Google Scholar 

  361. Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab. 2006;3(6):429–38.

    PubMed  CAS  Google Scholar 

  362. Kelly TJ, Lerin C, Haas W, Gygi SP, Puigserver P. GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation. J Biol Chem. 2009;284(30):19945–52.

    PubMed  CAS  Google Scholar 

  363. Coste A, Louet JF, Lagouge M, et al. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci USA. 2008;105(44):17187–92.

    PubMed  CAS  Google Scholar 

  364. Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 2007;26(7):1913–23.

    PubMed  CAS  Google Scholar 

  365. Canto C, Gerhart-Hines Z, Feige JN, et al. AMPK regulates energy expenditure by modulating NAD  +  metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60.

    PubMed  CAS  Google Scholar 

  366. Houtkooper RH, Canto C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev. 2010;31(2):194–223.

    PubMed  CAS  Google Scholar 

  367. Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA. 2007;104(31):12861–6.

    PubMed  CAS  Google Scholar 

  368. Olson BL, Hock MB, Ekholm-Reed S, et al. SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev. 2008;22(2):252–64.

    PubMed  CAS  Google Scholar 

  369. Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR. Activation of nuclear receptor coactivator PGC-1alpha by arginine methylation. Genes Dev. 2005;19(12):1466–73.

    PubMed  CAS  Google Scholar 

  370. Housley MP, Udeshi ND, Rodgers JT, et al. A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J Biol Chem. 2009;284(8):5148–57.

    PubMed  CAS  Google Scholar 

  371. Uldry M, Yang W, St-Pierre J, Lin J, Seale P, Spiegelman BM. Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metab. 2006;3(5):333–41.

    PubMed  CAS  Google Scholar 

  372. Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;418(6899):797–801.

    PubMed  CAS  Google Scholar 

  373. Arany Z, Lebrasseur N, Morris C, et al. The transcriptional coactivator PGC-1beta drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab. 2007;5(1):35–46.

    PubMed  CAS  Google Scholar 

  374. Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004;119(1):121–35.

    PubMed  CAS  Google Scholar 

  375. Leone TC, Lehman JJ, Finck BN, et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 2005;3(4):e101.

    PubMed  Google Scholar 

  376. Lelliott CJ, Medina-Gomez G, Petrovic N, et al. Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol. 2006;4(11):e369.

    PubMed  Google Scholar 

  377. Vianna CR, Huntgeburth M, Coppari R, et al. Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance. Cell Metab. 2006;4(6):453–64.

    PubMed  CAS  Google Scholar 

  378. Sonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM. PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci USA. 2007;104(12):5223–8.

    PubMed  CAS  Google Scholar 

  379. Arany Z, He H, Lin J, et al. Transcriptional coactivator PGC-1 alpha controls the energy state and contractile function of cardiac muscle. Cell Metab. 2005;1(4):259–71.

    PubMed  CAS  Google Scholar 

  380. Lai L, Leone TC, Zechner C, et al. Transcriptional coactivators PGC-1alpha and PGC-lbeta control overlapping programs required for perinatal maturation of the heart. Genes Dev. 2008;22(14):1948–61.

    PubMed  CAS  Google Scholar 

  381. Vercauteren K, Gleyzer N, Scarpulla RC. Short hairpin RNA-mediated silencing of PRC (PGC-1-related coactivator) results in a severe respiratory chain deficiency associated with the proliferation of aberrant mitochondria. J Biol Chem. 2009;284(4):2307–19.

    PubMed  CAS  Google Scholar 

  382. Raharijaona M, Le Pennec S, Poirier J, et al. PGC-1-related coactivator modulates mitochondrial-nuclear crosstalk through endogenous nitric oxide in a cellular model of oncocytic thyroid tumours. PLoS One. 2009;4(11):e7964.

    PubMed  Google Scholar 

  383. Lehman JJ, Boudina S, Banke NH, et al. The transcriptional coactivator PGC-1alpha is essential for maximal and efficient cardiac mitochondrial fatty acid oxidation and lipid homeostasis. Am J Physiol Heart Circ Physiol. 2008;295(1):H185–96.

    PubMed  CAS  Google Scholar 

  384. Russell LK, Mansfield CM, Lehman JJ, et al. Cardiac-specific induction of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha promotes mitochondrial biogenesis and reversible cardiomyopathy in a developmental stage-dependent manner. Circ Res. 2004;94(4):525–33.

    PubMed  CAS  Google Scholar 

  385. St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell. 2006;127(2):397–408.

    PubMed  CAS  Google Scholar 

  386. Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem. 2002;277(43):40265–74.

    PubMed  CAS  Google Scholar 

  387. Alaynick WA, Kondo RP, Xie W, et al. ERRgamma directs and maintains the transition to oxidative metabolism in the postnatal heart. Cell Metab. 2007;6(1):13–24.

    PubMed  CAS  Google Scholar 

  388. Huss JM, Torra IP, Staels B, Giguere V, Kelly DP. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Mol Cell Biol. 2004;24(20):9079–91.

    PubMed  CAS  Google Scholar 

  389. Rangwala SM, Li X, Lindsley L, et al. Estrogen-related receptor alpha is essential for the expression of antioxidant protection genes and mitochondrial function. Biochem Biophys Res Commun. 2007;357(1):231–6.

    PubMed  CAS  Google Scholar 

  390. de las Fuentes L, Herrero P, Peterson LR, Kelly DP, Gropler RJ, Davila-Roman VG. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension. 2003;41(1):83–7.

    PubMed  Google Scholar 

  391. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85(3):1093–129.

    PubMed  CAS  Google Scholar 

  392. Young ME, Laws FA, Goodwin GW, Taegtmeyer H. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem. 2001;276(48):44390–5.

    PubMed  CAS  Google Scholar 

  393. Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci USA. 2005;102(3):808–13.

    PubMed  CAS  Google Scholar 

  394. Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. Circulation. 2009;119(14):1918–24.

    PubMed  CAS  Google Scholar 

  395. Gupta A, Chacko VP, Weiss RG. Abnormal energetics and ATP depletion in pressure-overload mouse hearts: in vivo high-energy phosphate concentration measures by noninvasive magnetic ­resonance. Am J Physiol Heart Circ Physiol. 2009;297(1):H59–64.

    PubMed  CAS  Google Scholar 

  396. Huss JM, Imahashi K, Dufour CR, et al. The nuclear receptor ERRalpha is required for the bioenergetic and functional adaptation to cardiac pressure overload. Cell Metab. 2007;6(1):25–37.

    PubMed  CAS  Google Scholar 

  397. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996;94(11):2837–42.

    PubMed  CAS  Google Scholar 

  398. Koitabashi N, Bedja D, Zaiman AL, et al. Avoidance of transient cardiomyopathy in cardiomyocyte-targeted tamoxifen-induced MerCreMer gene deletion models. Circ Res. 2009;105(1):12–5.

    PubMed  CAS  Google Scholar 

  399. Sihag S, Cresci S, Li AY, Sucharov CC, Lehman JJ. PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. J Mol Cell Cardiol. 2009;46(2):201–12.

    PubMed  CAS  Google Scholar 

  400. Czubryt MP, McAnally J, Fishman GI, Olson EN. Regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function by MEF2 and HDAC5. Proc Natl Acad Sci USA. 2003;100(4):1711–6.

    PubMed  CAS  Google Scholar 

  401. Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109(18):2191–6.

    PubMed  Google Scholar 

  402. Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology. 2005;146(12):5341–9.

    PubMed  CAS  Google Scholar 

  403. Herrero P, Peterson LR, McGill JB, et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47(3):598–604.

    PubMed  CAS  Google Scholar 

  404. Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation. 2007;115(7):909–17.

    PubMed  CAS  Google Scholar 

  405. Sharma S, Adrogue JV, Golfman L, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 2004;18(14):1692–700.

    PubMed  CAS  Google Scholar 

  406. Brookheart RT, Michel CI, Schaffer JE. As a matter of fat. Cell Metab. 2009;10(1):9–12.

    PubMed  CAS  Google Scholar 

  407. Ikeuchi M, Matsusaka H, Kang D, et al. Overexpression of mitochondrial transcription factor a ameliorates mitochondrial deficiencies and cardiac failure after myocardial infarction. Circulation. 2005;112(5):683–90.

    PubMed  CAS  Google Scholar 

  408. van der Laan M, Meinecke M, Dudek J, et al. Motor-free mitochondrial presequence translocase drives membrane integration of preproteins. Nat Cell Biol. 2007;9(10):1152–9.

    PubMed  Google Scholar 

  409. Claypool SM, Oktay Y, Boontheung P, Loo JA, Koehler CM. Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol. 2008;182(5):937–50.

    PubMed  CAS  Google Scholar 

  410. Claypool SM. Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochim Biophys Acta. 2009;1788(10):2059–68.

    PubMed  CAS  Google Scholar 

  411. Kutik S, Rissler M, Guan XL, et al. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. J Cell Biol. 2008;183(7):1213–21.

    PubMed  CAS  Google Scholar 

  412. Meisinger C, Pfannschmidt S, Rissler M, et al. The morphology proteins Mdm12/Mmm1 function in the major beta-barrel assembly pathway of mitochondria. EMBO J. 2007;26(9):2229–39.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marín-García, J. (2013). Mitochondrial Biogenesis. In: Mitochondria and Their Role in Cardiovascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4599-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4599-9_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4598-2

  • Online ISBN: 978-1-4614-4599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics